//! Support for inlining external documentation into the current AST. use std::iter::once; use std::sync::Arc; use rustc_ast as ast; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::DefId; use rustc_hir::Mutability; use rustc_metadata::creader::{CStore, LoadedMacro}; use rustc_middle::ty::{self, TyCtxt}; use rustc_span::hygiene::MacroKind; use rustc_span::symbol::{kw, sym, Symbol}; use crate::clean::{ self, utils, Attributes, AttributesExt, GetDefId, ItemId, NestedAttributesExt, Type, }; use crate::core::DocContext; use crate::formats::item_type::ItemType; use super::{Clean, Visibility}; type Attrs<'hir> = rustc_middle::ty::Attributes<'hir>; /// Attempt to inline a definition into this AST. /// /// This function will fetch the definition specified, and if it is /// from another crate it will attempt to inline the documentation /// from the other crate into this crate. /// /// This is primarily used for `pub use` statements which are, in general, /// implementation details. Inlining the documentation should help provide a /// better experience when reading the documentation in this use case. /// /// The returned value is `None` if the definition could not be inlined, /// and `Some` of a vector of items if it was successfully expanded. /// /// `parent_module` refers to the parent of the *re-export*, not the original item. crate fn try_inline( cx: &mut DocContext<'_>, parent_module: DefId, import_def_id: Option, res: Res, name: Symbol, attrs: Option>, visited: &mut FxHashSet, ) -> Option> { let did = res.opt_def_id()?; if did.is_local() { return None; } let mut ret = Vec::new(); debug!("attrs={:?}", attrs); let attrs_clone = attrs; let kind = match res { Res::Def(DefKind::Trait, did) => { record_extern_fqn(cx, did, ItemType::Trait); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::TraitItem(build_external_trait(cx, did)) } Res::Def(DefKind::Fn, did) => { record_extern_fqn(cx, did, ItemType::Function); clean::FunctionItem(build_external_function(cx, did)) } Res::Def(DefKind::Struct, did) => { record_extern_fqn(cx, did, ItemType::Struct); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::StructItem(build_struct(cx, did)) } Res::Def(DefKind::Union, did) => { record_extern_fqn(cx, did, ItemType::Union); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::UnionItem(build_union(cx, did)) } Res::Def(DefKind::TyAlias, did) => { record_extern_fqn(cx, did, ItemType::Typedef); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::TypedefItem(build_type_alias(cx, did), false) } Res::Def(DefKind::Enum, did) => { record_extern_fqn(cx, did, ItemType::Enum); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::EnumItem(build_enum(cx, did)) } Res::Def(DefKind::ForeignTy, did) => { record_extern_fqn(cx, did, ItemType::ForeignType); build_impls(cx, Some(parent_module), did, attrs, &mut ret); clean::ForeignTypeItem } // Never inline enum variants but leave them shown as re-exports. Res::Def(DefKind::Variant, _) => return None, // Assume that enum variants and struct types are re-exported next to // their constructors. Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()), Res::Def(DefKind::Mod, did) => { record_extern_fqn(cx, did, ItemType::Module); clean::ModuleItem(build_module(cx, did, visited)) } Res::Def(DefKind::Static, did) => { record_extern_fqn(cx, did, ItemType::Static); clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did))) } Res::Def(DefKind::Const, did) => { record_extern_fqn(cx, did, ItemType::Constant); clean::ConstantItem(build_const(cx, did)) } Res::Def(DefKind::Macro(kind), did) => { let mac = build_macro(cx, did, name, import_def_id); let type_kind = match kind { MacroKind::Bang => ItemType::Macro, MacroKind::Attr => ItemType::ProcAttribute, MacroKind::Derive => ItemType::ProcDerive, }; record_extern_fqn(cx, did, type_kind); mac } _ => return None, }; let (attrs, cfg) = merge_attrs(cx, Some(parent_module), load_attrs(cx, did), attrs_clone); cx.inlined.insert(did.into()); let mut item = clean::Item::from_def_id_and_attrs_and_parts(did, Some(name), kind, box attrs, cx, cfg); if let Some(import_def_id) = import_def_id { // The visibility needs to reflect the one from the reexport and not from the "source" DefId. item.visibility = cx.tcx.visibility(import_def_id).clean(cx); } ret.push(item); Some(ret) } crate fn try_inline_glob( cx: &mut DocContext<'_>, res: Res, visited: &mut FxHashSet, ) -> Option> { let did = res.opt_def_id()?; if did.is_local() { return None; } match res { Res::Def(DefKind::Mod, did) => { let m = build_module(cx, did, visited); Some(m.items) } // glob imports on things like enums aren't inlined even for local exports, so just bail _ => None, } } crate fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> Attrs<'hir> { cx.tcx.get_attrs(did) } /// Record an external fully qualified name in the external_paths cache. /// /// These names are used later on by HTML rendering to generate things like /// source links back to the original item. crate fn record_extern_fqn(cx: &mut DocContext<'_>, did: DefId, kind: ItemType) { let crate_name = cx.tcx.crate_name(did.krate).to_string(); let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| { // extern blocks have an empty name let s = elem.data.to_string(); if !s.is_empty() { Some(s) } else { None } }); let fqn = if let ItemType::Macro = kind { // Check to see if it is a macro 2.0 or built-in macro if matches!( CStore::from_tcx(cx.tcx).load_macro_untracked(did, cx.sess()), LoadedMacro::MacroDef(def, _) if matches!(&def.kind, ast::ItemKind::MacroDef(ast_def) if !ast_def.macro_rules) ) { once(crate_name).chain(relative).collect() } else { vec![crate_name, relative.last().expect("relative was empty")] } } else { once(crate_name).chain(relative).collect() }; if did.is_local() { cx.cache.exact_paths.insert(did, fqn); } else { cx.cache.external_paths.insert(did, (fqn, kind)); } } crate fn build_external_trait(cx: &mut DocContext<'_>, did: DefId) -> clean::Trait { let trait_items = cx .tcx .associated_items(did) .in_definition_order() .map(|item| { // When building an external trait, the cleaned trait will have all items public, // which causes methods to have a `pub` prefix, which is invalid since items in traits // can not have a visibility prefix. Thus we override the visibility here manually. // See https://github.com/rust-lang/rust/issues/81274 clean::Item { visibility: Visibility::Inherited, ..item.clean(cx) } }) .collect(); let predicates = cx.tcx.predicates_of(did); let generics = (cx.tcx.generics_of(did), predicates).clean(cx); let generics = filter_non_trait_generics(did, generics); let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); let is_auto = cx.tcx.trait_is_auto(did); clean::Trait { unsafety: cx.tcx.trait_def(did).unsafety, generics, items: trait_items, bounds: supertrait_bounds, is_auto, } } fn build_external_function(cx: &mut DocContext<'_>, did: DefId) -> clean::Function { let sig = cx.tcx.fn_sig(did); let constness = if cx.tcx.is_const_fn_raw(did) { hir::Constness::Const } else { hir::Constness::NotConst }; let asyncness = cx.tcx.asyncness(did); let predicates = cx.tcx.predicates_of(did); let (generics, decl) = clean::enter_impl_trait(cx, |cx| { ((cx.tcx.generics_of(did), predicates).clean(cx), (did, sig).clean(cx)) }); clean::Function { decl, generics, header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness }, } } fn build_enum(cx: &mut DocContext<'_>, did: DefId) -> clean::Enum { let predicates = cx.tcx.explicit_predicates_of(did); clean::Enum { generics: (cx.tcx.generics_of(did), predicates).clean(cx), variants_stripped: false, variants: cx.tcx.adt_def(did).variants.clean(cx), } } fn build_struct(cx: &mut DocContext<'_>, did: DefId) -> clean::Struct { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Struct { struct_type: variant.ctor_kind, generics: (cx.tcx.generics_of(did), predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_union(cx: &mut DocContext<'_>, did: DefId) -> clean::Union { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Union { generics: (cx.tcx.generics_of(did), predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_type_alias(cx: &mut DocContext<'_>, did: DefId) -> clean::Typedef { let predicates = cx.tcx.explicit_predicates_of(did); let type_ = cx.tcx.type_of(did).clean(cx); clean::Typedef { type_, generics: (cx.tcx.generics_of(did), predicates).clean(cx), item_type: None, } } /// Builds all inherent implementations of an ADT (struct/union/enum) or Trait item/path/reexport. crate fn build_impls( cx: &mut DocContext<'_>, parent_module: Option, did: DefId, attrs: Option>, ret: &mut Vec, ) { let tcx = cx.tcx; // for each implementation of an item represented by `did`, build the clean::Item for that impl for &did in tcx.inherent_impls(did).iter() { build_impl(cx, parent_module, did, attrs, ret); } } /// `parent_module` refers to the parent of the re-export, not the original item fn merge_attrs( cx: &mut DocContext<'_>, parent_module: Option, old_attrs: Attrs<'_>, new_attrs: Option>, ) -> (clean::Attributes, Option>) { // NOTE: If we have additional attributes (from a re-export), // always insert them first. This ensure that re-export // doc comments show up before the original doc comments // when we render them. if let Some(inner) = new_attrs { let mut both = inner.to_vec(); both.extend_from_slice(old_attrs); ( if let Some(new_id) = parent_module { Attributes::from_ast(old_attrs, Some((inner, new_id))) } else { Attributes::from_ast(&both, None) }, both.cfg(cx.tcx, &cx.cache.hidden_cfg), ) } else { (old_attrs.clean(cx), old_attrs.cfg(cx.tcx, &cx.cache.hidden_cfg)) } } /// Builds a specific implementation of a type. The `did` could be a type method or trait method. crate fn build_impl( cx: &mut DocContext<'_>, parent_module: impl Into>, did: DefId, attrs: Option>, ret: &mut Vec, ) { if !cx.inlined.insert(did.into()) { return; } let tcx = cx.tcx; let associated_trait = tcx.impl_trait_ref(did); // Only inline impl if the implemented trait is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(traitref) = associated_trait { let did = traitref.def_id; if !cx.cache.access_levels.is_public(did) { return; } if let Some(stab) = tcx.lookup_stability(did) { if stab.level.is_unstable() && stab.feature == sym::rustc_private { return; } } } } let impl_item = match did.as_local() { Some(did) => { let hir_id = tcx.hir().local_def_id_to_hir_id(did); match &tcx.hir().expect_item(hir_id).kind { hir::ItemKind::Impl(impl_) => Some(impl_), _ => panic!("`DefID` passed to `build_impl` is not an `impl"), } } None => None, }; let for_ = match &impl_item { Some(impl_) => impl_.self_ty.clean(cx), None => tcx.type_of(did).clean(cx), }; // Only inline impl if the implementing type is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(did) = for_.def_id() { if !cx.cache.access_levels.is_public(did) { return; } if let Some(stab) = tcx.lookup_stability(did) { if stab.level.is_unstable() && stab.feature == sym::rustc_private { return; } } } } let document_hidden = cx.render_options.document_hidden; let predicates = tcx.explicit_predicates_of(did); let (trait_items, generics) = match impl_item { Some(impl_) => ( impl_ .items .iter() .map(|item| tcx.hir().impl_item(item.id)) .filter(|item| { // Filter