//! Write the output of rustc's analysis to an implementor of Dump. //! //! Dumping the analysis is implemented by walking the AST and getting a bunch of //! info out from all over the place. We use `DefId`s to identify objects. The //! tricky part is getting syntactic (span, source text) and semantic (reference //! `DefId`s) information for parts of expressions which the compiler has discarded. //! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole //! path and a reference to `baz`, but we want spans and references for all three //! idents. //! //! SpanUtils is used to manipulate spans. In particular, to extract sub-spans //! from spans (e.g., the span for `bar` from the above example path). //! DumpVisitor walks the AST and processes it, and JsonDumper is used for //! recording the output. use rustc::hir::def::Def as HirDef; use rustc::hir::def_id::DefId; use rustc::session::config::Input; use rustc::span_bug; use rustc::ty::{self, DefIdTree, TyCtxt}; use rustc_data_structures::fx::FxHashSet; use std::path::Path; use std::env; use syntax::ast::{self, Attribute, NodeId, PatKind, CRATE_NODE_ID}; use syntax::parse::token; use syntax::visit::{self, Visitor}; use syntax::print::pprust::{ bounds_to_string, generic_params_to_string, ty_to_string }; use syntax::ptr::P; use syntax::source_map::{Spanned, DUMMY_SP, respan}; use syntax::walk_list; use syntax_pos::*; use crate::{escape, generated_code, id_from_def_id, id_from_node_id, lower_attributes, PathCollector, SaveContext}; use crate::json_dumper::{Access, DumpOutput, JsonDumper}; use crate::span_utils::SpanUtils; use crate::sig; use rls_data::{CompilationOptions, CratePreludeData, Def, DefKind, GlobalCrateId, Import, ImportKind, Ref, RefKind, Relation, RelationKind, SpanData}; use log::{debug, error}; macro_rules! down_cast_data { ($id:ident, $kind:ident, $sp:expr) => { let $id = if let super::Data::$kind(data) = $id { data } else { span_bug!($sp, "unexpected data kind: {:?}", $id); }; }; } macro_rules! access_from { ($save_ctxt:expr, $item:expr, $id:expr) => { Access { public: $item.vis.node.is_pub(), reachable: $save_ctxt.access_levels.is_reachable($id), } }; } macro_rules! access_from_vis { ($save_ctxt:expr, $vis:expr, $id:expr) => { Access { public: $vis.node.is_pub(), reachable: $save_ctxt.access_levels.is_reachable($id), } }; } pub struct DumpVisitor<'l, 'tcx: 'l, 'll, O: DumpOutput> { save_ctxt: SaveContext<'l, 'tcx>, tcx: TyCtxt<'l, 'tcx, 'tcx>, dumper: &'ll mut JsonDumper, span: SpanUtils<'l>, cur_scope: NodeId, // Set of macro definition (callee) spans, and the set // of macro use (callsite) spans. We store these to ensure // we only write one macro def per unique macro definition, and // one macro use per unique callsite span. // mac_defs: FxHashSet, // macro_calls: FxHashSet, } impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> DumpVisitor<'l, 'tcx, 'll, O> { pub fn new( save_ctxt: SaveContext<'l, 'tcx>, dumper: &'ll mut JsonDumper, ) -> DumpVisitor<'l, 'tcx, 'll, O> { let span_utils = SpanUtils::new(&save_ctxt.tcx.sess); DumpVisitor { tcx: save_ctxt.tcx, save_ctxt, dumper, span: span_utils, cur_scope: CRATE_NODE_ID, // mac_defs: FxHashSet::default(), // macro_calls: FxHashSet::default(), } } fn nest_scope(&mut self, scope_id: NodeId, f: F) where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>), { let parent_scope = self.cur_scope; self.cur_scope = scope_id; f(self); self.cur_scope = parent_scope; } fn nest_tables(&mut self, item_id: NodeId, f: F) where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>), { let item_def_id = self.tcx.hir().local_def_id(item_id); if self.tcx.has_typeck_tables(item_def_id) { let tables = self.tcx.typeck_tables_of(item_def_id); let old_tables = self.save_ctxt.tables; self.save_ctxt.tables = tables; f(self); self.save_ctxt.tables = old_tables; } else { f(self); } } fn span_from_span(&self, span: Span) -> SpanData { self.save_ctxt.span_from_span(span) } pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) { let source_file = self.tcx.sess.local_crate_source_file.as_ref(); let crate_root = source_file.map(|source_file| { let source_file = Path::new(source_file); match source_file.file_name() { Some(_) => source_file.parent().unwrap().display(), None => source_file.display(), }.to_string() }); let data = CratePreludeData { crate_id: GlobalCrateId { name: name.into(), disambiguator: self.tcx .sess .local_crate_disambiguator() .to_fingerprint() .as_value(), }, crate_root: crate_root.unwrap_or_else(|| "".to_owned()), external_crates: self.save_ctxt.get_external_crates(), span: self.span_from_span(krate.span), }; self.dumper.crate_prelude(data); } pub fn dump_compilation_options(&mut self, input: &Input, crate_name: &str) { // Apply possible `remap-path-prefix` remapping to the input source file // (and don't include remapping args anymore) let (program, arguments) = { let remap_arg_indices = { let mut indices = FxHashSet::default(); // Args are guaranteed to be valid UTF-8 (checked early) for (i, e) in env::args().enumerate() { if e.starts_with("--remap-path-prefix=") { indices.insert(i); } else if