//! Support for inlining external documentation into the current AST. use std::iter::once; use std::sync::Arc; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::Mutability; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, DefIdSet, LocalDefId, LocalModDefId}; use rustc_metadata::creader::{CStore, LoadedMacro}; use rustc_middle::ty::fast_reject::SimplifiedType; use rustc_middle::ty::{self, TyCtxt}; use rustc_span::def_id::LOCAL_CRATE; use rustc_span::hygiene::MacroKind; use rustc_span::symbol::{Symbol, sym}; use thin_vec::{ThinVec, thin_vec}; use tracing::{debug, trace}; use super::{Item, extract_cfg_from_attrs}; use crate::clean::{ self, Attributes, ImplKind, ItemId, Type, clean_bound_vars, clean_generics, clean_impl_item, clean_middle_assoc_item, clean_middle_field, clean_middle_ty, clean_poly_fn_sig, clean_trait_ref_with_constraints, clean_ty, clean_ty_alias_inner_type, clean_ty_generics, clean_variant_def, utils, }; use crate::core::DocContext; use crate::formats::item_type::ItemType; /// Attempt to inline a definition into this AST. /// /// This function will fetch the definition specified, and if it is /// from another crate it will attempt to inline the documentation /// from the other crate into this crate. /// /// This is primarily used for `pub use` statements which are, in general, /// implementation details. Inlining the documentation should help provide a /// better experience when reading the documentation in this use case. /// /// The returned value is `None` if the definition could not be inlined, /// and `Some` of a vector of items if it was successfully expanded. pub(crate) fn try_inline( cx: &mut DocContext<'_>, res: Res, name: Symbol, attrs: Option<(&[hir::Attribute], Option)>, visited: &mut DefIdSet, ) -> Option> { let did = res.opt_def_id()?; if did.is_local() { return None; } let mut ret = Vec::new(); debug!("attrs={attrs:?}"); let attrs_without_docs = attrs.map(|(attrs, def_id)| { (attrs.iter().filter(|a| a.doc_str().is_none()).cloned().collect::>(), def_id) }); let attrs_without_docs = attrs_without_docs.as_ref().map(|(attrs, def_id)| (&attrs[..], *def_id)); let import_def_id = attrs.and_then(|(_, def_id)| def_id); let kind = match res { Res::Def(DefKind::Trait, did) => { record_extern_fqn(cx, did, ItemType::Trait); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::TraitItem(Box::new(build_external_trait(cx, did))) }) } Res::Def(DefKind::Fn, did) => { record_extern_fqn(cx, did, ItemType::Function); cx.with_param_env(did, |cx| { clean::enter_impl_trait(cx, |cx| clean::FunctionItem(build_function(cx, did))) }) } Res::Def(DefKind::Struct, did) => { record_extern_fqn(cx, did, ItemType::Struct); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::StructItem(build_struct(cx, did)) }) } Res::Def(DefKind::Union, did) => { record_extern_fqn(cx, did, ItemType::Union); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::UnionItem(build_union(cx, did)) }) } Res::Def(DefKind::TyAlias, did) => { record_extern_fqn(cx, did, ItemType::TypeAlias); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::TypeAliasItem(build_type_alias(cx, did, &mut ret)) }) } Res::Def(DefKind::Enum, did) => { record_extern_fqn(cx, did, ItemType::Enum); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::EnumItem(build_enum(cx, did)) }) } Res::Def(DefKind::ForeignTy, did) => { record_extern_fqn(cx, did, ItemType::ForeignType); cx.with_param_env(did, |cx| { build_impls(cx, did, attrs_without_docs, &mut ret); clean::ForeignTypeItem }) } // Never inline enum variants but leave them shown as re-exports. Res::Def(DefKind::Variant, _) => return None, // Assume that enum variants and struct types are re-exported next to // their constructors. Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()), Res::Def(DefKind::Mod, did) => { record_extern_fqn(cx, did, ItemType::Module); clean::ModuleItem(build_module(cx, did, visited)) } Res::Def(DefKind::Static { .. }, did) => { record_extern_fqn(cx, did, ItemType::Static); cx.with_param_env(did, |cx| { clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did))) }) } Res::Def(DefKind::Const, did) => { record_extern_fqn(cx, did, ItemType::Constant); cx.with_param_env(did, |cx| { let ct = build_const_item(cx, did); clean::ConstantItem(Box::new(ct)) }) } Res::Def(DefKind::Macro(kind), did) => { let mac = build_macro(cx, did, name, kind); let type_kind = match kind { MacroKind::Bang => ItemType::Macro, MacroKind::Attr => ItemType::ProcAttribute, MacroKind::Derive => ItemType::ProcDerive, }; record_extern_fqn(cx, did, type_kind); mac } _ => return None, }; cx.inlined.insert(did.into()); let mut item = crate::clean::generate_item_with_correct_attrs(cx, kind, did, name, import_def_id, None); // The visibility needs to reflect the one from the reexport and not from the "source" DefId. item.inner.inline_stmt_id = import_def_id; ret.push(item); Some(ret) } pub(crate) fn try_inline_glob( cx: &mut DocContext<'_>, res: Res, current_mod: LocalModDefId, visited: &mut DefIdSet, inlined_names: &mut FxHashSet<(ItemType, Symbol)>, import: &hir::Item<'_>, ) -> Option> { let did = res.opt_def_id()?; if did.is_local() { return None; } match res { Res::Def(DefKind::Mod, did) => { // Use the set of module reexports to filter away names that are not actually // reexported by the glob, e.g. because they are shadowed by something else. let reexports = cx .tcx .module_children_local(current_mod.to_local_def_id()) .iter() .filter(|child| !child.reexport_chain.is_empty()) .filter_map(|child| child.res.opt_def_id()) .filter(|def_id| !cx.tcx.is_doc_hidden(def_id)) .collect(); let attrs = cx.tcx.hir_attrs(import.hir_id()); let mut items = build_module_items( cx, did, visited, inlined_names, Some(&reexports), Some((attrs, Some(import.owner_id.def_id))), ); items.retain(|item| { if let Some(name) = item.name { // If an item with the same type and name already exists, // it takes priority over the inlined stuff. inlined_names.insert((item.type_(), name)) } else { true } }); Some(items) } // glob imports on things like enums aren't inlined even for local exports, so just bail _ => None, } } pub(crate) fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> &'hir [hir::Attribute] { cx.tcx.get_attrs_unchecked(did) } pub(crate) fn item_relative_path(tcx: TyCtxt<'_>, def_id: DefId) -> Vec { tcx.def_path(def_id).data.into_iter().filter_map(|elem| elem.data.get_opt_name()).collect() } /// Record an external fully qualified name in the external_paths cache. /// /// These names are used later on by HTML rendering to generate things like /// source links back to the original item. pub(crate) fn record_extern_fqn(cx: &mut DocContext<'_>, did: DefId, kind: ItemType) { if did.is_local() { if cx.cache.exact_paths.contains_key(&did) { return; } } else if cx.cache.external_paths.contains_key(&did) { return; } let crate_name = cx.tcx.crate_name(did.krate); let relative = item_relative_path(cx.tcx, did); let fqn = if let ItemType::Macro = kind { // Check to see if it is a macro 2.0 or built-in macro if matches!( CStore::from_tcx(cx.tcx).load_macro_untracked(did, cx.tcx), LoadedMacro::MacroDef { def, .. } if !def.macro_rules ) { once(crate_name).chain(relative).collect() } else { vec![crate_name, *relative.last().expect("relative was empty")] } } else { once(crate_name).chain(relative).collect() }; if did.is_local() { cx.cache.exact_paths.insert(did, fqn); } else { cx.cache.external_paths.insert(did, (fqn, kind)); } } pub(crate) fn build_external_trait(cx: &mut DocContext<'_>, did: DefId) -> clean::Trait { let trait_items = cx .tcx .associated_items(did) .in_definition_order() .filter(|item| !item.is_impl_trait_in_trait()) .map(|item| clean_middle_assoc_item(item, cx)) .collect(); let predicates = cx.tcx.predicates_of(did); let generics = clean_ty_generics(cx, cx.tcx.generics_of(did), predicates); let generics = filter_non_trait_generics(did, generics); let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); clean::Trait { def_id: did, generics, items: trait_items, bounds: supertrait_bounds } } pub(crate) fn build_function(cx: &mut DocContext<'_>, def_id: DefId) -> Box { let sig = cx.tcx.fn_sig(def_id).instantiate_identity(); // The generics need to be cleaned before the signature. let mut generics = clean_ty_generics(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id)); let bound_vars = clean_bound_vars(sig.bound_vars()); // At the time of writing early & late-bound params are stored separately in rustc, // namely in `generics.params` and `bound_vars` respectively. // // To reestablish the original source code order of the generic parameters, we // need to manually sort them by their definition span after concatenation. // // See also: // * https://rustc-dev-guide.rust-lang.org/bound-vars-and-params.html // * https://rustc-dev-guide.rust-lang.org/what-does-early-late-bound-mean.html let has_early_bound_params = !generics.params.is_empty(); let has_late_bound_params = !bound_vars.is_empty(); generics.params.extend(bound_vars); if has_early_bound_params && has_late_bound_params { // If this ever becomes a performances bottleneck either due to the sorting // or due to the query calls, consider inserting the late-bound lifetime params // right after the last early-bound lifetime param followed by only sorting // the slice of lifetime params. generics.params.sort_by_key(|param| cx.tcx.def_ident_span(param.def_id).unwrap()); } let decl = clean_poly_fn_sig(cx, Some(def_id), sig); Box::new(clean::Function { decl, generics }) } fn build_enum(cx: &mut DocContext<'_>, did: DefId) -> clean::Enum { let predicates = cx.tcx.explicit_predicates_of(did); clean::Enum { generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), variants: cx.tcx.adt_def(did).variants().iter().map(|v| clean_variant_def(v, cx)).collect(), } } fn build_struct(cx: &mut DocContext<'_>, did: DefId) -> clean::Struct { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Struct { ctor_kind: variant.ctor_kind(), generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), fields: variant.fields.iter().map(|x| clean_middle_field(x, cx)).collect(), } } fn build_union(cx: &mut DocContext<'_>, did: DefId) -> clean::Union { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); let generics = clean_ty_generics(cx, cx.tcx.generics_of(did), predicates); let fields = variant.fields.iter().map(|x| clean_middle_field(x, cx)).collect(); clean::Union { generics, fields } } fn build_type_alias( cx: &mut DocContext<'_>, did: DefId, ret: &mut Vec, ) -> Box { let predicates = cx.tcx.explicit_predicates_of(did); let ty = cx.tcx.type_of(did).instantiate_identity(); let type_ = clean_middle_ty(ty::Binder::dummy(ty), cx, Some(did), None); let inner_type = clean_ty_alias_inner_type(ty, cx, ret); Box::new(clean::TypeAlias { type_, generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), inner_type, item_type: None, }) } /// Builds all inherent implementations of an ADT (struct/union/enum) or Trait item/path/reexport. pub(crate) fn build_impls( cx: &mut DocContext<'_>, did: DefId, attrs: Option<(&[hir::Attribute], Option)>, ret: &mut Vec, ) { let _prof_timer = cx.tcx.sess.prof.generic_activity("build_inherent_impls"); let tcx = cx.tcx; // for each implementation of an item represented by `did`, build the clean::Item for that impl for &did in tcx.inherent_impls(did).iter() { cx.with_param_env(did, |cx| { build_impl(cx, did, attrs, ret); }); } // This pretty much exists expressly for `dyn Error` traits that exist in the `alloc` crate. // See also: // // * https://github.com/rust-lang/rust/issues/103170 — where it didn't used to get documented // * https://github.com/rust-lang/rust/pull/99917 — where the feature got used // * https://github.com/rust-lang/rust/issues/53487 — overall tracking issue for Error if tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) { let type_ = if tcx.is_trait(did) { SimplifiedType::Trait(did) } else { SimplifiedType::Adt(did) }; for &did in