use rustc::ty::{self, Ty, adjustment::{PointerCast}}; use rustc::ty::cast::{CastTy, IntTy}; use rustc::ty::layout::{self, LayoutOf, HasTyCtxt}; use rustc::mir; use rustc::middle::lang_items::ExchangeMallocFnLangItem; use rustc_apfloat::{ieee, Float, Status, Round}; use std::{u128, i128}; use crate::base; use crate::MemFlags; use crate::callee; use crate::common::{self, RealPredicate, IntPredicate}; use rustc_mir::monomorphize; use crate::traits::*; use super::{FunctionCx, LocalRef}; use super::operand::{OperandRef, OperandValue}; use super::place::PlaceRef; impl<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { pub fn codegen_rvalue( &mut self, mut bx: Bx, dest: PlaceRef<'tcx, Bx::Value>, rvalue: &mir::Rvalue<'tcx> ) -> Bx { debug!("codegen_rvalue(dest.llval={:?}, rvalue={:?})", dest.llval, rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { let cg_operand = self.codegen_operand(&mut bx, operand); // FIXME: consider not copying constants through stack. (fixable by codegenning // constants into OperandValue::Ref, why don’t we do that yet if we don’t?) cg_operand.val.store(&mut bx, dest); bx } mir::Rvalue::Cast(mir::CastKind::Pointer(PointerCast::Unsize), ref source, _) => { // The destination necessarily contains a fat pointer, so if // it's a scalar pair, it's a fat pointer or newtype thereof. if bx.cx().is_backend_scalar_pair(dest.layout) { // into-coerce of a thin pointer to a fat pointer - just // use the operand path. let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue); temp.val.store(&mut bx, dest); return bx; } // Unsize of a nontrivial struct. I would prefer for // this to be eliminated by MIR building, but // `CoerceUnsized` can be passed by a where-clause, // so the (generic) MIR may not be able to expand it. let operand = self.codegen_operand(&mut bx, source); match operand.val { OperandValue::Pair(..) | OperandValue::Immediate(_) => { // unsize from an immediate structure. We don't // really need a temporary alloca here, but // avoiding it would require us to have // `coerce_unsized_into` use extractvalue to // index into the struct, and this case isn't // important enough for it. debug!("codegen_rvalue: creating ugly alloca"); let scratch = PlaceRef::alloca(&mut bx, operand.layout, "__unsize_temp"); scratch.storage_live(&mut bx); operand.val.store(&mut bx, scratch); base::coerce_unsized_into(&mut bx, scratch, dest); scratch.storage_dead(&mut bx); } OperandValue::Ref(llref, None, align) => { let source = PlaceRef::new_sized(llref, operand.layout, align); base::coerce_unsized_into(&mut bx, source, dest); } OperandValue::Ref(_, Some(_), _) => { bug!("unsized coercion on an unsized rvalue") } } bx } mir::Rvalue::Repeat(ref elem, count) => { let cg_elem = self.codegen_operand(&mut bx, elem); // Do not generate the loop for zero-sized elements or empty arrays. if dest.layout.is_zst() { return bx; } if let OperandValue::Immediate(v) = cg_elem.val { let zero = bx.const_usize(0); let start = dest.project_index(&mut bx, zero).llval; let size = bx.const_usize(dest.layout.size.bytes()); // Use llvm.memset.p0i8.* to initialize all zero arrays if bx.cx().is_const_integral(v) && bx.cx().const_to_uint(v) == 0 { let fill = bx.cx().const_u8(0); bx.memset(start, fill, size, dest.align, MemFlags::empty()); return bx; } // Use llvm.memset.p0i8.