//! This module contains the "cleaned" pieces of the AST, and the functions //! that clean them. pub mod inline; pub mod cfg; pub mod utils; mod auto_trait; mod blanket_impl; mod simplify; pub mod types; use rustc_index::vec::{IndexVec, Idx}; use rustc_typeck::hir_ty_to_ty; use rustc::infer::region_constraints::{RegionConstraintData, Constraint}; use rustc::middle::resolve_lifetime as rl; use rustc::middle::lang_items; use rustc::middle::stability; use rustc::mir::interpret::GlobalId; use rustc::hir; use rustc::hir::def::{CtorKind, DefKind, Res}; use rustc::hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX}; use rustc::hir::ptr::P; use rustc::ty::subst::InternalSubsts; use rustc::ty::{self, TyCtxt, Ty, AdtKind}; use rustc::ty::fold::TypeFolder; use rustc::util::nodemap::{FxHashMap, FxHashSet}; use syntax::ast::{self, Ident}; use syntax::attr; use syntax_pos::symbol::{kw, sym}; use syntax_pos::hygiene::MacroKind; use syntax_pos::{self, Pos}; use std::collections::hash_map::Entry; use std::hash::Hash; use std::default::Default; use std::{mem, vec}; use std::rc::Rc; use std::u32; use crate::core::{self, DocContext, ImplTraitParam}; use crate::doctree; use utils::*; pub use utils::{get_auto_trait_and_blanket_impls, krate, register_res}; pub use self::types::*; pub use self::types::Type::*; pub use self::types::Mutability::*; pub use self::types::ItemEnum::*; pub use self::types::SelfTy::*; pub use self::types::FunctionRetTy::*; pub use self::types::Visibility::{Public, Inherited}; const FN_OUTPUT_NAME: &'static str = "Output"; pub trait Clean { fn clean(&self, cx: &DocContext<'_>) -> T; } impl, U> Clean> for [T] { fn clean(&self, cx: &DocContext<'_>) -> Vec { self.iter().map(|x| x.clean(cx)).collect() } } impl, U, V: Idx> Clean> for IndexVec { fn clean(&self, cx: &DocContext<'_>) -> IndexVec { self.iter().map(|x| x.clean(cx)).collect() } } impl, U> Clean for P { fn clean(&self, cx: &DocContext<'_>) -> U { (**self).clean(cx) } } impl, U> Clean for Rc { fn clean(&self, cx: &DocContext<'_>) -> U { (**self).clean(cx) } } impl, U> Clean> for Option { fn clean(&self, cx: &DocContext<'_>) -> Option { self.as_ref().map(|v| v.clean(cx)) } } impl Clean for ty::Binder where T: Clean { fn clean(&self, cx: &DocContext<'_>) -> U { self.skip_binder().clean(cx) } } impl, U> Clean> for P<[T]> { fn clean(&self, cx: &DocContext<'_>) -> Vec { self.iter().map(|x| x.clean(cx)).collect() } } impl Clean for CrateNum { fn clean(&self, cx: &DocContext<'_>) -> ExternalCrate { let root = DefId { krate: *self, index: CRATE_DEF_INDEX }; let krate_span = cx.tcx.def_span(root); let krate_src = cx.sess().source_map().span_to_filename(krate_span); // Collect all inner modules which are tagged as implementations of // primitives. // // Note that this loop only searches the top-level items of the crate, // and this is intentional. If we were to search the entire crate for an // item tagged with `#[doc(primitive)]` then we would also have to // search the entirety of external modules for items tagged // `#[doc(primitive)]`, which is a pretty inefficient process (decoding // all that metadata unconditionally). // // In order to keep the metadata load under control, the // `#[doc(primitive)]` feature is explicitly designed to only allow the // primitive tags to show up as the top level items in a crate. // // Also note that this does not attempt to deal with modules tagged // duplicately for the same primitive. This is handled later on when // rendering by delegating everything to a hash map. let as_primitive = |res: Res| { if let Res::Def(DefKind::Mod, def_id) = res { let attrs = cx.tcx.get_attrs(def_id).clean(cx); let mut prim = None; for attr in attrs.lists(sym::doc) { if let Some(v) = attr.value_str() { if attr.check_name(sym::primitive) { prim = PrimitiveType::from_str(&v.as_str()); if prim.is_some() { break; } // FIXME: should warn on unknown primitives? } } } return prim.map(|p| (def_id, p, attrs)); } None }; let primitives = if root.is_local() { cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| { let