tcx.incoherent_impls(type_).iter() { cx.with_param_env(did, |cx| { build_impl(cx, did, attrs, ret); }); } } } pub(crate) fn merge_attrs( cx: &mut DocContext<'_>, old_attrs: &[hir::Attribute], new_attrs: Option<(&[hir::Attribute], Option)>, ) -> (clean::Attributes, Option>) { // NOTE: If we have additional attributes (from a re-export), // always insert them first. This ensure that re-export // doc comments show up before the original doc comments // when we render them. if let Some((inner, item_id)) = new_attrs { let mut both = inner.to_vec(); both.extend_from_slice(old_attrs); ( if let Some(item_id) = item_id { Attributes::from_hir_with_additional(old_attrs, (inner, item_id.to_def_id())) } else { Attributes::from_hir(&both) }, extract_cfg_from_attrs(both.iter(), cx.tcx, &cx.cache.hidden_cfg), ) } else { ( Attributes::from_hir(old_attrs), extract_cfg_from_attrs(old_attrs.iter(), cx.tcx, &cx.cache.hidden_cfg), ) } } /// Inline an `impl`, inherent or of a trait. The `did` must be for an `impl`. pub(crate) fn build_impl( cx: &mut DocContext<'_>, did: DefId, attrs: Option<(&[hir::Attribute], Option)>, ret: &mut Vec, ) { if !cx.inlined.insert(did.into()) { return; } let tcx = cx.tcx; let _prof_timer = tcx.sess.prof.generic_activity("build_impl"); let associated_trait = tcx.impl_trait_ref(did).map(ty::EarlyBinder::skip_binder); // Do not inline compiler-internal items unless we're a compiler-internal crate. let is_compiler_internal = |did| { tcx.lookup_stability(did) .is_some_and(|stab| stab.is_unstable() && stab.feature == sym::rustc_private) }; let document_compiler_internal = is_compiler_internal(LOCAL_CRATE.as_def_id()); let is_directly_public = |cx: &mut DocContext<'_>, did| { cx.cache.effective_visibilities.is_directly_public(tcx, did) && (document_compiler_internal || !is_compiler_internal(did)) }; // Only inline impl if the implemented trait is // reachable in rustdoc generated documentation if !did.is_local() && let Some(traitref) = associated_trait && !is_directly_public(cx, traitref.def_id) { return; } let impl_item = match did.as_local() { Some(did) => match &tcx.hir_expect_item(did).kind { hir::ItemKind::Impl(impl_) => Some(impl_), _ => panic!("`DefID` passed to `build_impl` is not an `impl"), }, None => None, }; let for_ = match &impl_item { Some(impl_) => clean_ty(impl_.self_ty, cx), None => clean_middle_ty( ty::Binder::dummy(tcx.type_of(did).instantiate_identity()), cx, Some(did), None, ), }; // Only inline impl if the implementing type is // reachable in rustdoc generated documentation if !did.is_local() && let Some(did) = for_.def_id(&cx.cache) && !is_directly_public(cx, did) { return; } let document_hidden = cx.render_options.document_hidden; let predicates = tcx.explicit_predicates_of(did); let (trait_items, generics) = match impl_item { Some(impl_) => ( impl_ .items .iter() .map(|item| tcx.hir_impl_item(item.id)) .filter(|item| { // Filter out impl items whose corresponding trait item has `doc(hidden)` // not to document such impl items. // For inherent impls, we don't do any filtering, because that's already done in strip_hidden.rs. // When `--document-hidden-items` is passed, we don't // do any filtering, too. if document_hidden { return true; } if let Some(associated_trait) = associated_trait { let assoc_kind = match item.kind { hir::ImplItemKind::Const(..) => ty::AssocKind::Const, hir::ImplItemKind::Fn(..) => ty::AssocKind::Fn, hir::ImplItemKind::Type(..) => ty::AssocKind::Type, }; let trait_item = tcx .associated_items(associated_trait.def_id) .find_by_ident_and_kind( tcx, item.ident, assoc_kind, associated_trait.def_id, ) .unwrap(); // SAFETY: For all impl items there exists trait item that has the same name. !tcx.is_doc_hidden(trait_item.def_id) } else { true } }) .map(|item| clean_impl_item(item, cx)) .collect::>(), clean_generics(impl_.generics, cx), ), None => ( tcx.associated_items(did) .in_definition_order() .filter(|item| !item.is_impl_trait_in_trait()) .filter(|item| { // If this is a trait impl, filter out associated