// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::iter::FromIterator; /// A very simple BitVector type. #[derive(Clone, Debug, PartialEq)] pub struct BitVector { data: Vec, } impl BitVector { #[inline] pub fn new(num_bits: usize) -> BitVector { let num_words = u64s(num_bits); BitVector { data: vec![0; num_words] } } #[inline] pub fn clear(&mut self) { for p in &mut self.data { *p = 0; } } pub fn count(&self) -> usize { self.data.iter().map(|e| e.count_ones() as usize).sum() } #[inline] pub fn contains(&self, bit: usize) -> bool { let (word, mask) = word_mask(bit); (self.data[word] & mask) != 0 } /// Returns true if the bit has changed. #[inline] pub fn insert(&mut self, bit: usize) -> bool { let (word, mask) = word_mask(bit); let data = &mut self.data[word]; let value = *data; let new_value = value | mask; *data = new_value; new_value != value } #[inline] pub fn insert_all(&mut self, all: &BitVector) -> bool { assert!(self.data.len() == all.data.len()); let mut changed = false; for (i, j) in self.data.iter_mut().zip(&all.data) { let value = *i; *i = value | *j; if value != *i { changed = true; } } changed } #[inline] pub fn grow(&mut self, num_bits: usize) { let num_words = u64s(num_bits); if self.data.len() < num_words { self.data.resize(num_words, 0) } } /// Iterates over indexes of set bits in a sorted order #[inline] pub fn iter<'a>(&'a self) -> BitVectorIter<'a> { BitVectorIter { iter: self.data.iter(), current: 0, idx: 0, } } } pub struct BitVectorIter<'a> { iter: ::std::slice::Iter<'a, u64>, current: u64, idx: usize, } impl<'a> Iterator for BitVectorIter<'a> { type Item = usize; fn next(&mut self) -> Option { while self.current == 0 { self.current = if let Some(&i) = self.iter.next() { if i == 0 { self.idx += 64; continue; } else { self.idx = u64s(self.idx) * 64; i } } else { return None; } } let offset = self.current.trailing_zeros() as usize; self.current >>= offset; self.current >>= 1; // shift otherwise overflows for 0b1000_0000_…_0000 self.idx += offset + 1; return Some(self.idx - 1); } } impl FromIterator for BitVector { fn from_iter(iter: I) -> BitVector where I: IntoIterator { let iter = iter.into_iter(); let (len, _) = iter.size_hint(); // Make the minimum length for the bitvector 64 bits since that's // the smallest non-zero size anyway. let len = if len < 64 { 64 } else { len }; let mut bv = BitVector::new(len); for (idx, val) in iter.enumerate() { if idx > len { bv.grow(idx); } if val { bv.insert(idx); } } bv } } /// A "bit matrix" is basically a matrix of booleans represented as /// one gigantic bitvector. In other words, it is as if you have /// `rows` bitvectors, each of length `columns`. #[derive(Clone)] pub struct BitMatrix { columns: usize, vector: Vec, } impl BitMatrix { // Create a new `rows x columns` matrix, initially empty. pub fn new(rows: usize, columns: usize) -> BitMatrix { // For every element, we need one bit for every other // element. Round up to an even number of u64s. let u64s_per_row = u64s(columns); BitMatrix { columns: columns, vector: vec![0; rows * u64s_per_row], } } /// The range of bits for a given row. fn range(&self, row: usize) -> (usize, usize) { let u64s_per_row = u64s(self.columns); let start = row * u64s_per_row; (start, start + u64s_per_row) } pub fn add(&mut self, source: usize, target: usize) -> bool { let (start, _) = self.range(source); let (word, mask) = word_mask(target); let mut vector = &mut self.vector[..]; let v1 = vector[start + word]; let v2 = v1 | mask; vector[start + word] = v2; v1 != v2 } /// Do the bits from `source` contain `target`? /// /// Put another way, if the matrix represents (transitive) /// reachability, can `source` reach `target`? pub fn contains(&self, source: usize, target: usize) -> bool { let (start, _) = self.range(source); let (word, mask) = word_mask(target); (self.vector[start + word] & mask) != 0 } /// Returns those indices that are reachable from both `a` and /// `b`. This is an O(n) operation where `n` is the number of /// elements (somewhat independent from the actual size of the /// intersection, in particular). pub fn intersection(&self, a: usize, b: usize) -> Vec { let (a_start, a_end) = self.range(a); let (b_start, b_end) = self.range(b); let mut result = Vec::with_capacity(self.columns); for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() { let mut v = self.vector[i] & self.vector[j]; for bit in 0..64 { if v == 0 { break; } if v & 0x1 != 0 { result.push(base * 64 + bit); } v >>= 1; } } result } /// Add the bits from `read` to the bits from `write`, /// return true if anything changed. /// /// This is used when computing transitive reachability because if /// you have an edge `write -> read`, because in that case /// `write` can reach everything that `read` can (and /// potentially more). pub fn merge(&mut self, read: usize, write: usize) -> bool { let (read_start, read_end) = self.range(read); let (write_start, write_end) = self.range(write); let vector = &mut self.vector[..]; let mut changed = false; for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) { let v1 = vector[write_index]; let v2 = v1 | vector[read_index]; vector[write_index] = v2; changed = changed | (v1 != v2); } changed } pub fn iter<'a>(&'a self, row: usize) -> BitVectorIter<'a> { let (start, end) = self.range(row); BitVectorIter { iter: self.vector[start..end].iter(), current: 0, idx: 0, } } } #[inline] fn u64s(elements: usize) -> usize { (elements + 63) / 64 } #[inline] fn word_mask(index: usize) -> (usize, u64) { let word = index / 64; let mask = 1 << (index % 64); (word, mask) } #[test] fn bitvec_iter_works() { let mut bitvec = BitVector::new(100); bitvec.insert(1); bitvec.insert(10); bitvec.insert(19); bitvec.insert(62); bitvec.insert(63); bitvec.insert(64); bitvec.insert(65); bitvec.insert(66); bitvec.insert(99); assert_eq!(bitvec.iter().collect::>(), [1, 10, 19, 62, 63, 64, 65, 66, 99]); } #[test] fn bitvec_iter_works_2() { let mut bitvec = BitVector::new(319); bitvec.insert(0); bitvec.insert(127); bitvec.insert(191); bitvec.insert(255); bitvec.insert(319); assert_eq!(bitvec.iter().collect::>(), [0, 127, 191, 255, 319]); } #[test] fn union_two_vecs() { let mut vec1 = BitVector::new(65); let mut vec2 = BitVector::new(65); assert!(vec1.insert(3)); assert!(!vec1.insert(3)); assert!(vec2.insert(5)); assert!(vec2.insert(64)); assert!(vec1.insert_all(&vec2)); assert!(!vec1.insert_all(&vec2)); assert!(vec1.contains(3)); assert!(!vec1.contains(4)); assert!(vec1.contains(5)); assert!(!vec1.contains(63)); assert!(vec1.contains(64)); } #[test] fn grow() { let mut vec1 = BitVector::new(65); for index in 0 .. 65 { assert!(vec1.insert(index)); assert!(!vec1.insert(index)); } vec1.grow(128); // Check if the bits set before growing are still set for index in 0 .. 65 { assert!(vec1.contains(index)); } // Check if the new bits are all un-set for index in 65 .. 128 { assert!(!vec1.contains(index)); } // Check that we can set all new bits without running out of bounds for index in 65 .. 128 { assert!(vec1.insert(index)); assert!(!vec1.insert(index)); } } #[test] fn matrix_intersection() { let mut vec1 = BitMatrix::new(200, 200); // (*) Elements reachable from both 2 and 65. vec1.add(2, 3); vec1.add(2, 6); vec1.add(2, 10); // (*) vec1.add(2, 64); // (*) vec1.add(2, 65); vec1.add(2, 130); vec1.add(2, 160); // (*) vec1.add(64, 133); vec1.add(65, 2); vec1.add(65, 8); vec1.add(65, 10); // (*) vec1.add(65, 64); // (*) vec1.add(65, 68); vec1.add(65, 133); vec1.add(65, 160); // (*) let intersection = vec1.intersection(2, 64); assert!(intersection.is_empty()); let intersection = vec1.intersection(2, 65); assert_eq!(intersection, &[10, 64, 160]); } #[test] fn matrix_iter() { let mut matrix = BitMatrix::new(64, 100); matrix.add(3, 22); matrix.add(3, 75); matrix.add(2, 99); matrix.add(4, 0); matrix.merge(3, 5); let expected = [99]; let mut iter = expected.iter(); for i in matrix.iter(2) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(3) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [0]; let mut iter = expected.iter(); for i in matrix.iter(4) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); let expected = [22, 75]; let mut iter = expected.iter(); for i in matrix.iter(5) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); }