//! Support for inlining external documentation into the current AST. use std::iter::once; use syntax::ast; use syntax::ext::base::MacroKind; use syntax::symbol::sym; use syntax_pos::Span; use rustc::hir; use rustc::hir::def::{Res, DefKind, CtorKind}; use rustc::hir::def_id::DefId; use rustc_metadata::cstore::LoadedMacro; use rustc::ty; use rustc::util::nodemap::FxHashSet; use crate::core::DocContext; use crate::doctree; use crate::clean::{ self, GetDefId, ToSource, TypeKind }; use super::Clean; type Attrs<'hir> = rustc::ty::Attributes<'hir>; /// Attempt to inline a definition into this AST. /// /// This function will fetch the definition specified, and if it is /// from another crate it will attempt to inline the documentation /// from the other crate into this crate. /// /// This is primarily used for `pub use` statements which are, in general, /// implementation details. Inlining the documentation should help provide a /// better experience when reading the documentation in this use case. /// /// The returned value is `None` if the definition could not be inlined, /// and `Some` of a vector of items if it was successfully expanded. pub fn try_inline( cx: &DocContext<'_>, res: Res, name: ast::Name, attrs: Option>, visited: &mut FxHashSet ) -> Option> { let did = if let Some(did) = res.opt_def_id() { did } else { return None; }; if did.is_local() { return None } let mut ret = Vec::new(); let attrs_clone = attrs.clone(); let inner = match res { Res::Def(DefKind::Trait, did) => { record_extern_fqn(cx, did, clean::TypeKind::Trait); ret.extend(build_impls(cx, did, attrs)); clean::TraitItem(build_external_trait(cx, did)) } Res::Def(DefKind::Fn, did) => { record_extern_fqn(cx, did, clean::TypeKind::Function); clean::FunctionItem(build_external_function(cx, did)) } Res::Def(DefKind::Struct, did) => { record_extern_fqn(cx, did, clean::TypeKind::Struct); ret.extend(build_impls(cx, did, attrs)); clean::StructItem(build_struct(cx, did)) } Res::Def(DefKind::Union, did) => { record_extern_fqn(cx, did, clean::TypeKind::Union); ret.extend(build_impls(cx, did, attrs)); clean::UnionItem(build_union(cx, did)) } Res::Def(DefKind::TyAlias, did) => { record_extern_fqn(cx, did, clean::TypeKind::Typedef); ret.extend(build_impls(cx, did, attrs)); clean::TypedefItem(build_type_alias(cx, did), false) } Res::Def(DefKind::Enum, did) => { record_extern_fqn(cx, did, clean::TypeKind::Enum); ret.extend(build_impls(cx, did, attrs)); clean::EnumItem(build_enum(cx, did)) } Res::Def(DefKind::ForeignTy, did) => { record_extern_fqn(cx, did, clean::TypeKind::Foreign); ret.extend(build_impls(cx, did, attrs)); clean::ForeignTypeItem } // Never inline enum variants but leave them shown as re-exports. Res::Def(DefKind::Variant, _) => return None, // Assume that enum variants and struct types are re-exported next to // their constructors. Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()), Res::Def(DefKind::Mod, did) => { record_extern_fqn(cx, did, clean::TypeKind::Module); clean::ModuleItem(build_module(cx, did, visited)) } Res::Def(DefKind::Static, did) => { record_extern_fqn(cx, did, clean::TypeKind::Static); clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did))) } Res::Def(DefKind::Const, did) => { record_extern_fqn(cx, did, clean::TypeKind::Const); clean::ConstantItem(build_const(cx, did)) } Res::Def(DefKind::Macro(kind), did) => { let mac = build_macro(cx, did, name); let type_kind = match kind { MacroKind::Bang => TypeKind::Macro, MacroKind::Attr => TypeKind::Attr, MacroKind::Derive => TypeKind::Derive }; record_extern_fqn(cx, did, type_kind); mac } _ => return None, }; let target_attrs = load_attrs(cx, did); let attrs = merge_attrs(cx, target_attrs, attrs_clone); cx.renderinfo.borrow_mut().inlined.insert(did); ret.push(clean::Item { source: cx.tcx.def_span(did).clean(cx), name: Some(name.clean(cx)), attrs, inner, visibility: clean::Public, stability: