// Decoding metadata from a single crate's metadata use crate::cstore::{self, CrateMetadata, MetadataBlob, NativeLibrary, ForeignModule}; use crate::schema::*; use rustc_data_structures::sync::{Lrc, ReadGuard}; use rustc::hir::map::{DefKey, DefPath, DefPathData, DefPathHash, Definitions}; use rustc::hir; use rustc::middle::cstore::LinkagePreference; use rustc::middle::exported_symbols::{ExportedSymbol, SymbolExportLevel}; use rustc::hir::def::{self, Def, CtorOf, CtorKind}; use rustc::hir::def_id::{CrateNum, DefId, DefIndex, DefIndexAddressSpace, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId}; use rustc::hir::map::definitions::DefPathTable; use rustc_data_structures::fingerprint::Fingerprint; use rustc::middle::lang_items; use rustc::mir::{self, interpret}; use rustc::mir::interpret::AllocDecodingSession; use rustc::session::Session; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::codec::TyDecoder; use rustc::mir::Mir; use rustc::util::captures::Captures; use std::io; use std::mem; use std::u32; use rustc_serialize::{Decodable, Decoder, SpecializedDecoder, opaque}; use syntax::attr; use syntax::ast::{self, Ident}; use syntax::source_map; use syntax::symbol::InternedString; use syntax::ext::base::{MacroKind, SyntaxExtension}; use syntax::ext::hygiene::Mark; use syntax_pos::{self, Span, BytePos, Pos, DUMMY_SP, NO_EXPANSION}; use log::debug; pub struct DecodeContext<'a, 'tcx: 'a> { opaque: opaque::Decoder<'a>, cdata: Option<&'a CrateMetadata>, sess: Option<&'a Session>, tcx: Option>, // Cache the last used source_file for translating spans as an optimization. last_source_file_index: usize, lazy_state: LazyState, // Used for decoding interpret::AllocIds in a cached & thread-safe manner. alloc_decoding_session: Option>, } /// Abstract over the various ways one can create metadata decoders. pub trait Metadata<'a, 'tcx>: Copy { fn raw_bytes(self) -> &'a [u8]; fn cdata(self) -> Option<&'a CrateMetadata> { None } fn sess(self) -> Option<&'a Session> { None } fn tcx(self) -> Option> { None } fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> { let tcx = self.tcx(); DecodeContext { opaque: opaque::Decoder::new(self.raw_bytes(), pos), cdata: self.cdata(), sess: self.sess().or(tcx.map(|tcx| tcx.sess)), tcx, last_source_file_index: 0, lazy_state: LazyState::NoNode, alloc_decoding_session: self.cdata().map(|cdata| { cdata.alloc_decoding_state.new_decoding_session() }), } } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob { fn raw_bytes(self) -> &'a [u8] { &self.0 } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'a Session) { fn raw_bytes(self) -> &'a [u8] { let (blob, _) = self; &blob.0 } fn sess(self) -> Option<&'a Session> { let (_, sess) = self; Some(sess) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a CrateMetadata { fn raw_bytes(self) -> &'a [u8] { self.blob.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, &'a Session) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self.0) } fn sess(self) -> Option<&'a Session> { Some(&self.1) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, TyCtxt<'a, 'tcx, 'tcx>) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self.0) } fn tcx(self) -> Option> { Some(self.1) } } impl<'a, 'tcx: 'a, T: Decodable> Lazy { pub fn decode>(self, meta: M) -> T { let mut dcx = meta.decoder(self.position); dcx.lazy_state = LazyState::NodeStart(self.position); T::decode(&mut dcx).unwrap() } } impl<'a, 'tcx: 'a, T: Decodable> LazySeq { pub fn decode>( self, meta: M, ) -> impl Iterator + Captures<'tcx> + 'a { let mut dcx = meta.decoder(self.position); dcx.lazy_state = LazyState::NodeStart(self.position); (0..self.len).map(move |_| T::decode(&mut dcx).unwrap()) } } impl<'a, 'tcx> DecodeContext<'a, 'tcx> { pub fn tcx(&self) -> TyCtxt<'a, 'tcx, 'tcx> { self.tcx.expect("missing TyCtxt in DecodeContext") } pub fn cdata(&self) -> &'a CrateMetadata { self.cdata.expect("missing CrateMetadata in DecodeContext") } fn read_lazy_distance(&mut self, min_size: usize) -> Result::Error> { let distance = self.read_usize()?; let position = match self.lazy_state { LazyState::NoNode => bug!("read_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { assert!