e == "--remap-path-prefix" { indices.insert(i); indices.insert(i + 1); } } indices }; let mut args = env::args() .enumerate() .filter(|(i, _)| !remap_arg_indices.contains(i)) .map(|(_, arg)| { match input { Input::File(ref path) if path == Path::new(&arg) => { let mapped = &self.tcx.sess.local_crate_source_file; mapped .as_ref() .unwrap() .to_string_lossy() .into() }, _ => arg, } }); (args.next().unwrap(), args.collect()) }; let data = CompilationOptions { directory: self.tcx.sess.working_dir.0.clone(), program, arguments, output: self.save_ctxt.compilation_output(crate_name), }; self.dumper.compilation_opts(data); } fn write_sub_paths(&mut self, path: &ast::Path) { for seg in &path.segments { if let Some(data) = self.save_ctxt.get_path_segment_data(seg) { self.dumper.dump_ref(data); } } } // As write_sub_paths, but does not process the last ident in the path (assuming it // will be processed elsewhere). See note on write_sub_paths about global. fn write_sub_paths_truncated(&mut self, path: &ast::Path) { for seg in &path.segments[..path.segments.len() - 1] { if let Some(data) = self.save_ctxt.get_path_segment_data(seg) { self.dumper.dump_ref(data); } } } fn lookup_def_id(&self, ref_id: NodeId) -> Option { match self.save_ctxt.get_path_def(ref_id) { HirDef::PrimTy(..) | HirDef::SelfTy(..) | HirDef::Err => None, def => Some(def.def_id()), } } fn process_formals(&mut self, formals: &'l [ast::Arg], qualname: &str) { for arg in formals { self.visit_pat(&arg.pat); let mut collector = PathCollector::new(); collector.visit_pat(&arg.pat); for (id, ident, ..) in collector.collected_idents { let hir_id = self.tcx.hir().node_to_hir_id(id); let typ = match self.save_ctxt.tables.node_type_opt(hir_id) { Some(s) => s.to_string(), None => continue, }; if !self.span.filter_generated(ident.span) { let id = id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(ident.span); self.dumper.dump_def( &Access { public: false, reachable: false, }, Def { kind: DefKind::Local, id, span, name: ident.to_string(), qualname: format!("{}::{}", qualname, ident.to_string()), value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes: vec![], }, ); } } } } fn process_method( &mut self, sig: &'l ast::MethodSig, body: Option<&'l ast::Block>, id: ast::NodeId, ident: ast::Ident, generics: &'l ast::Generics, vis: ast::Visibility, span: Span, ) { debug!("process_method: {}:{}", id, ident); if let Some(mut method_data) = self.save_ctxt.get_method_data(id, ident, span) { let sig_str = crate::make_signature(&sig.decl, &generics); if body.is_some() { self.nest_tables( id, |v| v.process_formals(&sig.decl.inputs, &method_data.qualname), ); } self.process_generic_params(&generics, &method_data.qualname, id); method_data.value = sig_str; method_data.sig = sig::method_signature(id, ident, generics, sig, &self.save_ctxt); let hir_id = self.tcx.hir().node_to_hir_id(id); self.dumper.dump_def(&access_from_vis!(self.save_ctxt, vis, hir_id), method_data); } // walk arg and return types for arg in &sig.decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output { self.visit_ty(ret_ty); } // walk the fn body if let Some(body) = body { self.nest_tables(id, |v| v.nest_scope(id, |v| v.visit_block(body))); } } fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) { let field_data = self.save_ctxt.get_field_data(field, parent_id); if let Some(field_data) = field_data { let hir_id = self.tcx.hir().node_to_hir_id(field.id); self.dumper.dump_def(&access_from!(self.save_ctxt, field, hir_id), field_data); } } // Dump generic params bindings, then visit_generics fn process_generic_params( &mut self, generics: &'l ast::Generics, prefix: &str, id: NodeId, ) { for param in &generics.params { match param.kind { ast::GenericParamKind::Lifetime { .. } => {} ast::GenericParamKind::Type { .. } => { let param_ss = param.ident.span; let name = escape(self.span.snippet(param_ss)); // Append $id to name to make sure each one is unique. let qualname = format!("{}::{}${}", prefix, name, id); if !self.span.filter_generated(param_ss) { let id = id_from_node_id(param.id, &self.save_ctxt); let span = self.span_from_span(param_ss); self.dumper.dump_def( &Access { public: false, reachable: false, }, Def { kind: DefKind::Type, id, span, name, qualname, value: String::new(), parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes: vec![], }, ); } } ast::GenericParamKind::Const { .. } => {} } } self.visit_generics(generics); } fn process_fn( &mut self, item: &'l ast::Item, decl: &'l ast::FnDecl, ty_params: &'l ast::Generics, body: &'l ast::Block, ) { if let Some(fn_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(fn_data, DefData, item.span); self.nest_tables( item.id, |v| v.process_formals(&decl.inputs, &fn_data.qualname), ); self.process_generic_params(ty_params, &fn_data.qualname, item.id); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def(&access_from!