//! Process the potential `cfg` attributes on a module. //! Also determine if the module should be included in this configuration. //! //! This module properly belongs in syntax_expand, but for now it's tied into //! parsing, so we leave it here to avoid complicated out-of-line dependencies. //! //! A principled solution to this wrong location would be to implement [#64197]. //! //! [#64197]: https://github.com/rust-lang/rust/issues/64197 use crate::{parse_in, validate_attr}; use rustc_feature::Features; use rustc_errors::Applicability; use syntax::attr::HasAttrs; use syntax::feature_gate::{feature_err, get_features}; use syntax::attr; use syntax::ast::{self, Attribute, AttrItem, MetaItem}; use syntax::edition::Edition; use syntax::mut_visit::*; use syntax::ptr::P; use syntax::sess::ParseSess; use syntax::util::map_in_place::MapInPlace; use syntax_pos::Span; use syntax_pos::symbol::sym; use smallvec::SmallVec; /// A folder that strips out items that do not belong in the current configuration. pub struct StripUnconfigured<'a> { pub sess: &'a ParseSess, pub features: Option<&'a Features>, } // `cfg_attr`-process the crate's attributes and compute the crate's features. pub fn features(mut krate: ast::Crate, sess: &ParseSess, edition: Edition, allow_features: &Option>) -> (ast::Crate, Features) { let features; { let mut strip_unconfigured = StripUnconfigured { sess, features: None, }; let unconfigured_attrs = krate.attrs.clone(); let err_count = sess.span_diagnostic.err_count(); if let Some(attrs) = strip_unconfigured.configure(krate.attrs) { krate.attrs = attrs; } else { // the entire crate is unconfigured krate.attrs = Vec::new(); krate.module.items = Vec::new(); return (krate, Features::default()); } features = get_features(&sess.span_diagnostic, &krate.attrs, edition, allow_features); // Avoid reconfiguring malformed `cfg_attr`s if err_count == sess.span_diagnostic.err_count() { strip_unconfigured.features = Some(&features); strip_unconfigured.configure(unconfigured_attrs); } } (krate, features) } #[macro_export] macro_rules! configure { ($this:ident, $node:ident) => { match $this.configure($node) { Some(node) => node, None => return Default::default(), } } } const CFG_ATTR_GRAMMAR_HELP: &str = "#[cfg_attr(condition, attribute, other_attribute, ...)]"; const CFG_ATTR_NOTE_REF: &str = "for more information, visit \ "; impl<'a> StripUnconfigured<'a> { pub fn configure(&mut self, mut node: T) -> Option { self.process_cfg_attrs(&mut node); self.in_cfg(node.attrs()).then_some(node) } /// Parse and expand all `cfg_attr` attributes into a list of attributes /// that are within each `cfg_attr` that has a true configuration predicate. /// /// Gives compiler warnigns if any `cfg_attr` does not contain any /// attributes and is in the original source code. Gives compiler errors if /// the syntax of any `cfg_attr` is incorrect. pub fn process_cfg_attrs(&mut self, node: &mut T) { node.visit_attrs(|attrs| { attrs.flat_map_in_place(|attr| self.process_cfg_attr(attr)); }); } /// Parse and expand a single `cfg_attr` attribute into a list of attributes /// when the configuration predicate is true, or otherwise expand into an /// empty list of attributes. /// /// Gives a compiler warning when the `cfg_attr` contains no attributes and /// is in the original source file. Gives a compiler error if the syntax of /// the attribute is incorrect. fn process_cfg_attr(&mut self, attr: Attribute) -> Vec { if !attr.has_name(sym::cfg_attr) { return vec![attr]; } let (cfg_predicate, expanded_attrs) = match self.parse_cfg_attr(&attr) { None => return vec![], Some(r) => r, }; // Lint on zero attributes in source. if expanded_attrs.is_empty() { return vec![attr]; } // At this point we know the attribute is considered used. attr::mark_used(&attr); if !attr::cfg_matches(&cfg_predicate, self.sess, self.features) { return vec![]; } // We call `process_cfg_attr` recursively in case there's a // `cfg_attr` inside of another `cfg_attr`. E.g. // `#[cfg_attr(false, cfg_attr(true, some_attr))]`. expanded_attrs .into_iter() .flat_map(|(item, span)| { let attr = attr::mk_attr_from_item(attr.style, item, span); self.process_cfg_attr(attr) }) .collect() } fn parse_cfg_attr(&self, attr: &Attribute) -> Option<(MetaItem, Vec<(AttrItem, Span)>)> { match attr.get_normal_item().args { ast::MacArgs::Delimited(dspan, delim, ref tts) if !tts.is_empty() => { let msg = "wrong `cfg_attr` delimiters"; validate_attr::check_meta_bad_delim(self.sess, dspan, delim, msg); match parse_in(self.sess, tts.clone(), "`cfg_attr` input", |p| p.parse_cfg_attr()) { Ok(r) => return Some(r), Err(mut e) => e .help(&format!("the valid syntax is `{}`", CFG_ATTR_GRAMMAR_HELP)) .note(CFG_ATTR_NOTE_REF) .emit(), } } _ => self.error_malformed_cfg_attr_missing(attr.span), } None } fn error_malformed_cfg_attr_missing(&self, span: Span) { self.sess .span_diagnostic .struct_span_err(span, "malformed `cfg_attr` attribute input") .span_suggestion( span, "missing condition and attribute", CFG_ATTR_GRAMMAR_HELP.to_string(), Applicability::HasPlaceholders, ) .note(CFG_ATTR_NOTE_REF) .emit(); } /// Determines if a node with the given attributes should be included in this configuration. pub fn in_cfg(&self, attrs: &[Attribute]) -> bool { attrs.iter().all(|attr| { if !is_cfg(attr) { return true; } let error = |span, msg, suggestion: &str| { let mut err = self.sess.span_diagnostic.struct_span_err(span, msg); if !suggestion.is_empty() { err.span_suggestion( span, "expected syntax is", suggestion.into(), Applicability::MaybeIncorrect, ); } err.emit(); true }; let meta_item = match validate_attr::parse_meta(self.sess, attr) { Ok(meta_item) => meta_item, Err(mut err) => { err.emit(); return true; } }; let nested_meta_items = if let Some(nested_meta_items) = meta_item.meta_item_list() { nested_meta_items } else { return error(meta_item.span, "`cfg` is not followed by parentheses", "cfg(/* predicate */)"); }; if nested_meta_items.is_empty() { return error(meta_item.span, "`cfg` predicate is not specified", ""); } else if nested_meta_items.len() > 1 { return error(nested_meta_items.last().unwrap().span(), "multiple `cfg` predicates are specified", ""); } match nested_meta_items[0].meta_item() { Some(meta_item) => attr::cfg_matches(meta_item, self.sess, self.features), None => error(nested_meta_items[0].span(), "`cfg` predicate key cannot be a literal", ""), } }) } /// Visit attributes on expression and statements (but not attributes on items in blocks). fn visit_expr_attrs(&mut self, attrs: &[Attribute]) { // flag the offending attributes for attr in attrs.iter() { self.maybe_emit_expr_attr_err(attr); } } /// If attributes are not allowed on expressions, emit an error for `attr` pub fn maybe_emit_expr_attr_err(&self, attr: &Attribute) { if !self.features.map(|features| features.stmt_expr_attributes).unwrap_or(true) { let mut err = feature_err(self.sess, sym::stmt_expr_attributes, attr.span, "attributes on expressions are experimental"); if attr.is_doc_comment() { err.help("`///` is for documentation comments. For a plain comment, use `//`."); } err.emit(); } } pub fn configure_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) { let ast::ForeignMod { abi: _, items } = foreign_mod; items.flat_map_in_place(|item| self.configure(item)); } pub fn configure_generic_params(&mut self, params: &mut Vec) { params.flat_map_in_place(|param| self.configure(param)); } fn configure_variant_data(&mut self, vdata: &mut ast::VariantData) { match vdata { ast::VariantData::Struct(fields, ..) | ast::VariantData::Tuple(fields, _) => fields.flat_map_in_place(|field| self.configure(field)), ast::VariantData::Unit(_) => {} } } pub