(distance + min_size <= start); start - distance - min_size } LazyState::Previous(last_min_end) => last_min_end + distance, }; self.lazy_state = LazyState::Previous(position + min_size); Ok(position) } } impl<'a, 'tcx: 'a> TyDecoder<'a, 'tcx> for DecodeContext<'a, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'a, 'tcx, 'tcx> { self.tcx.expect("missing TyCtxt in DecodeContext") } #[inline] fn peek_byte(&self) -> u8 { self.opaque.data[self.opaque.position()] } #[inline] fn position(&self) -> usize { self.opaque.position() } fn cached_ty_for_shorthand(&mut self, shorthand: usize, or_insert_with: F) -> Result, Self::Error> where F: FnOnce(&mut Self) -> Result, Self::Error> { let tcx = self.tcx(); let key = ty::CReaderCacheKey { cnum: self.cdata().cnum, pos: shorthand, }; if let Some(&ty) = tcx.rcache.borrow().get(&key) { return Ok(ty); } let ty = or_insert_with(self)?; tcx.rcache.borrow_mut().insert(key, ty); Ok(ty) } fn with_position(&mut self, pos: usize, f: F) -> R where F: FnOnce(&mut Self) -> R { let new_opaque = opaque::Decoder::new(self.opaque.data, pos); let old_opaque = mem::replace(&mut self.opaque, new_opaque); let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode); let r = f(self); self.opaque = old_opaque; self.lazy_state = old_state; r } fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum { if cnum == LOCAL_CRATE { self.cdata().cnum } else { self.cdata().cnum_map[cnum] } } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { Ok(Lazy::with_position(self.read_lazy_distance(Lazy::::min_size())?)) } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { let len = self.read_usize()?; let position = if len == 0 { 0 } else { self.read_lazy_distance(LazySeq::::min_size(len))? }; Ok(LazySeq::with_position_and_length(position, len)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { let krate = CrateNum::decode(self)?; let index = DefIndex::decode(self)?; Ok(DefId { krate, index, }) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { Ok(DefIndex::from_raw_u32(self.read_u32()?)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { self.specialized_decode().map(|i| LocalDefId::from_def_id(i)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { if let Some(alloc_decoding_session) = self.alloc_decoding_session { alloc_decoding_session.decode_alloc_id(self) } else { bug!("Attempting to decode interpret::AllocId without CrateMetadata") } } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { let tag = u8::decode(self)?; if tag == TAG_INVALID_SPAN { return Ok(DUMMY_SP) } debug_assert_eq!(tag, TAG_VALID_SPAN); let lo = BytePos::decode(self)?; let len = BytePos::decode(self)?; let hi = lo + len; let sess = if let Some(sess) = self.sess { sess } else { bug!("Cannot decode Span without Session.") }; let imported_source_files = self.cdata().imported_source_files(&sess.source_map()); let source_file = { // Optimize for the case that most spans within a translated item // originate from the same source_file. let last_source_file = &imported_source_files[self.last_source_file_index]; if lo >= last_source_file.original_start_pos && lo <= last_source_file.original_end_pos { last_source_file } else { let mut a = 0; let mut b = imported_source_files.len(); while b - a > 1 { let m = (a + b) / 2; if imported_source_files[m].original_start_pos > lo { b = m; } else { a = m; } } self.last_source_file_index = a; &imported_source_files[a] } }; // Make sure our binary search above is correct. debug_assert!(lo >= source_file.original_start_pos && lo <= source_file.original_end_pos); // Make sure we correctly filtered out invalid spans during encoding debug_assert!(hi >= source_file.original_start_pos && hi <= source_file.original_end_pos); let lo = (lo + source_file.translated_source_file.start_pos) - source_file.original_start_pos; let hi = (hi + source_file.translated_source_file.start_pos) - source_file.original_start_pos; Ok(Span::new(lo, hi, NO_EXPANSION)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { Fingerprint::decode_opaque(&mut self.opaque) } } impl<'a, 'tcx, T: Decodable> SpecializedDecoder> for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result, Self::Error> { Ok(mir::ClearCrossCrate::Clear) } } implement_ty_decoder!