(self.save_ctxt, item, hir_id), fn_data); } for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } self.nest_tables(item.id, |v| v.nest_scope(item.id, |v| v.visit_block(&body))); } fn process_static_or_const_item( &mut self, item: &'l ast::Item, typ: &'l ast::Ty, expr: &'l ast::Expr, ) { let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.nest_tables(item.id, |v| { if let Some(var_data) = v.save_ctxt.get_item_data(item) { down_cast_data!(var_data, DefData, item.span); v.dumper.dump_def(&access_from!(v.save_ctxt, item, hir_id), var_data); } v.visit_ty(&typ); v.visit_expr(expr); }); } fn process_assoc_const( &mut self, id: ast::NodeId, ident: ast::Ident, typ: &'l ast::Ty, expr: Option<&'l ast::Expr>, parent_id: DefId, vis: ast::Visibility, attrs: &'l [Attribute], ) { let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(id))); if !self.span.filter_generated(ident.span) { let sig = sig::assoc_const_signature(id, ident.name, typ, expr, &self.save_ctxt); let span = self.span_from_span(ident.span); let hir_id = self.tcx.hir().node_to_hir_id(id); self.dumper.dump_def( &access_from_vis!(self.save_ctxt, vis, hir_id), Def { kind: DefKind::Const, id: id_from_node_id(id, &self.save_ctxt), span, name: ident.name.to_string(), qualname, value: ty_to_string(&typ), parent: Some(id_from_def_id(parent_id)), children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(attrs), sig, attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt), }, ); } // walk type and init value self.visit_ty(typ); if let Some(expr) = expr { self.visit_expr(expr); } } // FIXME tuple structs should generate tuple-specific data. fn process_struct( &mut self, item: &'l ast::Item, def: &'l ast::VariantData, ty_params: &'l ast::Generics, ) { debug!("process_struct {:?} {:?}", item, item.span); let name = item.ident.to_string(); let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(item.id))); let kind = match item.node { ast::ItemKind::Struct(_, _) => DefKind::Struct, ast::ItemKind::Union(_, _) => DefKind::Union, _ => unreachable!(), }; let (value, fields) = match item.node { ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, ..), ..) | ast::ItemKind::Union(ast::VariantData::Struct(ref fields, ..), ..) => { let include_priv_fields = !self.save_ctxt.config.pub_only; let fields_str = fields .iter() .enumerate() .filter_map(|(i, f)| { if include_priv_fields || f.vis.node.is_pub() { f.ident .map(|i| i.to_string()) .or_else(|| Some(i.to_string())) } else { None } }) .collect::>() .join(", "); let value = format!("{} {{ {} }}", name, fields_str); ( value, fields .iter() .map(|f| id_from_node_id(f.id, &self.save_ctxt)) .collect(), ) } _ => (String::new(), vec![]), }; if !self.span.filter_generated(item.ident.span) { let span = self.span_from_span(item.ident.span); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def( &access_from!(self.save_ctxt, item, hir_id), Def { kind, id: id_from_node_id(item.id, &self.save_ctxt), span, name, qualname: qualname.clone(), value, parent: None, children: fields, decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }, ); } for field in def.fields() { self.process_struct_field_def(field, item.id); self.visit_ty(&field.ty); } self.process_generic_params(ty_params, &qualname, item.id); } fn process_enum( &mut self, item: &'l ast::Item, enum_definition: &'l ast::EnumDef, ty_params: &'l ast::Generics, ) { let enum_data = self.save_ctxt.get_item_data(item); let enum_data = match enum_data { None => return, Some(data) => data, }; down_cast_data!(enum_data, DefData, item.span); let hir_id = self.tcx.hir().node_to_hir_id(item.id); let access = access_from!(self.save_ctxt, item, hir_id); for variant in &enum_definition.variants { let name = variant.node.ident.name.to_string(); let qualname = format!("{}::{}", enum_data.qualname, name); let name_span = variant.node.ident.span; match variant.node.data { ast::VariantData::Struct(ref fields, ..) => { let fields_str = fields .iter() .enumerate() .map(|(i, f)| { f.ident.map(|i| i.to_string()).unwrap_or_else(|| i.to_string()) }) .collect::>() .join(", "); let value = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str); if !self.span.filter_generated(name_span) { let span = self.span_from_span(name_span); let id = id_from_node_id(variant.node.id, &self.save_ctxt); let parent = Some(id_from_node_id(item.id, &self.save_ctxt)); self.dumper.dump_def( &access, Def { kind: DefKind::StructVariant, id, span, name, qualname, value, parent, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs), sig: sig::variant_signature(variant, &self.save_ctxt), attributes: lower_attributes( variant.node.attrs.clone(), &self.save_ctxt, ), }, ); } } ref v => { let mut value = format!