* to initialize byte arrays let v = base::from_immediate(&mut bx, v); if bx.cx().val_ty(v) == bx.cx().type_i8() { bx.memset(start, v, size, dest.align, MemFlags::empty()); return bx; } } bx.write_operand_repeatedly(cg_elem, count, dest) } mir::Rvalue::Aggregate(ref kind, ref operands) => { let (dest, active_field_index) = match **kind { mir::AggregateKind::Adt(adt_def, variant_index, _, _, active_field_index) => { dest.codegen_set_discr(&mut bx, variant_index); if adt_def.is_enum() { (dest.project_downcast(&mut bx, variant_index), active_field_index) } else { (dest, active_field_index) } } _ => (dest, None) }; for (i, operand) in operands.iter().enumerate() { let op = self.codegen_operand(&mut bx, operand); // Do not generate stores and GEPis for zero-sized fields. if !op.layout.is_zst() { let field_index = active_field_index.unwrap_or(i); let field = dest.project_field(&mut bx, field_index); op.val.store(&mut bx, field); } } bx } _ => { assert!(self.rvalue_creates_operand(rvalue)); let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue); temp.val.store(&mut bx, dest); bx } } } pub fn codegen_rvalue_unsized( &mut self, mut bx: Bx, indirect_dest: PlaceRef<'tcx, Bx::Value>, rvalue: &mir::Rvalue<'tcx>, ) -> Bx { debug!("codegen_rvalue_unsized(indirect_dest.llval={:?}, rvalue={:?})", indirect_dest.llval, rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { let cg_operand = self.codegen_operand(&mut bx, operand); cg_operand.val.store_unsized(&mut bx, indirect_dest); bx } _ => bug!("unsized assignment other than Rvalue::Use"), } } pub fn codegen_rvalue_operand( &mut self, mut bx: Bx, rvalue: &mir::Rvalue<'tcx> ) -> (Bx, OperandRef<'tcx, Bx::Value>) { assert!(self.rvalue_creates_operand(rvalue), "cannot codegen {:?} to operand", rvalue); match *rvalue { mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => { let operand = self.codegen_operand(&mut bx, source); debug!("cast operand is {:?}", operand); let cast = bx.cx().layout_of(self.monomorphize(&mir_cast_ty)); let val = match *kind { mir::CastKind::Pointer(PointerCast::ReifyFnPointer) => { match operand.layout.ty.sty { ty::FnDef(def_id, substs) => { if bx.cx().tcx().has_attr(def_id, "rustc_args_required_const") { bug!("reifying a fn ptr that requires \ const arguments"); } OperandValue::Immediate( callee::resolve_and_get_fn(bx.cx(), def_id, substs)) } _ => { bug!("{} cannot be reified to a fn ptr", operand.layout.ty) } } } mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)) => { match operand.layout.ty.sty { ty::Closure(def_id, substs) => { let instance = monomorphize::resolve_closure( bx.cx().tcx(), def_id, substs, ty::ClosureKind::FnOnce); OperandValue::Immediate(bx.cx().get_fn(instance)) } _ => { bug!("{} cannot be cast to a fn ptr", operand.layout.ty) } } } mir::CastKind::Pointer(PointerCast::UnsafeFnPointer) => { // this is a no-op at the LLVM level operand.val } mir::CastKind::Pointer(PointerCast::Unsize) => { assert!(bx.cx().is_backend_scalar_pair(cast)); match operand.val { OperandValue::Pair(lldata, llextra) => { // unsize from a fat pointer - this is a // "trait-object-to-supertrait" coercion, for // example, // &'a fmt::Debug+Send => &'a fmt::Debug, // HACK(eddyb) have to bitcast pointers // until LLVM removes pointee types. let lldata = bx.pointercast(lldata, bx.cx().scalar_pair_element_backend_type(cast, 0, true)); OperandValue::Pair(lldata, llextra) } OperandValue::Immediate(lldata) => { // "standard" unsize let (lldata, llextra) = base::unsize_thin_ptr(&mut bx, lldata, operand.layout.ty, cast.ty); OperandValue::Pair(lldata, llextra) } OperandValue::Ref(..) => { bug!("by-ref operand {:?} in codegen_rvalue_operand", operand); } } } mir::CastKind::Pointer(PointerCast::MutToConstPointer) | mir::CastKind::Misc if bx.cx().is_backend_scalar_pair(operand.layout) => { if let OperandValue::Pair(data_ptr, meta) = operand.val { if bx.cx().is_backend_scalar_pair(cast) { let data_cast = bx.pointercast(data_ptr, bx.cx().scalar_pair_element_backend_type(cast, 0, true)); OperandValue::Pair(data_cast, meta) } else { // cast to thin-ptr // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and // pointer-cast of that pointer to desired pointer type. let llcast_ty = bx.cx().immediate_backend_type(cast); let llval = bx.pointercast(data_ptr, llcast_ty); OperandValue::Immediate(llval) } } else { bug!