( DecodeContext<'a, 'tcx> ); impl<'a, 'tcx> MetadataBlob { pub fn is_compatible(&self) -> bool { self.raw_bytes().starts_with(METADATA_HEADER) } pub fn get_rustc_version(&self) -> String { Lazy::with_position(METADATA_HEADER.len() + 4).decode(self) } pub fn get_root(&self) -> CrateRoot { let slice = self.raw_bytes(); let offset = METADATA_HEADER.len(); let pos = (((slice[offset + 0] as u32) << 24) | ((slice[offset + 1] as u32) << 16) | ((slice[offset + 2] as u32) << 8) | ((slice[offset + 3] as u32) << 0)) as usize; Lazy::with_position(pos).decode(self) } pub fn list_crate_metadata(&self, out: &mut dyn io::Write) -> io::Result<()> { write!(out, "=External Dependencies=\n")?; let root = self.get_root(); for (i, dep) in root.crate_deps .decode(self) .enumerate() { write!(out, "{} {}{}\n", i + 1, dep.name, dep.extra_filename)?; } write!(out, "\n")?; Ok(()) } } impl<'tcx> EntryKind<'tcx> { fn to_def(&self, did: DefId) -> Option { Some(match *self { EntryKind::Const(..) => Def::Const(did), EntryKind::AssociatedConst(..) => Def::AssociatedConst(did), EntryKind::ImmStatic | EntryKind::MutStatic | EntryKind::ForeignImmStatic | EntryKind::ForeignMutStatic => Def::Static(did), EntryKind::Struct(_, _) => Def::Struct(did), EntryKind::Union(_, _) => Def::Union(did), EntryKind::Fn(_) | EntryKind::ForeignFn(_) => Def::Fn(did), EntryKind::Method(_) => Def::Method(did), EntryKind::Type => Def::TyAlias(did), EntryKind::TypeParam => Def::TyParam(did), EntryKind::ConstParam => Def::ConstParam(did), EntryKind::Existential => Def::Existential(did), EntryKind::AssociatedType(_) => Def::AssociatedTy(did), EntryKind::AssociatedExistential(_) => Def::AssociatedExistential(did), EntryKind::Mod(_) => Def::Mod(did), EntryKind::Variant(_) => Def::Variant(did), EntryKind::Trait(_) => Def::Trait(did), EntryKind::TraitAlias(_) => Def::TraitAlias(did), EntryKind::Enum(..) => Def::Enum(did), EntryKind::MacroDef(_) => Def::Macro(did, MacroKind::Bang), EntryKind::ForeignType => Def::ForeignTy(did), EntryKind::ForeignMod | EntryKind::GlobalAsm | EntryKind::Impl(_) | EntryKind::Field | EntryKind::Generator(_) | EntryKind::Closure(_) => return None, }) } } /// Creates the "fake" DefPathTable for a given proc macro crate. /// /// The DefPathTable is as follows: /// /// CRATE_ROOT (DefIndex 0:0) /// |- GlobalMetaDataKind data (DefIndex 1:0 .. DefIndex 1:N) /// |- proc macro #0 (DefIndex 1:N) /// |- proc macro #1 (DefIndex 1:N+1) /// \- ... crate fn proc_macro_def_path_table(crate_root: &CrateRoot, proc_macros: &[(ast::Name, Lrc)]) -> DefPathTable { let mut definitions = Definitions::new(); let name = crate_root.name.as_str(); let disambiguator = crate_root.disambiguator; debug!("creating proc macro def path table for {:?}/{:?}", name, disambiguator); let crate_root = definitions.create_root_def(&name, disambiguator); for (index, (name, _)) in proc_macros.iter().enumerate() { let def_index = definitions.create_def_with_parent( crate_root, ast::DUMMY_NODE_ID, DefPathData::MacroDef(name.as_interned_str()), DefIndexAddressSpace::High, Mark::root(), DUMMY_SP); debug!("definition for {:?} is {:?}", name, def_index); assert_eq!(def_index, DefIndex::from_proc_macro_index(index)); } definitions.def_path_table().clone() } impl<'a, 'tcx> CrateMetadata { fn is_proc_macro(&self, id: DefIndex) -> bool { self.proc_macros.is_some() && id != CRATE_DEF_INDEX } fn maybe_entry(&self, item_id: DefIndex) -> Option>> { assert!(!self.is_proc_macro(item_id)); self.root.index.lookup(self.blob.raw_bytes(), item_id) } fn entry(&self, item_id: DefIndex) -> Entry<'tcx> { match self.maybe_entry(item_id) { None => { bug!("entry: id not found: {:?} in crate {:?} with number {}", item_id, self.name, self.cnum) } Some(d) => d.decode(self), } } fn local_def_id(&self, index: DefIndex) -> DefId { DefId { krate: self.cnum, index, } } pub fn item_name(&self, item_index: DefIndex) -> InternedString { self.def_key(item_index) .disambiguated_data .data .get_opt_name() .expect("no name in item_name") } pub fn get_def(&self, index: DefIndex) -> Option { if !self.is_proc_macro(index) { self.entry(index).kind.to_def(self.local_def_id(index)) } else { let kind = self.proc_macros.as_ref().unwrap()[index.to_proc_macro_index()].1.kind(); Some(Def::Macro(self.local_def_id(index), kind)) } } pub fn get_span(&self, index: DefIndex, sess: &Session) -> Span { match self.is_proc_macro(index) { true => DUMMY_SP, false => self.entry(index).span.decode((self, sess)), } } pub fn get_trait_def(&self, item_id: DefIndex, sess: &Session) -> ty::TraitDef { match self.entry(item_id).kind { EntryKind::Trait(data) => { let data = data.decode((self, sess)); ty::TraitDef::new(self.local_def_id(item_id), data.unsafety, data.paren_sugar, data.has_auto_impl, data.is_marker, self.def_path_table.def_path_hash(item_id)) }, EntryKind::TraitAlias(_) => { ty::TraitDef::new(self.local_def_id(item_id), hir::Unsafety::Normal, false, false, false, self.def_path_table.def_path_hash(item_id)) }, _ => bug!