("{}::{}", enum_data.name, name); if let &ast::VariantData::Tuple(ref fields, _) = v { value.push('('); value.push_str(&fields .iter() .map(|f| ty_to_string(&f.ty)) .collect::>() .join(", ")); value.push(')'); } if !self.span.filter_generated(name_span) { let span = self.span_from_span(name_span); let id = id_from_node_id(variant.node.id, &self.save_ctxt); let parent = Some(id_from_node_id(item.id, &self.save_ctxt)); self.dumper.dump_def( &access, Def { kind: DefKind::TupleVariant, id, span, name, qualname, value, parent, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs), sig: sig::variant_signature(variant, &self.save_ctxt), attributes: lower_attributes( variant.node.attrs.clone(), &self.save_ctxt, ), }, ); } } } for field in variant.node.data.fields() { self.process_struct_field_def(field, variant.node.id); self.visit_ty(&field.ty); } } self.process_generic_params(ty_params, &enum_data.qualname, item.id); self.dumper.dump_def(&access, enum_data); } fn process_impl( &mut self, item: &'l ast::Item, generics: &'l ast::Generics, trait_ref: &'l Option, typ: &'l ast::Ty, impl_items: &'l [ast::ImplItem], ) { if let Some(impl_data) = self.save_ctxt.get_item_data(item) { if !self.span.filter_generated(item.span) { if let super::Data::RelationData(rel, imp) = impl_data { self.dumper.dump_relation(rel); self.dumper.dump_impl(imp); } else { span_bug!(item.span, "unexpected data kind: {:?}", impl_data); } } } self.visit_ty(&typ); if let &Some(ref trait_ref) = trait_ref { self.process_path(trait_ref.ref_id, &trait_ref.path); } self.process_generic_params(generics, "", item.id); for impl_item in impl_items { let map = &self.tcx.hir(); self.process_impl_item(impl_item, map.local_def_id(item.id)); } } fn process_trait( &mut self, item: &'l ast::Item, generics: &'l ast::Generics, trait_refs: &'l ast::GenericBounds, methods: &'l [ast::TraitItem], ) { let name = item.ident.to_string(); let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(item.id))); let mut val = name.clone(); if !generics.params.is_empty() { val.push_str(&generic_params_to_string(&generics.params)); } if !trait_refs.is_empty() { val.push_str(": "); val.push_str(&bounds_to_string(trait_refs)); } if !self.span.filter_generated(item.ident.span) { let id = id_from_node_id(item.id, &self.save_ctxt); let span = self.span_from_span(item.ident.span); let children = methods .iter() .map(|i| id_from_node_id(i.id, &self.save_ctxt)) .collect(); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def( &access_from!(self.save_ctxt, item, hir_id), Def { kind: DefKind::Trait, id, span, name, qualname: qualname.clone(), value: val, parent: None, children, decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }, ); } // super-traits for super_bound in trait_refs.iter() { let trait_ref = match *super_bound { ast::GenericBound::Trait(ref trait_ref, _) => trait_ref, ast::GenericBound::Outlives(..) => continue, }; let trait_ref = &trait_ref.trait_ref; if let Some(id) = self.lookup_def_id(trait_ref.ref_id) { let sub_span = trait_ref.path.segments.last().unwrap().ident.span; if !self.span.filter_generated(sub_span) { let span = self.span_from_span(sub_span); self.dumper.dump_ref(Ref { kind: RefKind::Type, span: span.clone(), ref_id: id_from_def_id(id), }); self.dumper.dump_relation(Relation { kind: RelationKind::SuperTrait, span, from: id_from_def_id(id), to: id_from_node_id(item.id, &self.save_ctxt), }); } } } // walk generics and methods self.process_generic_params(generics, &qualname, item.id); for method in methods { let map = &self.tcx.hir(); self.process_trait_item(method, map.local_def_id(item.id)) } } // `item` is the module in question, represented as an item. fn process_mod(&mut self, item: &ast::Item) { if let Some(mod_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(mod_data, DefData, item.span); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def(&access_from!(self.save_ctxt, item, hir_id), mod_data); } } fn dump_path_ref(&mut self, id: NodeId, path: &ast::Path) { let path_data = self.save_ctxt.get_path_data(id, path); if let Some(path_data) = path_data { self.dumper.dump_ref(path_data); } } fn process_path(&mut self, id: NodeId, path: &'l ast::Path) { if self.span.filter_generated(path.span) { return; } self.dump_path_ref(id, path); // Type arguments for seg in &path.segments { if let Some(ref generic_args) = seg.args { match **generic_args { ast::GenericArgs::AngleBracketed(ref data) => { for arg in &data.args { match arg { ast::GenericArg::Type(ty) => self.visit_ty(ty), _ => {} } } } ast::GenericArgs::Parenthesized(ref data) => { for t in &data.inputs { self.visit_ty(t); } if let Some(ref t) = data.output { self.visit_ty(t); } } } } } self.write_sub_paths_truncated(path); } fn process_struct_lit( &mut self, ex: &'l ast::Expr, path: &'l ast::Path, fields: &'l [ast::Field], variant: &'l ty::VariantDef, base: &'l Option>, ) { if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) { self.write_sub_paths_truncated(path); down_cast_data!(struct_lit_data, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(struct_lit_data); } for field in fields { if let Some(field_data) = self.save_ctxt.get_field_ref_data(field, variant) { self.dumper.dump_ref(field_data); } self.visit_expr(&field.expr) } } walk_list!(self, visit_expr, base); } fn process_method_call( &mut self, ex: &'l ast::Expr, seg: &'l ast::PathSegment, args: &'l [P], ) { debug!("process_method_call {:?} {:?}", ex, ex.span); if let Some(mcd) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(mcd, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(mcd); } } // Explicit types in the turbo-fish. if let Some(ref generic_args) = seg.args { if let ast::GenericArgs::AngleBracketed(ref data) = **generic_args { for arg in &data.args { match arg { ast::GenericArg::Type(ty) => self.visit_ty(ty), _ => {} } } } } // walk receiver and args walk_list!