("Unexpected non-Pair operand") } } mir::CastKind::Pointer(PointerCast::MutToConstPointer) | mir::CastKind::Misc => { assert!(bx.cx().is_backend_immediate(cast)); let ll_t_out = bx.cx().immediate_backend_type(cast); if operand.layout.abi.is_uninhabited() { let val = OperandValue::Immediate(bx.cx().const_undef(ll_t_out)); return (bx, OperandRef { val, layout: cast, }); } let r_t_in = CastTy::from_ty(operand.layout.ty) .expect("bad input type for cast"); let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast"); let ll_t_in = bx.cx().immediate_backend_type(operand.layout); match operand.layout.variants { layout::Variants::Single { index } => { if let Some(def) = operand.layout.ty.ty_adt_def() { let discr_val = def .discriminant_for_variant(bx.cx().tcx(), index) .val; let discr = bx.cx().const_uint_big(ll_t_out, discr_val); return (bx, OperandRef { val: OperandValue::Immediate(discr), layout: cast, }); } } layout::Variants::Multiple { .. } => {}, } let llval = operand.immediate(); let mut signed = false; if let layout::Abi::Scalar(ref scalar) = operand.layout.abi { if let layout::Int(_, s) = scalar.value { // We use `i1` for bytes that are always `0` or `1`, // e.g., `#[repr(i8)] enum E { A, B }`, but we can't // let LLVM interpret the `i1` as signed, because // then `i1 1` (i.e., E::B) is effectively `i8 -1`. signed = !scalar.is_bool() && s; let er = scalar.valid_range_exclusive(bx.cx()); if er.end != er.start && scalar.valid_range.end() > scalar.valid_range.start() { // We want `table[e as usize]` to not // have bound checks, and this is the most // convenient place to put the `assume`. let ll_t_in_const = bx.cx().const_uint_big(ll_t_in, *scalar.valid_range.end()); let cmp = bx.icmp( IntPredicate::IntULE, llval, ll_t_in_const ); bx.assume(cmp); } } } let newval = match (r_t_in, r_t_out) { (CastTy::Int(_), CastTy::Int(_)) => { bx.intcast(llval, ll_t_out, signed) } (CastTy::Float, CastTy::Float) => { let srcsz = bx.cx().float_width(ll_t_in); let dstsz = bx.cx().float_width(ll_t_out); if dstsz > srcsz { bx.fpext(llval, ll_t_out) } else if srcsz > dstsz { bx.fptrunc(llval, ll_t_out) } else { llval } } (CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_)) | (CastTy::RPtr(_), CastTy::Ptr(_)) => bx.pointercast(llval, ll_t_out), (CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => bx.ptrtoint(llval, ll_t_out), (CastTy::Int(_), CastTy::Ptr(_)) => { let usize_llval = bx.intcast(llval, bx.cx().type_isize(), signed); bx.inttoptr(usize_llval, ll_t_out) } (CastTy::Int(_), CastTy::Float) => cast_int_to_float(&mut bx, signed, llval, ll_t_in, ll_t_out), (CastTy::Float, CastTy::Int(IntTy::I)) => cast_float_to_int(&mut bx, true, llval, ll_t_in, ll_t_out), (CastTy::Float, CastTy::Int(_)) => cast_float_to_int(&mut bx, false, llval, ll_t_in, ll_t_out), _ => bug!("unsupported cast: {:?} to {:?}", operand.layout.ty, cast.ty) }; OperandValue::Immediate(newval) } }; (bx, OperandRef { val, layout: cast }) } mir::Rvalue::Ref(_, bk, ref place) => { let cg_place = self.codegen_place(&mut bx, place); let ty = cg_place.layout.ty; // Note: places are indirect, so storing the `llval` into the // destination effectively creates a reference. let val = if !bx.cx().type_has_metadata(ty) { OperandValue::Immediate(cg_place.llval) } else { OperandValue::Pair(cg_place.llval, cg_place.llextra.unwrap()) }; (bx, OperandRef { val, layout: self.cx.layout_of(self.cx.tcx().mk_ref( self.cx.tcx().types.re_erased, ty::TypeAndMut { ty, mutbl: bk.to_mutbl_lossy() } )), }) } mir::Rvalue::Len(ref place) => { let size = self.evaluate_array_len(&mut bx, place); let