("def-index does not refer to trait or trait alias"), } } fn get_variant( &self, tcx: TyCtxt<'a, 'tcx, 'tcx>, item: &Entry<'_>, index: DefIndex, parent_did: DefId, adt_kind: ty::AdtKind ) -> ty::VariantDef { let data = match item.kind { EntryKind::Variant(data) | EntryKind::Struct(data, _) | EntryKind::Union(data, _) => data.decode(self), _ => bug!(), }; let variant_did = if adt_kind == ty::AdtKind::Enum { Some(self.local_def_id(index)) } else { None }; let ctor_did = data.ctor.map(|index| self.local_def_id(index)); ty::VariantDef::new( tcx, Ident::from_interned_str(self.item_name(index)), variant_did, ctor_did, data.discr, item.children.decode(self).map(|index| { let f = self.entry(index); ty::FieldDef { did: self.local_def_id(index), ident: Ident::from_interned_str(self.item_name(index)), vis: f.visibility.decode(self) } }).collect(), data.ctor_kind, adt_kind, parent_did, false, ) } pub fn get_adt_def(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> &'tcx ty::AdtDef { let item = self.entry(item_id); let did = self.local_def_id(item_id); let (kind, repr) = match item.kind { EntryKind::Enum(repr) => (ty::AdtKind::Enum, repr), EntryKind::Struct(_, repr) => (ty::AdtKind::Struct, repr), EntryKind::Union(_, repr) => (ty::AdtKind::Union, repr), _ => bug!("get_adt_def called on a non-ADT {:?}", did), }; let variants = if let ty::AdtKind::Enum = kind { item.children .decode(self) .map(|index| { self.get_variant(tcx, &self.entry(index), index, did, kind) }) .collect() } else { std::iter::once(self.get_variant(tcx, &item, item_id, did, kind)).collect() }; tcx.alloc_adt_def(did, kind, variants, repr) } pub fn get_predicates(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::GenericPredicates<'tcx> { self.entry(item_id).predicates.unwrap().decode((self, tcx)) } pub fn get_predicates_defined_on(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::GenericPredicates<'tcx> { self.entry(item_id).predicates_defined_on.unwrap().decode((self, tcx)) } pub fn get_super_predicates(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::GenericPredicates<'tcx> { let super_predicates = match self.entry(item_id).kind { EntryKind::Trait(data) => data.decode(self).super_predicates, EntryKind::TraitAlias(data) => data.decode(self).super_predicates, _ => bug!("def-index does not refer to trait or trait alias"), }; super_predicates.decode((self, tcx)) } pub fn get_generics(&self, item_id: DefIndex, sess: &Session) -> ty::Generics { self.entry(item_id).generics.unwrap().decode((self, sess)) } pub fn get_type(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Ty<'tcx> { self.entry(id).ty.unwrap().decode((self, tcx)) } pub fn get_stability(&self, id: DefIndex) -> Option { match self.is_proc_macro(id) { true => self.root.proc_macro_stability.clone(), false => self.entry(id).stability.map(|stab| stab.decode(self)), } } pub fn get_deprecation(&self, id: DefIndex) -> Option { match self.is_proc_macro(id) { true => None, false => self.entry(id).deprecation.map(|depr| depr.decode(self)), } } pub fn get_visibility(&self, id: DefIndex) -> ty::Visibility { match self.is_proc_macro(id) { true => ty::Visibility::Public, false => self.entry(id).visibility.decode(self), } } fn get_impl_data(&self, id: DefIndex) -> ImplData<'tcx> { match self.entry(id).kind { EntryKind::Impl(data) => data.decode(self), _ => bug!