items whose corresponding item // in the associated trait is marked `doc(hidden)`. // If this is an inherent impl, filter out private associated items. if let Some(associated_trait) = associated_trait { let trait_item = tcx .associated_items(associated_trait.def_id) .find_by_ident_and_kind( tcx, item.ident(tcx), item.kind, associated_trait.def_id, ) .unwrap(); // corresponding associated item has to exist document_hidden || !tcx.is_doc_hidden(trait_item.def_id) } else { item.visibility(tcx).is_public() } }) .map(|item| clean_middle_assoc_item(item, cx)) .collect::>(), clean::enter_impl_trait(cx, |cx| { clean_ty_generics(cx, tcx.generics_of(did), predicates) }), ), }; let polarity = tcx.impl_polarity(did); let trait_ = associated_trait .map(|t| clean_trait_ref_with_constraints(cx, ty::Binder::dummy(t), ThinVec::new())); if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() { super::build_deref_target_impls(cx, &trait_items, ret); } // Return if the trait itself or any types of the generic parameters are doc(hidden). let mut stack: Vec<&Type> = vec![&for_]; if let Some(did) = trait_.as_ref().map(|t| t.def_id()) && !document_hidden && tcx.is_doc_hidden(did) { return; } if let Some(generics) = trait_.as_ref().and_then(|t| t.generics()) { stack.extend(generics); } while let Some(ty) = stack.pop() { if let Some(did) = ty.def_id(&cx.cache) && !document_hidden && tcx.is_doc_hidden(did) { return; } if let Some(generics) = ty.generics() { stack.extend(generics); } } if let Some(did) = trait_.as_ref().map(|t| t.def_id()) { cx.with_param_env(did, |cx| { record_extern_trait(cx, did); }); } let (merged_attrs, cfg) = merge_attrs(cx, load_attrs(cx, did), attrs); trace!("merged_attrs={merged_attrs:?}"); trace!( "build_impl: impl {:?} for {:?}", trait_.as_ref().map(|t| t.def_id()), for_.def_id(&cx.cache) ); ret.push(clean::Item::from_def_id_and_attrs_and_parts( did, None, clean::ImplItem(Box::new(clean::Impl { safety: hir::Safety::Safe, generics, trait_, for_, items: trait_items, polarity, kind: if utils::has_doc_flag(tcx, did, sym::fake_variadic) { ImplKind::FakeVariadic } else { ImplKind::Normal }, })), merged_attrs, cfg, )); } fn build_module(cx: &mut DocContext<'_>, did: DefId, visited: &mut DefIdSet) -> clean::Module { let items = build_module_items(cx, did, visited, &mut FxHashSet::default(), None, None); let span = clean::Span::new(cx.tcx.def_span(did)); clean::Module { items, span } } fn build_module_items( cx: &mut DocContext<'_>, did: DefId, visited: &mut DefIdSet, inlined_names: &mut FxHashSet<(ItemType, Symbol)>, allowed_def_ids: Option<&DefIdSet>, attrs: Option<(&[hir::Attribute], Option)>, ) -> Vec { let mut items = Vec::new(); // If we're re-exporting a re-export it may actually re-export something in // two namespaces, so the target may be listed twice. Make sure we only // visit each node at most once. for item in cx.tcx.module_children(did).iter() { if item.vis.is_public() { let res = item.res.expect_non_local(); if let Some(def_id) = res.opt_def_id() && let Some(allowed_def_ids) = allowed_def_ids && !allowed_def_ids.contains(&def_id) { continue; } if let Some(def_id) = res.mod_def_id() { // If we're inlining a glob import, it's possible to have // two distinct modules with the same name. We don't want to // inline it, or mark any of its contents as visited. if did == def_id || inlined_names.contains(&(ItemType::Module, item.ident.name)) || !visited.insert(def_id) { continue; } } if let Res::PrimTy(p) = res { // Primitive types can't be inlined so generate an import instead. let prim_ty = clean::PrimitiveType::from(p); items.push(clean::Item { inner: Box::new(clean::ItemInner { name: None, // We can use the item's `DefId` directly since the only information ever // used from it is `DefId.krate`. item_id: ItemId::DefId(did), attrs: Default::default(), stability: None, kind: clean::ImportItem(clean::Import::new_simple( item.ident.name, clean::ImportSource { path: clean::Path { res, segments: thin_vec![clean::PathSegment { name: prim_ty.as_sym(), args: clean::GenericArgs::AngleBracketed { args: Default::default(), constraints: ThinVec::new(), }, }], }, did: None, }, true, )), cfg: None, inline_stmt_id: None, }), }); } else if let Some(i) = try_inline(cx, res, item.ident.name, attrs, visited) { items.extend(i) } } } items } pub(crate) fn print_inlined_const(tcx: TyCtxt<'_>, did: DefId) -> String { if let Some(did) = did.as_local() { let hir_id = tcx.local_def_id_to_hir_id(did); rustc_hir_pretty::id_to_string(&tcx, hir_id) } else { tcx.rendered_const(did).clone() } } fn build_const_item(cx: &mut DocContext<'_>, def_id: DefId) -> clean::Constant { let mut generics = clean_ty_generics(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id)); clean::simplify::move_bounds_to_generic_parameters(&mut generics); let ty = clean_middle_ty( ty::Binder::dummy(cx.tcx.type_of(def_id).instantiate_identity()), cx, None, None, ); clean::Constant { generics, type_: ty, kind: clean::ConstantKind::Extern { def_id } } } fn build_static(cx: &mut DocContext<'_>, did: DefId, mutable: bool) -> clean::Static { clean::Static { type_: Box::new(clean_middle_ty( ty::Binder::dummy(cx.tcx.type_of(did).instantiate_identity()), cx, Some(did), None, )), mutability: if mutable { Mutability::Mut } else { Mutability::Not }, expr: None, } } fn build_macro( cx: &mut DocContext<'_>, def_id: DefId, name: Symbol, macro_kind: MacroKind, ) -> clean::ItemKind { match CStore::from_tcx(cx.tcx).load_macro_untracked(def_id, cx.tcx) { LoadedMacro::MacroDef { def, .. } => match macro_kind { MacroKind::Bang => clean::MacroItem(clean::Macro { source: utils::display_macro_source(cx, name, &def), macro_rules: def.macro_rules, }), MacroKind::Derive | MacroKind::Attr => { clean::ProcMacroItem(clean::ProcMacro { kind: macro_kind, helpers: Vec::new() }) } }, LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro { kind: ext.macro_kind(), helpers: ext.helper_attrs, }), } } /// A trait's generics clause actually contains all of the predicates for all of /// its associated types as well. We specifically move these clauses to the /// associated types instead when displaying, so when we're generating the /// generics for the trait itself we need to be sure to remove them. /// We also need to remove the implied "recursive" Self: Trait bound. /// /// The inverse of this filtering logic can be found in the `Clean` /// implementation for `AssociatedType` fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { for pred in &mut g.where_predicates { if let clean::WherePredicate::BoundPredicate { ty: clean::SelfTy, ref mut bounds, .. } = *pred { bounds.retain(|bound| match bound { clean::GenericBound::TraitBound(clean::PolyTrait { trait_, .. }, _) => { trait_.def_id() != trait_did } _ => true, }); } } g.where_predicates.retain(|pred| match pred { clean::WherePredicate::BoundPredicate { ty: clean::QPath(box clean::QPathData { self_type: clean::Generic(_), trait_: Some(trait_), .. }), bounds, .. } => !bounds.is_empty() && trait_.def_id() != trait_did, _ => true, }); g } /// Supertrait bounds for a trait are also listed in the generics coming from /// the metadata for a crate, so we want to separate those out and create a new /// list of explicit supertrait bounds to render nicely. fn separate_supertrait_bounds( mut g: clean::Generics, ) -> (clean::Generics, Vec) { let mut ty_bounds = Vec::new(); g.where_predicates.retain(|pred| match *pred { clean::WherePredicate::BoundPredicate { ty: clean::SelfTy, ref bounds, .. } => { ty_bounds.extend(bounds.iter().cloned()); false } _ => true, }); (g, ty_bounds) } pub(crate) fn record_extern_trait(cx: &mut DocContext<'_>, did: DefId) { if did.is_local() { return; } { if cx.external_traits.contains_key(&did) || cx.active_extern_traits.contains(&did) { return; } } { cx.active_extern_traits.insert(did); } debug!("record_extern_trait: {did:?}"); let trait_ = build_external_trait(cx, did); cx.external_traits.insert(did, trait_); cx.active_extern_traits.remove(&did); }