operand = OperandRef { val: OperandValue::Immediate(size), layout: bx.cx().layout_of(bx.tcx().types.usize), }; (bx, operand) } mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => { let lhs = self.codegen_operand(&mut bx, lhs); let rhs = self.codegen_operand(&mut bx, rhs); let llresult = match (lhs.val, rhs.val) { (OperandValue::Pair(lhs_addr, lhs_extra), OperandValue::Pair(rhs_addr, rhs_extra)) => { self.codegen_fat_ptr_binop(&mut bx, op, lhs_addr, lhs_extra, rhs_addr, rhs_extra, lhs.layout.ty) } (OperandValue::Immediate(lhs_val), OperandValue::Immediate(rhs_val)) => { self.codegen_scalar_binop(&mut bx, op, lhs_val, rhs_val, lhs.layout.ty) } _ => bug!() }; let operand = OperandRef { val: OperandValue::Immediate(llresult), layout: bx.cx().layout_of( op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)), }; (bx, operand) } mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => { let lhs = self.codegen_operand(&mut bx, lhs); let rhs = self.codegen_operand(&mut bx, rhs); let result = self.codegen_scalar_checked_binop(&mut bx, op, lhs.immediate(), rhs.immediate(), lhs.layout.ty); let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty); let operand_ty = bx.tcx().intern_tup(&[val_ty, bx.tcx().types.bool]); let operand = OperandRef { val: result, layout: bx.cx().layout_of(operand_ty) }; (bx, operand) } mir::Rvalue::UnaryOp(op, ref operand) => { let operand = self.codegen_operand(&mut bx, operand); let lloperand = operand.immediate(); let is_float = operand.layout.ty.is_fp(); let llval = match op { mir::UnOp::Not => bx.not(lloperand), mir::UnOp::Neg => if is_float { bx.fneg(lloperand) } else { bx.neg(lloperand) } }; (bx, OperandRef { val: OperandValue::Immediate(llval), layout: operand.layout, }) } mir::Rvalue::Discriminant(ref place) => { let discr_ty = rvalue.ty(&*self.mir, bx.tcx()); let discr = self.codegen_place(&mut bx, place) .codegen_get_discr(&mut bx, discr_ty); (bx, OperandRef { val: OperandValue::Immediate(discr), layout: self.cx.layout_of(discr_ty) }) } mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => { assert!(bx.cx().type_is_sized(ty)); let val = bx.cx().const_usize(bx.cx().layout_of(ty).size.bytes()); let tcx = self.cx.tcx(); (bx, OperandRef { val: OperandValue::Immediate(val), layout: self.cx.layout_of(tcx.types.usize), }) } mir::Rvalue::NullaryOp(mir::NullOp::Box, content_ty) => { let content_ty = self.monomorphize(&content_ty); let content_layout = bx.cx().layout_of(content_ty); let llsize = bx.cx().const_usize(content_layout.size.bytes()); let llalign = bx.cx().const_usize(content_layout.align.abi.bytes()); let box_layout = bx.cx().layout_of(bx.tcx().mk_box(content_ty)); let llty_ptr = bx.cx().backend_type(box_layout); // Allocate space: let def_id = match bx.tcx().lang_items().require(ExchangeMallocFnLangItem) { Ok(id) => id, Err(s) => { bx.cx().sess().fatal(&format!("allocation of `{}` {}", box_layout.ty, s)); } }; let instance = ty::Instance::mono(bx.tcx(), def_id); let r = bx.cx().get_fn(instance); let call = bx.call(r, &[llsize, llalign], None); let val = bx.pointercast(call, llty_ptr); let operand = OperandRef { val: OperandValue::Immediate(val), layout: box_layout, }; (bx, operand) } mir::Rvalue::Use(ref operand) => { let operand = self.codegen_operand(&mut bx, operand); (bx, operand) } mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { // According to `rvalue_creates_operand`, only ZST // aggregate rvalues are allowed to be operands. let ty = rvalue.ty(self.mir, self.cx.tcx()); let operand = OperandRef::new_zst( &mut bx, self.cx.layout_of(self.monomorphize(&ty)), ); (bx, operand) } } } fn evaluate_array_len( &mut self, bx: &mut Bx, place: &mir::Place<'tcx>, ) -> Bx::Value { // ZST are passed as operands and require special