(), } } pub fn get_parent_impl(&self, id: DefIndex) -> Option { self.get_impl_data(id).parent_impl } pub fn get_impl_polarity(&self, id: DefIndex) -> hir::ImplPolarity { self.get_impl_data(id).polarity } pub fn get_impl_defaultness(&self, id: DefIndex) -> hir::Defaultness { self.get_impl_data(id).defaultness } pub fn get_coerce_unsized_info(&self, id: DefIndex) -> Option { self.get_impl_data(id).coerce_unsized_info } pub fn get_impl_trait(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option> { self.get_impl_data(id).trait_ref.map(|tr| tr.decode((self, tcx))) } /// Iterates over all the stability attributes in the given crate. pub fn get_lib_features(&self) -> Vec<(ast::Name, Option)> { // FIXME: For a proc macro crate, not sure whether we should return the "host" // features or an empty Vec. Both don't cause ICEs. self.root .lib_features .decode(self) .collect() } /// Iterates over the language items in the given crate. pub fn get_lang_items(&self) -> Vec<(DefId, usize)> { if self.proc_macros.is_some() { // Proc macro crates do not export any lang-items to the target. vec![] } else { self.root .lang_items .decode(self) .map(|(def_index, index)| (self.local_def_id(def_index), index)) .collect() } } /// Iterates over each child of the given item. pub fn each_child_of_item(&self, id: DefIndex, mut callback: F, sess: &Session) where F: FnMut(def::Export) { if let Some(ref proc_macros) = self.proc_macros { /* If we are loading as a proc macro, we want to return the view of this crate * as a proc macro crate, not as a Rust crate. See `proc_macro_def_path_table` * for the DefPathTable we are corresponding to. */ if id == CRATE_DEF_INDEX { for (id, &(name, ref ext)) in proc_macros.iter().enumerate() { let def = Def::Macro( DefId { krate: self.cnum, index: DefIndex::from_proc_macro_index(id), }, ext.kind() ); let ident = Ident::with_empty_ctxt(name); callback(def::Export { ident: ident, def: def, vis: ty::Visibility::Public, span: DUMMY_SP, }); } } return } // Find the item. let item = match self.maybe_entry(id) { None => return, Some(item) => item.decode((self, sess)), }; // Iterate over all children. let macros_only = self.dep_kind.lock().macros_only(); for child_index in item.children.decode((self, sess)) { if macros_only { continue } // Get the item. if let Some(child) = self.maybe_entry(child_index) { let child = child.decode((self, sess)); match child.kind { EntryKind::MacroDef(..) => {} _ if macros_only => continue, _ => {} } // Hand off the item to the callback. match child.kind { // FIXME(eddyb) Don't encode these in children. EntryKind::ForeignMod => { for child_index in child.children.decode((self, sess)) { if let Some(def) = self.get_def(child_index) { callback(def::Export { def, ident: Ident::from_interned_str(self.item_name(child_index)), vis: self.get_visibility(child_index), span: self.entry(child_index).span.decode((self, sess)), }); } } continue; } EntryKind::Impl(_) => continue, _ => {} } let def_key = self.def_key(child_index); let span = child.span.decode((self, sess)); if let (Some(def), Some(name)) = (self.get_def(child_index), def_key.disambiguated_data.data.get_opt_name()) { let ident = Ident::from_interned_str(name); let vis = self.get_visibility(child_index); callback(def::Export { def, ident, vis, span }); // For non-re-export structs and variants add their constructors to children. // Re-export lists automatically contain constructors when necessary. match def { Def::Struct(..) => { if let Some(ctor_def_id) = self.get_ctor_def_id(child_index) { let ctor_kind = self.get_ctor_kind(child_index); let ctor_def = Def::Ctor(ctor_def_id, CtorOf::Struct, ctor_kind); let vis = self.get_visibility(ctor_def_id.index); callback(def::Export { def: ctor_def, vis, ident, span }); } } Def::Variant(def_id) => { // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. // It's ok to use the variant's id as a ctor id since an // error will be reported on any use of such resolution anyway. let ctor_def_id = self.get_ctor_def_id(child_index).unwrap_or(def_id); let ctor_kind = self.get_ctor_kind(child_index); let ctor_def = Def::Ctor(ctor_def_id, CtorOf::Variant, ctor_kind); let mut vis = self.get_visibility(ctor_def_id.index); if ctor_def_id == def_id && vis == ty::Visibility::Public { // For non-exhaustive variants lower the constructor visibility to // within the crate. We only need this for fictive constructors, // for other constructors correct visibilities // were already encoded in metadata. let attrs = self.get_item_attrs(def_id.index, sess); if attr::contains_name(&attrs, "non_exhaustive") { let crate_def_id = DefId { index: CRATE_DEF_INDEX, ..def_id }; vis = ty::Visibility::Restricted(crate_def_id); } } callback(def::Export { def: ctor_def, ident, vis, span }); } _ => {} } } } } if let EntryKind::Mod(data) = item.kind { for exp in data.decode((self, sess)).reexports.decode((self, sess)) { match exp.def { Def::Macro(..) => {} _ if macros_only => continue, _ => {} } callback(exp); } } } pub fn const_is_rvalue_promotable_to_static(&self, id: DefIndex) -> bool { match self.entry(id).kind { EntryKind::AssociatedConst(_, data, _) | EntryKind::Const(data, _) => data.ast_promotable, _ => bug!