(self, visit_expr, args); } fn process_pat(&mut self, p: &'l ast::Pat) { match p.node { PatKind::Struct(ref _path, ref fields, _) => { // FIXME do something with _path? let hir_id = self.tcx.hir().node_to_hir_id(p.id); let adt = match self.save_ctxt.tables.node_type_opt(hir_id) { Some(ty) => ty.ty_adt_def().unwrap(), None => { visit::walk_pat(self, p); return; } }; let variant = adt.variant_of_def(self.save_ctxt.get_path_def(p.id)); for &Spanned { node: ref field, .. } in fields { if let Some(index) = self.tcx.find_field_index(field.ident, variant) { if !self.span.filter_generated(field.ident.span) { let span = self.span_from_span(field.ident.span); self.dumper.dump_ref(Ref { kind: RefKind::Variable, span, ref_id: id_from_def_id(variant.fields[index].did), }); } } self.visit_pat(&field.pat); } } _ => visit::walk_pat(self, p), } } fn process_var_decl_multi(&mut self, pats: &'l [P]) { let mut collector = PathCollector::new(); for pattern in pats { // collect paths from the arm's patterns collector.visit_pat(&pattern); self.visit_pat(&pattern); } // process collected paths for (id, ident, immut) in collector.collected_idents { match self.save_ctxt.get_path_def(id) { HirDef::Local(hir_id) => { let mut value = if immut == ast::Mutability::Immutable { self.span.snippet(ident.span) } else { "".to_owned() }; let id = self.tcx.hir().hir_to_node_id(hir_id); let typ = self.save_ctxt .tables .node_type_opt(hir_id) .map(|t| t.to_string()) .unwrap_or_default(); value.push_str(": "); value.push_str(&typ); if !self.span.filter_generated(ident.span) { let qualname = format!("{}${}", ident.to_string(), id); let id = id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(ident.span); self.dumper.dump_def( &Access { public: false, reachable: false, }, Def { kind: DefKind::Local, id, span, name: ident.to_string(), qualname, value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes: vec![], }, ); } } HirDef::Ctor(_, _, _) | HirDef::Const(..) | HirDef::AssociatedConst(..) | HirDef::Struct(..) | HirDef::Variant(..) | HirDef::TyAlias(..) | HirDef::AssociatedTy(..) | HirDef::SelfTy(..) => { self.dump_path_ref(id, &ast::Path::from_ident(ident)); } def => error!( "unexpected definition kind when processing collected idents: {:?}", def ), } } for (id, ref path) in collector.collected_paths { self.process_path(id, path); } } fn process_var_decl(&mut self, p: &'l ast::Pat, value: String) { // The local could declare multiple new vars, we must walk the // pattern and collect them all. let mut collector = PathCollector::new(); collector.visit_pat(&p); self.visit_pat(&p); for (id, ident, immut) in collector.collected_idents { let mut value = match immut { ast::Mutability::Immutable => value.to_string(), _ => String::new(), }; let hir_id = self.tcx.hir().node_to_hir_id(id); let typ = match self.save_ctxt.tables.node_type_opt(hir_id) { Some(typ) => { let typ = typ.to_string(); if !value.is_empty() { value.push_str(": "); } value.push_str(&typ); typ } None => String::new(), }; // Rust uses the id of the pattern for var lookups, so we'll use it too. if !self.span.filter_generated(ident.span) { let qualname = format!("{}${}", ident.to_string(), id); let id = id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(ident.span); self.dumper.dump_def( &Access { public: false, reachable: false, }, Def { kind: DefKind::Local, id, span, name: ident.to_string(), qualname, value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes: vec![], }, ); } } } /// Extracts macro use and definition information from the AST node defined /// by the given NodeId, using the expansion information from the node's /// span. /// /// If the span is not macro-generated, do nothing, else use callee and /// callsite spans to record macro definition and use data, using the /// mac_uses and mac_defs sets to prevent multiples. fn process_macro_use(&mut self, _span: Span) { // FIXME if we're not dumping the defs (see below), there is no point // dumping refs either. // let source_span = span.source_callsite(); // if !self.macro_calls.insert(source_span) { // return; // } // let data = match self.save_ctxt.get_macro_use_data(span) { // None => return, // Some(data) => data, // }; // self.dumper.macro_use(data); // FIXME write the macro def // let mut hasher = DefaultHasher::new(); // data.callee_span.hash(&mut hasher); // let hash = hasher.finish(); // let qualname = format!