out impl items whose corresponding trait item has `doc(hidden)` // not to document such impl items. // For inherent impls, we don't do any filtering, because that's already done in strip_hidden.rs. // When `--document-hidden-items` is passed, we don't // do any filtering, too. if document_hidden { return true; } if let Some(associated_trait) = associated_trait { let assoc_kind = match item.kind { hir::ImplItemKind::Const(..) => ty::AssocKind::Const, hir::ImplItemKind::Fn(..) => ty::AssocKind::Fn, hir::ImplItemKind::TyAlias(..) => ty::AssocKind::Type, }; let trait_item = tcx .associated_items(associated_trait.def_id) .find_by_name_and_kind( tcx, item.ident, assoc_kind, associated_trait.def_id, ) .unwrap(); // SAFETY: For all impl items there exists trait item that has the same name. !tcx.get_attrs(trait_item.def_id).lists(sym::doc).has_word(sym::hidden) } else { true } }) .map(|item| item.clean(cx)) .collect::>(), impl_.generics.clean(cx), ), None => ( tcx.associated_items(did) .in_definition_order() .filter_map(|item| { if associated_trait.is_some() || item.vis == ty::Visibility::Public { Some(item.clean(cx)) } else { None } }) .collect::>(), clean::enter_impl_trait(cx, |cx| (tcx.generics_of(did), predicates).clean(cx)), ), }; let polarity = tcx.impl_polarity(did); let trait_ = associated_trait.clean(cx); if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() { super::build_deref_target_impls(cx, &trait_items, ret); } // Return if the trait itself or any types of the generic parameters are doc(hidden). let mut stack: Vec<&Type> = vec![&for_]; if let Some(did) = trait_.as_ref().map(|t| t.def_id()) { if tcx.get_attrs(did).lists(sym::doc).has_word(sym::hidden) { return; } } if let Some(generics) = trait_.as_ref().and_then(|t| t.generics()) { stack.extend(generics); } while let Some(ty) = stack.pop() { if let Some(did) = ty.def_id() { if tcx.get_attrs(did).lists(sym::doc).has_word(sym::hidden) { return; } } if let Some(generics) = ty.generics() { stack.extend(generics); } } if let Some(did) = trait_.as_ref().map(|t| t.def_id()) { record_extern_trait(cx, did); } let (merged_attrs, cfg) = merge_attrs(cx, parent_module.into(), load_attrs(cx, did), attrs); trace!("merged_attrs={:?}", merged_attrs); trace!("build_impl: impl {:?} for {:?}", trait_.as_ref().map(|t| t.def_id()), for_.def_id()); ret.push(clean::Item::from_def_id_and_attrs_and_parts( did, None, clean::ImplItem(clean::Impl { span: clean::types::rustc_span(did, cx.tcx), unsafety: hir::Unsafety::Normal, generics, trait_, for_, items: trait_items, negative_polarity: polarity.clean(cx), synthetic: false, blanket_impl: None, }), box merged_attrs, cx, cfg, )); } fn build_module( cx: &mut DocContext<'_>, did: DefId, visited: &mut FxHashSet, ) -> clean::Module { let mut items = Vec::new(); // If we're re-exporting a re-export it may actually re-export something in // two namespaces, so the target may be listed twice. Make sure we only // visit each node at most once. for &item in cx.tcx.item_children(did).iter() { if item.vis == ty::Visibility::Public { let res = item.res.expect_non_local(); if let Some(def_id) = res.mod_def_id() { if did == def_id || !visited.insert(def_id) { continue; } } if let Res::PrimTy(p) = res { // Primitive types can't be inlined so generate an import instead. let prim_ty = clean::PrimitiveType::from(p); items.push(clean::Item { name: None, attrs: box clean::Attributes::default(), def_id: ItemId::Primitive(prim_ty, did.krate), visibility: clean::Public, kind: box clean::ImportItem(clean::Import::new_simple( item.ident.name, clean::ImportSource { path: clean::Path { res, segments: vec![clean::PathSegment { name: prim_ty.as_sym(), args: clean::GenericArgs::AngleBracketed { args: Vec::new(), bindings: Vec::new(), }, }], }, did: None, }, true, )), cfg: None, }); } else if let Some(i) = try_inline(cx, did, None, res, item.ident.name, None, visited) { items.extend(i) } } } let span = clean::Span::new(cx.tcx.def_span(did)); clean::Module { items, span } } crate fn print_inlined_const(tcx: TyCtxt<'_>, did: DefId) -> String { if let Some(did) = did.as_local() { let hir_id = tcx.hir().local_def_id_to_hir_id(did); rustc_hir_pretty::id_to_string(&tcx.hir(), hir_id) } else { tcx.rendered_const(did) } } fn build_const(cx: &mut DocContext<'_>, def_id: DefId) -> clean::Constant { clean::Constant { type_: cx.tcx.type_of(def_id).clean(cx), kind: clean::ConstantKind::Extern { def_id }, } } fn build_static(cx: &mut DocContext<'_>, did: DefId, mutable: bool) -> clean::Static { clean::Static { type_: cx.tcx.type_of(did).clean(cx), mutability: if mutable { Mutability::Mut } else { Mutability::Not }, expr: None, } } fn build_macro( cx: &mut DocContext<'_>, def_id: DefId, name: Symbol, import_def_id: Option, ) -> clean::ItemKind { match CStore::from_tcx(cx.tcx).load_macro_untracked(def_id, cx.sess()) { LoadedMacro::MacroDef(item_def, _) => { if let ast::ItemKind::MacroDef(ref def) = item_def.kind { clean::MacroItem(clean::Macro { source: utils::display_macro_source( cx, name, def, def_id, cx.tcx.visibility(import_def_id.unwrap_or(def_id)), ), }) } else { unreachable!() } } LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro { kind: ext.macro_kind(), helpers: ext.helper_attrs, }), } } /// A trait's generics clause actually contains all of the predicates for all of /// its associated types as well. We specifically move these clauses to the /// associated types instead when displaying, so when we're generating the /// generics for the trait itself we need to be sure to remove them. /// We also need to remove the implied "recursive" Self: Trait bound. /// /// The inverse of this filtering logic can be found in the `Clean` /// implementation for `AssociatedType` fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { for pred in &mut g.where_predicates { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds, .. } if *s == kw::SelfUpper => { bounds.retain(|bound| match bound { clean::GenericBound::TraitBound(clean::PolyTrait { trait_, .. }, _) => { trait_.def_id() != trait_did } _ => true, }); } _ => {} } } g.where_predicates.retain(|pred| match pred { clean::WherePredicate::BoundPredicate { ty: clean::QPath { self_type: box clean::Generic(ref s), trait_, name: _, .. }, bounds, .. } => !(bounds.is_empty() || *s == kw::SelfUpper && trait_.def_id() == trait_did), _ => true, }); g } /// Supertrait bounds for a trait are also listed in the generics coming from /// the metadata for a crate, so we want to separate those out and create a new /// list of explicit supertrait bounds to render nicely. fn separate_supertrait_bounds( mut g: clean::Generics, ) -> (clean::Generics, Vec) { let mut ty_bounds = Vec::new(); g.where_predicates.retain(|pred| match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds, .. } if *s == kw::SelfUpper => { ty_bounds.extend(bounds.iter().cloned()); false } _ => true, }); (g, ty_bounds) } crate fn record_extern_trait(cx: &mut DocContext<'_>, did: DefId) { if did.is_local() { return; } { if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.contains(&did) { return; } } { cx.active_extern_traits.insert(did); } debug!("record_extern_trait: {:?}", did); let trait_ = build_external_trait(cx, did); let trait_ = clean::TraitWithExtraInfo { trait_, is_notable: clean::utils::has_doc_flag(cx.tcx.get_attrs(did), sym::notable_trait), }; cx.external_traits.borrow_mut().insert(did, trait_); cx.active_extern_traits.remove(&did); }