(), } } pub fn is_item_mir_available(&self, id: DefIndex) -> bool { !self.is_proc_macro(id) && self.maybe_entry(id).and_then(|item| item.decode(self).mir).is_some() } pub fn maybe_get_optimized_mir(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefIndex) -> Option> { match self.is_proc_macro(id) { true => None, false => self.entry(id).mir.map(|mir| mir.decode((self, tcx))), } } pub fn mir_const_qualif(&self, id: DefIndex) -> u8 { match self.entry(id).kind { EntryKind::Const(qualif, _) | EntryKind::AssociatedConst(AssociatedContainer::ImplDefault, qualif, _) | EntryKind::AssociatedConst(AssociatedContainer::ImplFinal, qualif, _) => { qualif.mir } _ => bug!(), } } pub fn get_associated_item(&self, id: DefIndex) -> ty::AssociatedItem { let item = self.entry(id); let def_key = self.def_key(id); let parent = self.local_def_id(def_key.parent.unwrap()); let name = def_key.disambiguated_data.data.get_opt_name().unwrap(); let (kind, container, has_self) = match item.kind { EntryKind::AssociatedConst(container, _, _) => { (ty::AssociatedKind::Const, container, false) } EntryKind::Method(data) => { let data = data.decode(self); (ty::AssociatedKind::Method, data.container, data.has_self) } EntryKind::AssociatedType(container) => { (ty::AssociatedKind::Type, container, false) } EntryKind::AssociatedExistential(container) => { (ty::AssociatedKind::Existential, container, false) } _ => bug!("cannot get associated-item of `{:?}`", def_key) }; ty::AssociatedItem { ident: Ident::from_interned_str(name), kind, vis: item.visibility.decode(self), defaultness: container.defaultness(), def_id: self.local_def_id(id), container: container.with_def_id(parent), method_has_self_argument: has_self } } pub fn get_item_variances(&self, id: DefIndex) -> Vec { self.entry(id).variances.decode(self).collect() } pub fn get_ctor_kind(&self, node_id: DefIndex) -> CtorKind { match self.entry(node_id).kind { EntryKind::Struct(data, _) | EntryKind::Union(data, _) | EntryKind::Variant(data) => data.decode(self).ctor_kind, _ => CtorKind::Fictive, } } pub fn get_ctor_def_id(&self, node_id: DefIndex) -> Option { match self.entry(node_id).kind { EntryKind::Struct(data, _) => { data.decode(self).ctor.map(|index| self.local_def_id(index)) } EntryKind::Variant(data) => { data.decode(self).ctor.map(|index| self.local_def_id(index)) } _ => None, } } pub fn get_item_attrs(&self, node_id: DefIndex, sess: &Session) -> Lrc<[ast::Attribute]> { if self.is_proc_macro(node_id) { return Lrc::new([]); } // The attributes for a tuple struct/variant are attached to the definition, not the ctor; // we assume that someone passing in a tuple struct ctor is actually wanting to // look at the definition let def_key = self.def_key(node_id); let item_id = if def_key.disambiguated_data.data == DefPathData::Ctor { def_key.parent.unwrap() } else { node_id }; let item = self.entry(item_id); Lrc::from(self.get_attributes(&item, sess)) } pub fn get_struct_field_names(&self, id: DefIndex) -> Vec { self.entry(id) .children .decode(self) .map(|index| self.item_name(index).as_symbol()) .collect() } fn get_attributes(&self, item: &Entry<'tcx>, sess: &Session) -> Vec { item.attributes .decode((self, sess)) .map(|mut attr| { // Need new unique IDs: old thread-local IDs won't map to new threads. attr.id = attr::mk_attr_id(); attr }) .collect() } // Translate a DefId from the current compilation environment to a DefId // for an external crate. fn reverse_translate_def_id(&self, did: DefId) -> Option { for (local, &global) in self.cnum_map.iter_enumerated() { if global == did.krate { return Some(DefId { krate: local, index: did.index, }); } } None } pub fn get_inherent_implementations_for_type(&self, id: DefIndex) -> Vec { self.entry(id) .inherent_impls .decode(self) .map(|index| self.local_def_id(index)) .collect() } pub fn get_implementations_for_trait(&self, filter: Option, result: &mut Vec) { if self.proc_macros.is_some() { // proc-macro crates export no trait impls. return } // Do a reverse lookup beforehand to avoid touching the crate_num // hash map in the loop below. let filter = match filter.map(|def_id| self.reverse_translate_def_id(def_id)) { Some(Some(def_id)) => Some((def_id.krate.as_u32(), def_id.index)), Some(None) => return, None => None, }; if let Some(filter) = filter { if let Some(impls) = self.trait_impls .get(&filter) { result.extend(impls.decode(self).map(|idx| self.local_def_id(idx))); } } else { for impls in self.trait_impls.values() { result.extend(impls.decode(self).map(|idx| self.local_def_id(idx))); } } } pub fn get_trait_of_item(&self, id: DefIndex) -> Option { let def_key = self.def_key(id); match def_key.disambiguated_data.data { DefPathData::TypeNs(..) | DefPathData::ValueNs(..) => (), // Not an associated item _ => return None, } def_key.parent.and_then(|parent_index| { match self.entry(parent_index).kind { EntryKind::Trait(_) | EntryKind::TraitAlias(_) => Some(self.local_def_id(parent_index)), _ => None, } }) } pub fn get_native_libraries(&self, sess: &Session) -> Vec { if self.proc_macros.is_some() { // Proc macro crates do not have any *target* native libraries. vec![] } else { self.root.native_libraries.decode((self, sess)).collect() } } pub fn get_foreign_modules(&self, sess: &Session) -> Vec { if self.proc_macros.is_some() { // Proc macro crates do not have any *target* foreign modules. vec![] } else { self.root.foreign_modules.decode((self, sess)).collect() } } pub fn get_dylib_dependency_formats(&self) -> Vec<(CrateNum, LinkagePreference)> { self.root .dylib_dependency_formats .decode(self) .enumerate() .flat_map(|(i, link)| { let cnum = CrateNum::new(i + 1); link.map(|link| (self.cnum_map[cnum], link)) }) .collect() } pub fn get_missing_lang_items(&self) -> Vec { if self.proc_macros.is_some() { // Proc macro crates do not depend on any target weak lang-items. vec![] } else { self.root .lang_items_missing .decode(self) .collect() } } pub fn get_fn_arg_names(&self, id: DefIndex) -> Vec { let arg_names = match self.entry(id).kind { EntryKind::Fn(data) | EntryKind::ForeignFn(data) => data.decode(self).arg_names, EntryKind::Method(data) => data.decode(self).fn_data.arg_names, _ => LazySeq::empty(), }; arg_names.decode(self).collect() } pub fn exported_symbols(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Vec<(ExportedSymbol<'tcx>, SymbolExportLevel)> { if self.proc_macros.is_some() { // If this crate is a custom derive crate, then we're not even going to // link those in so we skip those crates. vec![] } else { let lazy_seq: LazySeq<(ExportedSymbol<'tcx>, SymbolExportLevel)> = LazySeq::with_position_and_length(self.root.exported_symbols.position, self.root.exported_symbols.len); lazy_seq.decode((self, tcx)).collect() } } pub fn get_rendered_const(&self, id: DefIndex) -> String { match self.entry(id).kind { EntryKind::Const(_, data) | EntryKind::AssociatedConst(_, _, data) => data.decode(self).0, _ => bug!(), } } pub fn get_macro(&self, id: DefIndex) -> MacroDef { let entry = self.entry(id); match entry.kind { EntryKind::MacroDef(macro_def) => macro_def.decode(self), _ => bug!(), } } crate fn is_const_fn_raw(&self, id: DefIndex) -> bool { let constness = match self.entry(id).kind { EntryKind::Method(data) => data.decode(self).fn_data.constness, EntryKind::Fn(data) => data.decode(self).constness, _ => hir::Constness::NotConst, }; constness == hir::Constness::Const } pub fn is_foreign_item(&self, id: DefIndex) -> bool { match self.entry(id).kind { EntryKind::ForeignImmStatic | EntryKind::ForeignMutStatic | EntryKind::ForeignFn(_) => true, _ => false, } } crate fn static_mutability(&self, id: DefIndex) -> Option { match self.entry(id).kind { EntryKind::ImmStatic | EntryKind::ForeignImmStatic => Some(hir::MutImmutable), EntryKind::MutStatic | EntryKind::ForeignMutStatic => Some(hir::MutMutable), _ => None, } } pub fn fn_sig(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::PolyFnSig<'tcx> { let sig = match self.entry(id).kind { EntryKind::Fn(data) | EntryKind::ForeignFn(data) => data.decode(self).sig, EntryKind::Method(data) => data.decode(self).fn_data.sig, EntryKind::Variant(data) | EntryKind::Struct(data, _) => data.decode(self).ctor_sig.unwrap(), EntryKind::Closure(data) => data.decode(self).sig, _ => bug!