handling // because codegen_place() panics if Local is operand. if let mir::Place::Base(mir::PlaceBase::Local(index)) = *place { if let LocalRef::Operand(Some(op)) = self.locals[index] { if let ty::Array(_, n) = op.layout.ty.sty { let n = n.unwrap_usize(bx.cx().tcx()); return bx.cx().const_usize(n); } } } // use common size calculation for non zero-sized types let cg_value = self.codegen_place(bx, place); return cg_value.len(bx.cx()); } pub fn codegen_scalar_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs: Bx::Value, rhs: Bx::Value, input_ty: Ty<'tcx>, ) -> Bx::Value { let is_float = input_ty.is_fp(); let is_signed = input_ty.is_signed(); let is_unit = input_ty.is_unit(); match op { mir::BinOp::Add => if is_float { bx.fadd(lhs, rhs) } else { bx.add(lhs, rhs) }, mir::BinOp::Sub => if is_float { bx.fsub(lhs, rhs) } else { bx.sub(lhs, rhs) }, mir::BinOp::Mul => if is_float { bx.fmul(lhs, rhs) } else { bx.mul(lhs, rhs) }, mir::BinOp::Div => if is_float { bx.fdiv(lhs, rhs) } else if is_signed { bx.sdiv(lhs, rhs) } else { bx.udiv(lhs, rhs) }, mir::BinOp::Rem => if is_float { bx.frem(lhs, rhs) } else if is_signed { bx.srem(lhs, rhs) } else { bx.urem(lhs, rhs) }, mir::BinOp::BitOr => bx.or(lhs, rhs), mir::BinOp::BitAnd => bx.and(lhs, rhs), mir::BinOp::BitXor => bx.xor(lhs, rhs), mir::BinOp::Offset => bx.inbounds_gep(lhs, &[rhs]), mir::BinOp::Shl => common::build_unchecked_lshift(bx, lhs, rhs), mir::BinOp::Shr => common::build_unchecked_rshift(bx, input_ty, lhs, rhs), mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt | mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => if is_unit { bx.cx().const_bool(match op { mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt => false, mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => true, _ => unreachable!() }) } else if is_float { bx.fcmp( base::bin_op_to_fcmp_predicate(op.to_hir_binop()), lhs, rhs ) } else { bx.icmp( base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed), lhs, rhs ) } } } pub fn codegen_fat_ptr_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs_addr: Bx::Value, lhs_extra: Bx::Value, rhs_addr: Bx::Value, rhs_extra: Bx::Value, _input_ty: Ty<'tcx>, ) -> Bx::Value { match op { mir::BinOp::Eq => { let lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr); let rhs = bx.icmp(IntPredicate::IntEQ, lhs_extra, rhs_extra); bx.and(lhs, rhs) } mir::BinOp::Ne => { let lhs = bx.icmp(IntPredicate::IntNE, lhs_addr, rhs_addr); let rhs = bx.icmp(IntPredicate::IntNE, lhs_extra, rhs_extra); bx.or(lhs, rhs) } mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => { // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1) let (op, strict_op) = match op { mir::BinOp::Lt => (IntPredicate::IntULT, IntPredicate::IntULT), mir::BinOp::Le => (IntPredicate::IntULE, IntPredicate::IntULT), mir::BinOp::Gt => (IntPredicate::IntUGT, IntPredicate::IntUGT), mir::BinOp::Ge => (IntPredicate::IntUGE, IntPredicate::IntUGT), _ => bug!(), }; let lhs = bx.icmp(strict_op, lhs_addr, rhs_addr); let and_lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr); let and_rhs = bx.icmp(op, lhs_extra, rhs_extra); let rhs = bx.and(and_lhs, and_rhs); bx.or(lhs, rhs) } _ => { bug!("unexpected fat ptr binop"); } } } pub fn codegen_scalar_checked_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs: Bx::Value, rhs: Bx::Value, input_ty: Ty<'tcx> ) -> OperandValue { // This case can currently arise only from functions marked // with #[rustc_inherit_overflow_checks] and inlined from // another crate (mostly core::num generic/#[inline] fns), // while the current crate doesn't use overflow checks. if !bx.cx().check_overflow() { let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty); return OperandValue::Pair(val, bx.cx().const_bool(false)); } let (val, of) = match op { // These are checked using intrinsics mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => { let oop = match op { mir::BinOp::Add => OverflowOp::Add, mir::BinOp::Sub => OverflowOp::Sub, mir::BinOp::Mul => OverflowOp::Mul, _ => unreachable!