fn configure_item_kind(&mut self, item: &mut ast::ItemKind) { match item { ast::ItemKind::Struct(def, _generics) | ast::ItemKind::Union(def, _generics) => self.configure_variant_data(def), ast::ItemKind::Enum(ast::EnumDef { variants }, _generics) => { variants.flat_map_in_place(|variant| self.configure(variant)); for variant in variants { self.configure_variant_data(&mut variant.data); } } _ => {} } } pub fn configure_expr_kind(&mut self, expr_kind: &mut ast::ExprKind) { match expr_kind { ast::ExprKind::Match(_m, arms) => { arms.flat_map_in_place(|arm| self.configure(arm)); } ast::ExprKind::Struct(_path, fields, _base) => { fields.flat_map_in_place(|field| self.configure(field)); } _ => {} } } pub fn configure_expr(&mut self, expr: &mut P) { self.visit_expr_attrs(expr.attrs()); // If an expr is valid to cfg away it will have been removed by the // outer stmt or expression folder before descending in here. // Anything else is always required, and thus has to error out // in case of a cfg attr. // // N.B., this is intentionally not part of the visit_expr() function // in order for filter_map_expr() to be able to avoid this check if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) { let msg = "removing an expression is not supported in this position"; self.sess.span_diagnostic.span_err(attr.span, msg); } self.process_cfg_attrs(expr) } pub fn configure_pat(&mut self, pat: &mut P) { if let ast::PatKind::Struct(_path, fields, _etc) = &mut pat.kind { fields.flat_map_in_place(|field| self.configure(field)); } } pub fn configure_fn_decl(&mut self, fn_decl: &mut ast::FnDecl) { fn_decl.inputs.flat_map_in_place(|arg| self.configure(arg)); } } impl<'a> MutVisitor for StripUnconfigured<'a> { fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) { self.configure_foreign_mod(foreign_mod); noop_visit_foreign_mod(foreign_mod, self); } fn visit_item_kind(&mut self, item: &mut ast::ItemKind) { self.configure_item_kind(item); noop_visit_item_kind(item, self); } fn visit_expr(&mut self, expr: &mut P) { self.configure_expr(expr); self.configure_expr_kind(&mut expr.kind); noop_visit_expr(expr, self); } fn filter_map_expr(&mut self, expr: P) -> Option> { let mut expr = configure!(self, expr); self.configure_expr_kind(&mut expr.kind); noop_visit_expr(&mut expr, self); Some(expr) } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { noop_flat_map_stmt(configure!(self, stmt), self) } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { noop_flat_map_item(configure!(self, item), self) } fn flat_map_impl_item(&mut self, item: ast::ImplItem) -> SmallVec<[ast::ImplItem; 1]> { noop_flat_map_impl_item(configure!(self, item), self) } fn flat_map_trait_item(&mut self, item: ast::TraitItem) -> SmallVec<[ast::TraitItem; 1]> { noop_flat_map_trait_item(configure!(self, item), self) } fn visit_mac(&mut self, _mac: &mut ast::Mac) { // Don't configure interpolated AST (cf. issue #34171). // Interpolated AST will get configured once the surrounding tokens are parsed. } fn visit_pat(&mut self, pat: &mut P) { self.configure_pat(pat); noop_visit_pat(pat, self) } fn visit_fn_decl(&mut self, mut fn_decl: &mut P) { self.configure_fn_decl(&mut fn_decl); noop_visit_fn_decl(fn_decl, self); } } fn is_cfg(attr: &Attribute) -> bool { attr.check_name(sym::cfg) } /// Process the potential `cfg` attributes on a module. /// Also determine if the module should be included in this configuration. pub fn process_configure_mod( sess: &ParseSess, cfg_mods: bool, attrs: &[Attribute], ) -> (bool, Vec) { // Don't perform gated feature checking. let mut strip_unconfigured = StripUnconfigured { sess, features: None }; let mut attrs = attrs.to_owned(); strip_unconfigured.process_cfg_attrs(&mut attrs); (!cfg_mods || strip_unconfigured.in_cfg(&attrs), attrs) }