(), }; sig.decode((self, tcx)) } #[inline] pub fn def_key(&self, index: DefIndex) -> DefKey { self.def_path_table.def_key(index) } // Returns the path leading to the thing with this `id`. pub fn def_path(&self, id: DefIndex) -> DefPath { debug!("def_path(cnum={:?}, id={:?})", self.cnum, id); DefPath::make(self.cnum, id, |parent| self.def_path_table.def_key(parent)) } #[inline] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.def_path_table.def_path_hash(index) } /// Imports the source_map from an external crate into the source_map of the crate /// currently being compiled (the "local crate"). /// /// The import algorithm works analogous to how AST items are inlined from an /// external crate's metadata: /// For every SourceFile in the external source_map an 'inline' copy is created in the /// local source_map. The correspondence relation between external and local /// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this /// function. When an item from an external crate is later inlined into this /// crate, this correspondence information is used to translate the span /// information of the inlined item so that it refers the correct positions in /// the local source_map (see `>`). /// /// The import algorithm in the function below will reuse SourceFiles already /// existing in the local source_map. For example, even if the SourceFile of some /// source file of libstd gets imported many times, there will only ever be /// one SourceFile object for the corresponding file in the local source_map. /// /// Note that imported SourceFiles do not actually contain the source code of the /// file they represent, just information about length, line breaks, and /// multibyte characters. This information is enough to generate valid debuginfo /// for items inlined from other crates. /// /// Proc macro crates don't currently export spans, so this function does not have /// to work for them. pub fn imported_source_files(&'a self, local_source_map: &source_map::SourceMap) -> ReadGuard<'a, Vec> { { let source_files = self.source_map_import_info.borrow(); if !source_files.is_empty() { return source_files; } } // Lock the source_map_import_info to ensure this only happens once let mut source_map_import_info = self.source_map_import_info.borrow_mut(); if !source_map_import_info.is_empty() { drop(source_map_import_info); return self.source_map_import_info.borrow(); } let external_source_map = self.root.source_map.decode(self); let imported_source_files = external_source_map.map(|source_file_to_import| { // We can't reuse an existing SourceFile, so allocate a new one // containing the information we need. let syntax_pos::SourceFile { name, name_was_remapped, src_hash, start_pos, end_pos, mut lines, mut multibyte_chars, mut non_narrow_chars, name_hash, .. } = source_file_to_import; let source_length = (end_pos - start_pos).to_usize(); // Translate line-start positions and multibyte character // position into frame of reference local to file. // `SourceMap::new_imported_source_file()` will then translate those // coordinates to their new global frame of reference when the // offset of the SourceFile is known. for pos in &mut lines { *pos = *pos - start_pos; } for mbc in &mut multibyte_chars { mbc.pos = mbc.pos - start_pos; } for swc in &mut non_narrow_chars { *swc = *swc - start_pos; } let local_version = local_source_map.new_imported_source_file(name, name_was_remapped, self.cnum.as_u32(), src_hash, name_hash, source_length, lines, multibyte_chars, non_narrow_chars); debug!("CrateMetaData::imported_source_files alloc \ source_file {:?} original (start_pos {:?} end_pos {:?}) \ translated (start_pos {:?} end_pos {:?})", local_version.name, start_pos, end_pos, local_version.start_pos, local_version.end_pos); cstore::ImportedSourceFile { original_start_pos: start_pos, original_end_pos: end_pos, translated_source_file: local_version, } }).collect(); *source_map_import_info = imported_source_files; drop(source_map_import_info); // This shouldn't borrow twice, but there is no way to downgrade RefMut to Ref. self.source_map_import_info.borrow() } }