("{}::{}", data.name, hash); // Don't write macro definition for imported macros // if !self.mac_defs.contains(&data.callee_span) // && !data.imported { // self.mac_defs.insert(data.callee_span); // if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) { // self.dumper.macro_data(MacroData { // span: sub_span, // name: data.name.clone(), // qualname: qualname.clone(), // // FIXME where do macro docs come from? // docs: String::new(), // }.lower(self.tcx)); // } // } } fn process_trait_item(&mut self, trait_item: &'l ast::TraitItem, trait_id: DefId) { self.process_macro_use(trait_item.span); let vis_span = trait_item.span.shrink_to_lo(); match trait_item.node { ast::TraitItemKind::Const(ref ty, ref expr) => { self.process_assoc_const( trait_item.id, trait_item.ident, &ty, expr.as_ref().map(|e| &**e), trait_id, respan(vis_span, ast::VisibilityKind::Public), &trait_item.attrs, ); } ast::TraitItemKind::Method(ref sig, ref body) => { self.process_method( sig, body.as_ref().map(|x| &**x), trait_item.id, trait_item.ident, &trait_item.generics, respan(vis_span, ast::VisibilityKind::Public), trait_item.span, ); } ast::TraitItemKind::Type(ref bounds, ref default_ty) => { // FIXME do something with _bounds (for type refs) let name = trait_item.ident.name.to_string(); let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(trait_item.id))); if !self.span.filter_generated(trait_item.ident.span) { let span = self.span_from_span(trait_item.ident.span); let id = id_from_node_id(trait_item.id, &self.save_ctxt); self.dumper.dump_def( &Access { public: true, reachable: true, }, Def { kind: DefKind::Type, id, span, name, qualname, value: self.span.snippet(trait_item.span), parent: Some(id_from_def_id(trait_id)), children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&trait_item.attrs), sig: sig::assoc_type_signature( trait_item.id, trait_item.ident, Some(bounds), default_ty.as_ref().map(|ty| &**ty), &self.save_ctxt, ), attributes: lower_attributes(trait_item.attrs.clone(), &self.save_ctxt), }, ); } if let &Some(ref default_ty) = default_ty { self.visit_ty(default_ty) } } ast::TraitItemKind::Macro(_) => {} } } fn process_impl_item(&mut self, impl_item: &'l ast::ImplItem, impl_id: DefId) { self.process_macro_use(impl_item.span); match impl_item.node { ast::ImplItemKind::Const(ref ty, ref expr) => { self.process_assoc_const( impl_item.id, impl_item.ident, &ty, Some(expr), impl_id, impl_item.vis.clone(), &impl_item.attrs, ); } ast::ImplItemKind::Method(ref sig, ref body) => { self.process_method( sig, Some(body), impl_item.id, impl_item.ident, &impl_item.generics, impl_item.vis.clone(), impl_item.span, ); } ast::ImplItemKind::Type(ref ty) => { // FIXME uses of the assoc type should ideally point to this // 'def' and the name here should be a ref to the def in the // trait. self.visit_ty(ty) } ast::ImplItemKind::Existential(ref bounds) => { // FIXME uses of the assoc type should ideally point to this // 'def' and the name here should be a ref to the def in the // trait. for bound in bounds.iter() { if let ast::GenericBound::Trait(trait_ref, _) = bound { self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path) } } } ast::ImplItemKind::Macro(_) => {} } } /// Dumps imports in a use tree recursively. /// /// A use tree is an import that may contain nested braces (RFC 2128). The `use_tree` parameter /// is the current use tree under scrutiny, while `id` and `prefix` are its corresponding node /// ID and path. `root_item` is the topmost use tree in the hierarchy. /// /// If `use_tree` is a simple or glob import, it is dumped into the analysis data. Otherwise, /// each child use tree is dumped recursively. fn process_use_tree(&mut self, use_tree: &'l ast::UseTree, id: NodeId, root_item: &'l ast::Item, prefix: &ast::Path) { let path = &use_tree.prefix; // The access is calculated using the current tree ID, but with the root tree's visibility // (since nested trees don't have their own visibility). let hir_id = self.tcx.hir().node_to_hir_id(id); let access = access_from!(self.save_ctxt, root_item, hir_id); // The parent def id of a given use tree is always the enclosing item. let parent = self.save_ctxt.tcx.hir().opt_local_def_id(id) .and_then(|id| self.save_ctxt.tcx.parent(id)) .map(id_from_def_id); match use_tree.kind { ast::UseTreeKind::Simple(alias, ..) => { let ident = use_tree.ident(); let path = ast::Path { segments: prefix.segments .iter() .chain(path.segments.iter()) .cloned() .collect(), span: path.span, }; let sub_span = path.segments.last().unwrap().ident.span; if !self.span.filter_generated(sub_span) { let ref_id = self.lookup_def_id(id).map(|id| id_from_def_id(id)); let alias_span = alias.map(|i| self.span_from_span(i.span)); let span = self.span_from_span(sub_span); self.dumper.import(&access, Import { kind: ImportKind::Use, ref_id, span, alias_span, name: ident.to_string(), value: String::new(), parent, }); self.write_sub_paths_truncated(&path); } } ast::UseTreeKind::Glob => { let path = ast::Path { segments: prefix.segments .iter() .chain(path.segments.iter()) .cloned() .collect(), span: path.span, }; // Make a comma-separated list of names of imported modules. let def_id = self.tcx.hir().local_def_id(id); let names = self.tcx.names_imported_by_glob_use(def_id); let names: Vec<_> = names.iter().map(|n| n.to_string()).collect(); // Otherwise it's a span with wrong macro expansion info, which // we don't want to track anyway, since it's probably macro-internal `use` if let Some(sub_span) = self.span.sub_span_of_token(use_tree.span, token::BinOp(token::Star)) { if !self.span.filter_generated(use_tree.span) { let span = self.span_from_span(sub_span); self.dumper.import(&access, Import { kind: ImportKind::GlobUse, ref_id: None, span, alias_span: None, name: "*".to_owned(), value: names.join(", "), parent, }); self.write_sub_paths(&path); } } } ast::UseTreeKind::Nested(ref nested_items) => { let prefix = ast::Path { segments: prefix.segments .iter() .chain(path.segments.iter()) .cloned() .collect(), span: path.span, }; for &(ref tree, id) in nested_items { self.process_use_tree(tree, id, root_item, &prefix); } } } } fn process_bounds(&mut self, bounds: &'l ast::GenericBounds) { for bound in bounds { if let ast::GenericBound::Trait(ref trait_ref, _) = *bound { self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path) } } } } impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> Visitor<'l> for DumpVisitor<'l, 'tcx, 'll, O> { fn visit_mod(&mut self, m: &'l ast::Mod, span: Span, attrs: &[ast::Attribute], id: NodeId) { // Since we handle explicit modules ourselves in visit_item, this should // only get called for the root module of a crate. assert_eq!(id, ast::CRATE_NODE_ID); let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(id))); let cm = self.tcx.sess.source_map(); let filename = cm.span_to_filename(span); let data_id = id_from_node_id(id, &self.save_ctxt); let children = m.items .iter() .map(|i| id_from_node_id(i.id, &self.save_ctxt)) .collect(); let span = self.span_from_span(span); self.dumper.dump_def( &Access { public: true, reachable: true, }, Def { kind: DefKind::Mod, id: data_id, name: String::new(), qualname, span, value: filename.to_string(), children, parent: None, decl_id: None, docs: self.save_ctxt.docs_for_attrs(attrs), sig: None, attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt), }, ); self.nest_scope(id, |v| visit::walk_mod(v, m)); } fn visit_item(&mut self, item: &'l ast::Item) { use syntax::ast::ItemKind::*; self.process_macro_use(item.span); match item.node { Use(ref use_tree) => { let prefix = ast::Path { segments: vec![], span: DUMMY_SP, }; self.process_use_tree(use_tree, item.id, item, &prefix); } ExternCrate(_) => { let name_span = item.ident.span; if !self.span.filter_generated(name_span) { let span = self.span_from_span(name_span); let parent = self.save_ctxt.tcx.hir().opt_local_def_id(item.id) .and_then(|id| self.save_ctxt.tcx.parent(id)) .map(id_from_def_id); self.dumper.import( &Access { public: false, reachable: false, }, Import { kind: ImportKind::ExternCrate, ref_id: None, span, alias_span: None, name: item.ident.to_string(), value: String::new(), parent, }, ); } } Fn(ref decl, .., ref ty_params, ref body) => { self.process_fn(item, &decl, ty_params, &body) } Static(ref typ, _, ref expr) => self.process_static_or_const_item(item, typ, expr), Const(ref typ, ref expr) => self.process_static_or_const_item(item, &typ, &expr), Struct(ref def, ref ty_params) | Union(ref def, ref ty_params) => { self.process_struct(item, def, ty_params) } Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params), Impl(.., ref ty_params, ref trait_ref, ref typ, ref impl_items) => { self.process_impl(item, ty_params, trait_ref, &typ, impl_items) } Trait(_, _, ref generics, ref trait_refs, ref methods) => { self.process_trait(item, generics, trait_refs, methods) } Mod(ref m) => { self.process_mod(item); self.nest_scope(item.id, |v| visit::walk_mod(v, m)); } Ty(ref ty, ref ty_params) => { let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(item.id))); let value = ty_to_string(&ty); if !self.span.filter_generated(item.ident.span) { let span = self.span_from_span(item.ident.span); let id = id_from_node_id(item.id, &self.save_ctxt); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def( &access_from!(self.save_ctxt, item, hir_id), Def { kind: DefKind::Type, id, span, name: item.ident.to_string(), qualname: qualname.clone(), value, parent: None, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }, ); } self.visit_ty(&ty); self.process_generic_params(ty_params, &qualname, item.id); } Existential(ref _bounds, ref ty_params) => { let qualname = format!("::{}", self.tcx.def_path_str(self.tcx.hir().local_def_id(item.id))); // FIXME do something with _bounds let value = String::new(); if !self.span.filter_generated(item.ident.span) { let span = self.span_from_span(item.ident.span); let id = id_from_node_id(item.id, &self.save_ctxt); let hir_id = self.tcx.hir().node_to_hir_id(item.id); self.dumper.dump_def( &access_from!