cx.tcx.lookup_stability(did).clean(cx), deprecation: cx.tcx.lookup_deprecation(did).clean(cx), def_id: did, }); Some(ret) } pub fn try_inline_glob(cx: &DocContext<'_>, res: Res, visited: &mut FxHashSet) -> Option> { if res == Res::Err { return None } let did = res.def_id(); if did.is_local() { return None } match res { Res::Def(DefKind::Mod, did) => { let m = build_module(cx, did, visited); Some(m.items) } // glob imports on things like enums aren't inlined even for local exports, so just bail _ => None, } } pub fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> Attrs<'hir> { cx.tcx.get_attrs(did) } /// Record an external fully qualified name in the external_paths cache. /// /// These names are used later on by HTML rendering to generate things like /// source links back to the original item. pub fn record_extern_fqn(cx: &DocContext<'_>, did: DefId, kind: clean::TypeKind) { let crate_name = cx.tcx.crate_name(did.krate).to_string(); let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| { // extern blocks have an empty name let s = elem.data.to_string(); if !s.is_empty() { Some(s) } else { None } }); let fqn = if let clean::TypeKind::Macro = kind { vec![crate_name, relative.last().expect("relative was empty")] } else { once(crate_name).chain(relative).collect() }; if did.is_local() { cx.renderinfo.borrow_mut().exact_paths.insert(did, fqn); } else { cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind)); } } pub fn build_external_trait(cx: &DocContext<'_>, did: DefId) -> clean::Trait { let auto_trait = cx.tcx.trait_def(did).has_auto_impl; let trait_items = cx.tcx.associated_items(did).map(|item| item.clean(cx)).collect(); let predicates = cx.tcx.predicates_of(did); let generics = (cx.tcx.generics_of(did), &predicates).clean(cx); let generics = filter_non_trait_generics(did, generics); let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); let is_spotlight = load_attrs(cx, did).clean(cx).has_doc_flag(sym::spotlight); let is_auto = cx.tcx.trait_is_auto(did); clean::Trait { auto: auto_trait, unsafety: cx.tcx.trait_def(did).unsafety, generics, items: trait_items, bounds: supertrait_bounds, is_spotlight, is_auto, } } fn build_external_function(cx: &DocContext<'_>, did: DefId) -> clean::Function { let sig = cx.tcx.fn_sig(did); let constness = if cx.tcx.is_min_const_fn(did) { hir::Constness::Const } else { hir::Constness::NotConst }; let asyncness = cx.tcx.asyncness(did); let predicates = cx.tcx.predicates_of(did); let (generics, decl) = clean::enter_impl_trait(cx, || { ((cx.tcx.generics_of(did), &predicates).clean(cx), (did, sig).clean(cx)) }); let (all_types, ret_types) = clean::get_all_types(&generics, &decl, cx); clean::Function { decl, generics, header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness, }, all_types, ret_types, } } fn build_enum(cx: &DocContext<'_>, did: DefId) -> clean::Enum { let predicates = cx.tcx.explicit_predicates_of(did); clean::Enum { generics: (cx.tcx.generics_of(did), &predicates).clean(cx), variants_stripped: false, variants: cx.tcx.adt_def(did).variants.clean(cx), } } fn build_struct(cx: &DocContext<'_>, did: DefId) -> clean::Struct { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Struct { struct_type: match variant.ctor_kind { CtorKind::Fictive => doctree::Plain, CtorKind::Fn => doctree::Tuple, CtorKind::Const => doctree::Unit, }, generics: (cx.tcx.generics_of(did), &predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_union(cx: &DocContext<'_>, did: DefId) -> clean::Union { let predicates = cx.tcx.explicit_predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Union { struct_type: doctree::Plain, generics: (cx.tcx.generics_of(did), &predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_type_alias(cx: &DocContext<'_>, did: DefId) -> clean::Typedef { let predicates = cx.tcx.explicit_predicates_of(did); clean::Typedef { type_: cx.tcx.type_of(did).clean(cx), generics: (cx.tcx.generics_of(did), &predicates).clean(cx), } } pub fn build_impls(cx: &DocContext<'_>, did: DefId, attrs: Option>) -> Vec { let tcx = cx.tcx; let mut impls = Vec::new(); for &did in tcx.inherent_impls(did).iter() { build_impl(cx, did, attrs.clone(), &mut impls); } impls } fn merge_attrs(cx: &DocContext<'_>, attrs: Attrs<'_>, other_attrs: Option> ) -> clean::Attributes { let mut merged_attrs: Vec = Vec::with_capacity(attrs.len()); // If we have additional attributes (from a re-export), // always insert them first. This ensure that re-export // doc comments show up before the original doc comments // when we render them. if let Some(a) = other_attrs { merged_attrs.extend(a.iter().cloned()); } merged_attrs.extend(attrs.to_vec()); merged_attrs.clean(cx) } pub fn build_impl(cx: &DocContext<'_>, did: DefId, attrs: Option>, ret: &mut Vec ) { if !cx.renderinfo.borrow_mut().inlined.insert(did) { return } let attrs = merge_attrs(cx, load_attrs(cx, did), attrs); let tcx = cx.tcx; let associated_trait = tcx.impl_trait_ref(did); // Only inline impl if the implemented trait is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(traitref) = associated_trait { if !cx.renderinfo.borrow().access_levels.is_public(traitref.def_id) { return } } } let for_ = if let Some(hir_id) = tcx.hir().as_local_hir_id(did) { match tcx.hir().expect_item(hir_id).kind { hir::ItemKind::Impl(.., ref t, _) => { t.clean(cx) } _ => panic!("did given to build_impl was not an impl"), } } else { tcx.type_of(did).clean(cx) }; // Only inline impl if the implementing type is // reachable in rustdoc generated documentation if !did.is_local() { if let Some(did) = for_.def_id() { if !cx.renderinfo.borrow().access_levels.is_public(did) { return } } } let predicates = tcx.explicit_predicates_of(did); let (trait_items, generics) = if let Some(hir_id) = tcx.hir().as_local_hir_id(did) { match tcx.hir().expect_item(hir_id).kind { hir::ItemKind::Impl(.., ref gen, _, _, ref item_ids) => { ( item_ids.iter() .map(|ii| tcx.hir().impl_item(ii.id).clean(cx)) .collect::>(), gen.clean(cx), ) } _ => panic!("did given to build_impl was not an impl"), } } else { ( tcx.associated_items(did).filter_map(|item| { if associated_trait.is_some() || item.vis == ty::Visibility::Public { Some(item.clean(cx)) } else { None } }).collect::>(), clean::enter_impl_trait(cx, || { (tcx.generics_of(did), &predicates).clean(cx) }), ) }; let polarity = tcx.impl_polarity(did); let trait_ = associated_trait.clean(cx).map(|bound| { match bound { clean::GenericBound::TraitBound(polyt, _) => polyt.trait_, clean::GenericBound::Outlives(..) => unreachable!(), } }); if trait_.def_id() == tcx.lang_items().deref_trait() { super::build_deref_target_impls(cx, &trait_items, ret); } if let Some(trait_did) = trait_.def_id() { record_extern_trait(cx, trait_did); } let provided = trait_.def_id().map(|did| { tcx.provided_trait_methods(did) .into_iter() .map(|meth| meth.ident.to_string()) .collect() }).unwrap_or_default(); debug!("build_impl: impl {:?} for {:?}", trait_.def_id(), for_.def_id()); ret.push(clean::Item { inner: clean::ImplItem(clean::Impl { unsafety: hir::Unsafety::Normal, generics, provided_trait_methods: provided, trait_, for_, items: trait_items, polarity: Some(polarity.clean(cx)), synthetic: false, blanket_impl: None, }), source: tcx.def_span(did).clean(cx), name: None, attrs, visibility: clean::Inherited, stability: tcx.lookup_stability(did).clean(cx), deprecation: tcx.lookup_deprecation(did).clean(cx), def_id: did, }); } fn build_module( cx: &DocContext<'_>, did: DefId, visited: &mut FxHashSet ) -> clean::Module { let mut items = Vec::new(); fill_in(cx, did, &mut items, visited); return clean::Module { items, is_crate: false, }; fn fill_in(cx: &DocContext<'_>, did: DefId, items: &mut Vec, visited: &mut FxHashSet) { // If we're re-exporting a re-export it may actually re-export something in // two namespaces, so the target may be listed