() }; bx.checked_binop(oop, input_ty, lhs, rhs) } mir::BinOp::Shl | mir::BinOp::Shr => { let lhs_llty = bx.cx().val_ty(lhs); let rhs_llty = bx.cx().val_ty(rhs); let invert_mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, true); let outer_bits = bx.and(rhs, invert_mask); let of = bx.icmp(IntPredicate::IntNE, outer_bits, bx.cx().const_null(rhs_llty)); let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty); (val, of) } _ => { bug!("Operator `{:?}` is not a checkable operator", op) } }; OperandValue::Pair(val, of) } } impl<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>) -> bool { match *rvalue { mir::Rvalue::Ref(..) | mir::Rvalue::Len(..) | mir::Rvalue::Cast(..) | // (*) mir::Rvalue::BinaryOp(..) | mir::Rvalue::CheckedBinaryOp(..) | mir::Rvalue::UnaryOp(..) | mir::Rvalue::Discriminant(..) | mir::Rvalue::NullaryOp(..) | mir::Rvalue::Use(..) => // (*) true, mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { let ty = rvalue.ty(self.mir, self.cx.tcx()); let ty = self.monomorphize(&ty); self.cx.layout_of(ty).is_zst() } } // (*) this is only true if the type is suitable } } fn cast_int_to_float<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, signed: bool, x: Bx::Value, int_ty: Bx::Type, float_ty: Bx::Type ) -> Bx::Value { // Most integer types, even i128, fit into [-f32::MAX, f32::MAX] after rounding. // It's only u128 -> f32 that can cause overflows (i.e., should yield infinity). // LLVM's uitofp produces undef in those cases, so we manually check for that case. let is_u128_to_f32 = !signed && bx.cx().int_width(int_ty) == 128 && bx.cx().float_width(float_ty) == 32; if is_u128_to_f32 { // All inputs greater or equal to (f32::MAX + 0.5 ULP) are rounded to infinity, // and for everything else LLVM's uitofp works just fine. use rustc_apfloat::ieee::Single; const MAX_F32_PLUS_HALF_ULP: u128 = ((1 << (Single::PRECISION + 1)) - 1) << (Single::MAX_EXP - Single::PRECISION as i16); let max = bx.cx().const_uint_big(int_ty, MAX_F32_PLUS_HALF_ULP); let overflow = bx.icmp(IntPredicate::IntUGE, x, max); let infinity_bits = bx.cx().const_u32(ieee::Single::INFINITY.to_bits() as u32); let infinity = bx.bitcast(infinity_bits, float_ty); let fp = bx.uitofp(x, float_ty); bx.select(overflow, infinity, fp) } else { if signed { bx.sitofp(x, float_ty) } else { bx.uitofp(x, float_ty) } } } fn cast_float_to_int<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, signed: bool, x: Bx::Value, float_ty: Bx::Type, int_ty: Bx::Type ) -> Bx::Value { let fptosui_result = if signed { bx.fptosi(x, int_ty) } else { bx.fptoui(x, int_ty) }; if !bx.cx().sess().opts.debugging_opts.saturating_float_casts { return fptosui_result; } let int_width = bx.cx().int_width(int_ty); let float_width = bx.cx().float_width(float_ty); // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the // destination integer type after rounding towards zero. This `undef` value can cause UB in // safe code (see issue #10184), so we implement a saturating conversion on top of it: // Semantically, the mathematical value of the input is rounded towards zero to the next // mathematical integer, and then the result is clamped into the range of the destination // integer type. Positive and negative infinity are mapped to the maximum and minimum value of // the destination integer type. NaN is mapped to 0. // // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to // a value representable in int_ty. // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly // representable. Note that this only works if float_ty's exponent range is sufficiently large. // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. let int_max = |signed: bool, int_width: u64| -> u128 { let shift_amount = 128 - int_width; if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } }; let int_min = |signed: bool, int_width: u64| -> i128 { if signed { i128::MIN >> (128 - int_width) } else { 0 } }; let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; let mut float_bits_to_llval = |bits| { let bits_llval = match float_width { 32 => bx.cx().const_u32(bits as u32), 64 => bx.cx().const_u64(bits as u64), n => bug!("unsupported float width {}", n), }; bx.bitcast(bits_llval, float_ty) }; let (f_min, f_max) = match float_width { 32 => compute_clamp_bounds_single(signed, int_width), 64 => compute_clamp_bounds_double(signed, int_width), n => bug!("unsupported float width {}", n), }; let f_min = float_bits_to_llval(f_min); let f_max = float_bits_to_llval(f_max); // To implement saturation, we perform the following steps: // // 1. Cast x to an integer with fpto[su]i. This may result in undef. // 2. Compare x to f_min and f_max, and use the comparison results to select: // a) int_ty::MIN if x < f_min or x is NaN // b) int_ty::MAX if x > f_max // c) the result of fpto[su]i otherwise // 3. If x is NaN, return 0.0, otherwise return the result of step 2. // // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of // undef does not introduce any non-determinism either. // More importantly, the above procedure correctly implements saturating conversion. // Proof (sketch): // If x is NaN, 0 is returned by definition. // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max. // This yields three cases to consider: // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with // saturating conversion for inputs in that range. // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger // than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX // is correct. // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals // int_ty::MIN and therefore the return value of int_ty::MIN is correct. // QED. // Step 1 was already performed above. // Step 2: We use two comparisons and two selects, with %s1 being the result: // %less_or_nan = fcmp ult %x, %f_min // %greater = fcmp olt %x, %f_max // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result // %s1 = select %greater, int_ty::MAX, %s0 // Note that %less_or_nan uses an *unordered* comparison. This comparison is true if the // operands are not comparable (i.e., if x is NaN). The unordered comparison ensures that s1 // becomes int_ty::MIN if x is NaN. // Performance note: Unordered comparison can be lowered to a "flipped" comparison and a // negation, and the negation can be merged into the select. Therefore, it not necessarily any // more expensive than a ordered ("normal") comparison. Whether these optimizations will be // performed is ultimately up to the backend, but at least x86 does perform them. let less_or_nan = bx.fcmp(RealPredicate::RealULT, x, f_min); let greater = bx.fcmp(RealPredicate::RealOGT, x, f_max); let int_max = bx.cx().const_uint_big(int_ty, int_max(signed, int_width)); let int_min = bx.cx().const_uint_big(int_ty, int_min(signed, int_width) as u128); let s0 = bx.select(less_or_nan, int_min, fptosui_result); let s1 = bx.select(greater, int_max, s0); // Step 3: NaN replacement. // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN. // Therefore we only need to execute this step for signed integer types. if signed { // LLVM has no isNaN predicate, so we use (x == x) instead let zero = bx.cx().const_uint(int_ty, 0); let cmp = bx.fcmp(RealPredicate::RealOEQ, x, x); bx.select(cmp, s1, zero) } else { s1 } }