(self.save_ctxt, item, hir_id), Def { kind: DefKind::Type, id, span, name: item.ident.to_string(), qualname: qualname.clone(), value, parent: None, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }, ); } self.process_generic_params(ty_params, &qualname, item.id); } Mac(_) => (), _ => visit::walk_item(self, item), } } fn visit_generics(&mut self, generics: &'l ast::Generics) { for param in &generics.params { match param.kind { ast::GenericParamKind::Lifetime { .. } => {} ast::GenericParamKind::Type { ref default, .. } => { self.process_bounds(¶m.bounds); if let Some(ref ty) = default { self.visit_ty(&ty); } } ast::GenericParamKind::Const { ref ty } => { self.process_bounds(¶m.bounds); self.visit_ty(&ty); } } } for pred in &generics.where_clause.predicates { if let ast::WherePredicate::BoundPredicate(ref wbp) = *pred { self.process_bounds(&wbp.bounds); self.visit_ty(&wbp.bounded_ty); } } } fn visit_ty(&mut self, t: &'l ast::Ty) { self.process_macro_use(t.span); match t.node { ast::TyKind::Path(_, ref path) => { if generated_code(t.span) { return; } if let Some(id) = self.lookup_def_id(t.id) { let sub_span = path.segments.last().unwrap().ident.span; let span = self.span_from_span(sub_span); self.dumper.dump_ref(Ref { kind: RefKind::Type, span, ref_id: id_from_def_id(id), }); } self.write_sub_paths_truncated(path); visit::walk_path(self, path); } ast::TyKind::Array(ref element, ref length) => { self.visit_ty(element); self.nest_tables(length.id, |v| v.visit_expr(&length.value)); } _ => visit::walk_ty(self, t), } } fn visit_expr(&mut self, ex: &'l ast::Expr) { debug!("visit_expr {:?}", ex.node); self.process_macro_use(ex.span); match ex.node { ast::ExprKind::Struct(ref path, ref fields, ref base) => { let hir_expr = self.save_ctxt.tcx.hir().expect_expr(ex.id); let adt = match self.save_ctxt.tables.expr_ty_opt(&hir_expr) { Some(ty) if ty.ty_adt_def().is_some() => ty.ty_adt_def().unwrap(), _ => { visit::walk_expr(self, ex); return; } }; let node_id = self.save_ctxt.tcx.hir().hir_to_node_id(hir_expr.hir_id); let def = self.save_ctxt.get_path_def(node_id); self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base) } ast::ExprKind::MethodCall(ref seg, ref args) => self.process_method_call(ex, seg, args), ast::ExprKind::Field(ref sub_ex, _) => { self.visit_expr(&sub_ex); if let Some(field_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(field_data, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(field_data); } } } ast::ExprKind::Closure(_, _, _, ref decl, ref body, _fn_decl_span) => { let id = format!("${}", ex.id); // walk arg and return types for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } // walk the body self.nest_tables(ex.id, |v| { v.process_formals(&decl.inputs, &id); v.nest_scope(ex.id, |v| v.visit_expr(body)) }); } ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) => { let value = self.span.snippet(subexpression.span); self.process_var_decl(pattern, value); debug!("for loop, walk sub-expr: {:?}", subexpression.node); self.visit_expr(subexpression); visit::walk_block(self, block); } ast::ExprKind::WhileLet(ref pats, ref subexpression, ref block, _) => { self.process_var_decl_multi(pats); debug!("for loop, walk sub-expr: {:?}", subexpression.node); self.visit_expr(subexpression); visit::walk_block(self, block); } ast::ExprKind::IfLet(ref pats, ref subexpression, ref block, ref opt_else) => { self.process_var_decl_multi(pats); self.visit_expr(subexpression); visit::walk_block(self, block); opt_else.as_ref().map(|el| self.visit_expr(el)); } ast::ExprKind::Repeat(ref element, ref count) => { self.visit_expr(element); self.nest_tables(count.id, |v| v.visit_expr(&count.value)); } // In particular, we take this branch for call and path expressions, // where we'll index the idents involved just by continuing to walk. _ => visit::walk_expr(self, ex), } } fn visit_mac(&mut self, mac: &'l ast::Mac) { // These shouldn't exist in the AST at this point, log a span bug. span_bug!( mac.span, "macro invocation should have been expanded out of AST" ); } fn visit_pat(&mut self, p: &'l ast::Pat) { self.process_macro_use(p.span); self.process_pat(p); } fn visit_arm(&mut self, arm: &'l ast::Arm) { self.process_var_decl_multi(&arm.pats); match arm.guard { Some(ast::Guard::If(ref expr)) => self.visit_expr(expr), _ => {} } self.visit_expr(&arm.body); } fn visit_path(&mut self, p: &'l ast::Path, id: NodeId) { self.process_path(id, p); } fn visit_stmt(&mut self, s: &'l ast::Stmt) { self.process_macro_use(s.span); visit::walk_stmt(self, s) } fn visit_local(&mut self, l: &'l ast::Local) { self.process_macro_use(l.span); let value = l.init .as_ref() .map(|i| self.span.snippet(i.span)) .unwrap_or_default(); self.process_var_decl(&l.pat, value); // Just walk the initialiser and type (don't want to walk the pattern again). walk_list!(self, visit_ty, &l.ty); walk_list!(self, visit_expr, &l.init); } fn visit_foreign_item(&mut self, item: &'l ast::ForeignItem) { let hir_id = self.tcx.hir().node_to_hir_id(item.id); let access = access_from!(self.save_ctxt, item, hir_id); match item.node { ast::ForeignItemKind::Fn(ref decl, ref generics) => { if let Some(fn_data) = self.save_ctxt.get_extern_item_data(item) { down_cast_data!(fn_data, DefData, item.span); self.process_generic_params(generics, &fn_data.qualname, item.id); self.dumper.dump_def(&access, fn_data); } for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } } ast::ForeignItemKind::Static(ref ty, _) => { if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) { down_cast_data!(var_data, DefData, item.span); self.dumper.dump_def(&access, var_data); } self.visit_ty(ty); } ast::ForeignItemKind::Ty => { if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) { down_cast_data!(var_data, DefData, item.span); self.dumper.dump_def(&access, var_data); } } ast::ForeignItemKind::Macro(..) => {} } } }