twice. Make sure we only // visit each node at most once. for &item in cx.tcx.item_children(did).iter() { let def_id = item.res.def_id(); if item.vis == ty::Visibility::Public { if did == def_id || !visited.insert(def_id) { continue } if let Some(i) = try_inline(cx, item.res, item.ident.name, None, visited) { items.extend(i) } } } } } pub fn print_inlined_const(cx: &DocContext<'_>, did: DefId) -> String { if let Some(node_id) = cx.tcx.hir().as_local_hir_id(did) { cx.tcx.hir().hir_to_pretty_string(node_id) } else { cx.tcx.rendered_const(did) } } fn build_const(cx: &DocContext<'_>, did: DefId) -> clean::Constant { clean::Constant { type_: cx.tcx.type_of(did).clean(cx), expr: print_inlined_const(cx, did) } } fn build_static(cx: &DocContext<'_>, did: DefId, mutable: bool) -> clean::Static { clean::Static { type_: cx.tcx.type_of(did).clean(cx), mutability: if mutable {clean::Mutable} else {clean::Immutable}, expr: "\n\n\n".to_string(), // trigger the "[definition]" links } } fn build_macro(cx: &DocContext<'_>, did: DefId, name: ast::Name) -> clean::ItemEnum { let imported_from = cx.tcx.original_crate_name(did.krate); match cx.cstore.load_macro_untracked(did, cx.sess()) { LoadedMacro::MacroDef(def) => { let matchers: hir::HirVec = if let ast::ItemKind::MacroDef(ref def) = def.kind { let tts: Vec<_> = def.stream().into_trees().collect(); tts.chunks(4).map(|arm| arm[0].span()).collect() } else { unreachable!() }; let source = format!("macro_rules! {} {{\n{}}}", name.clean(cx), matchers.iter().map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) }).collect::()); clean::MacroItem(clean::Macro { source, imported_from: Some(imported_from).clean(cx), }) } LoadedMacro::ProcMacro(ext) => { clean::ProcMacroItem(clean::ProcMacro { kind: ext.macro_kind(), helpers: ext.helper_attrs.clean(cx), }) } } } /// A trait's generics clause actually contains all of the predicates for all of /// its associated types as well. We specifically move these clauses to the /// associated types instead when displaying, so when we're generating the /// generics for the trait itself we need to be sure to remove them. /// We also need to remove the implied "recursive" Self: Trait bound. /// /// The inverse of this filtering logic can be found in the `Clean` /// implementation for `AssociatedType` fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { for pred in &mut g.where_predicates { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds } if *s == "Self" => { bounds.retain(|bound| { match *bound { clean::GenericBound::TraitBound(clean::PolyTrait { trait_: clean::ResolvedPath { did, .. }, .. }, _) => did != trait_did, _ => true } }); } _ => {} } } g.where_predicates.retain(|pred| { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::QPath { self_type: box clean::Generic(ref s), trait_: box clean::ResolvedPath { did, .. }, name: ref _name, }, ref bounds } => !(*s == "Self" && did == trait_did) && !bounds.is_empty(), _ => true, } }); g } /// Supertrait bounds for a trait are also listed in the generics coming from /// the metadata for a crate, so we want to separate those out and create a new /// list of explicit supertrait bounds to render nicely. fn separate_supertrait_bounds(mut g: clean::Generics) -> (clean::Generics, Vec) { let mut ty_bounds = Vec::new(); g.where_predicates.retain(|pred| { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds } if *s == "Self" => { ty_bounds.extend(bounds.iter().cloned()); false } _ => true, } }); (g, ty_bounds) } pub fn record_extern_trait(cx: &DocContext<'_>, did: DefId) { if did.is_local() { return; } { if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.borrow().contains(&did) { return; } } cx.active_extern_traits.borrow_mut().insert(did); debug!("record_extern_trait: {:?}", did); let trait_ = build_external_trait(cx, did); cx.external_traits.borrow_mut().insert(did, trait_); cx.active_extern_traits.borrow_mut().remove(&did); }