item = cx.tcx.hir().expect_item(id.id); match item.kind { hir::ItemKind::Mod(_) => { as_primitive(Res::Def( DefKind::Mod, cx.tcx.hir().local_def_id(id.id), )) } hir::ItemKind::Use(ref path, hir::UseKind::Single) if item.vis.node.is_pub() => { as_primitive(path.res).map(|(_, prim, attrs)| { // Pretend the primitive is local. (cx.tcx.hir().local_def_id(id.id), prim, attrs) }) } _ => None } }).collect() } else { cx.tcx.item_children(root).iter().map(|item| item.res) .filter_map(as_primitive).collect() }; let as_keyword = |res: Res| { if let Res::Def(DefKind::Mod, def_id) = res { let attrs = cx.tcx.get_attrs(def_id).clean(cx); let mut keyword = None; for attr in attrs.lists(sym::doc) { if let Some(v) = attr.value_str() { if attr.check_name(sym::keyword) { if v.is_doc_keyword() { keyword = Some(v.to_string()); break; } // FIXME: should warn on unknown keywords? } } } return keyword.map(|p| (def_id, p, attrs)); } None }; let keywords = if root.is_local() { cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| { let item = cx.tcx.hir().expect_item(id.id); match item.kind { hir::ItemKind::Mod(_) => { as_keyword(Res::Def( DefKind::Mod, cx.tcx.hir().local_def_id(id.id), )) } hir::ItemKind::Use(ref path, hir::UseKind::Single) if item.vis.node.is_pub() => { as_keyword(path.res).map(|(_, prim, attrs)| { (cx.tcx.hir().local_def_id(id.id), prim, attrs) }) } _ => None } }).collect() } else { cx.tcx.item_children(root).iter().map(|item| item.res) .filter_map(as_keyword).collect() }; ExternalCrate { name: cx.tcx.crate_name(*self).to_string(), src: krate_src, attrs: cx.tcx.get_attrs(root).clean(cx), primitives, keywords, } } } impl Clean for doctree::Module<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let name = if self.name.is_some() { self.name.expect("No name provided").clean(cx) } else { String::new() }; // maintain a stack of mod ids, for doc comment path resolution // but we also need to resolve the module's own docs based on whether its docs were written // inside or outside the module, so check for that let attrs = self.attrs.clean(cx); let mut items: Vec = vec![]; items.extend(self.extern_crates.iter().flat_map(|x| x.clean(cx))); items.extend(self.imports.iter().flat_map(|x| x.clean(cx))); items.extend(self.structs.iter().map(|x| x.clean(cx))); items.extend(self.unions.iter().map(|x| x.clean(cx))); items.extend(self.enums.iter().map(|x| x.clean(cx))); items.extend(self.fns.iter().map(|x| x.clean(cx))); items.extend(self.foreigns.iter().map(|x| x.clean(cx))); items.extend(self.mods.iter().map(|x| x.clean(cx))); items.extend(self.typedefs.iter().map(|x| x.clean(cx))); items.extend(self.opaque_tys.iter().map(|x| x.clean(cx))); items.extend(self.statics.iter().map(|x| x.clean(cx))); items.extend(self.constants.iter().map(|x| x.clean(cx))); items.extend(self.traits.iter().map(|x| x.clean(cx))); items.extend(self.impls.iter().flat_map(|x| x.clean(cx))); items.extend(self.macros.iter().map(|x| x.clean(cx))); items.extend(self.proc_macros.iter().map(|x| x.clean(cx))); items.extend(self.trait_aliases.iter().map(|x| x.clean(cx))); // determine if we should display the inner contents or // the outer `mod` item for the source code. let whence = { let cm = cx.sess().source_map(); let outer = cm.lookup_char_pos(self.where_outer.lo()); let inner = cm.lookup_char_pos(self.where_inner.lo()); if outer.file.start_pos == inner.file.start_pos { // mod foo { ... } self.where_outer } else { // mod foo; (and a separate SourceFile for the contents) self.where_inner } }; Item { name: Some(name), attrs, source: whence.clean(cx), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), inner: ModuleItem(Module { is_crate: self.is_crate, items, }) } } } impl Clean for [ast::Attribute] { fn clean(&self, cx: &DocContext<'_>) -> Attributes { Attributes::from_ast(cx.sess().diagnostic(), self) } } impl Clean for hir::GenericBound { fn clean(&self, cx: &DocContext<'_>) -> GenericBound { match *self { hir::GenericBound::Outlives(lt) => GenericBound::Outlives(lt.clean(cx)), hir::GenericBound::Trait(ref t, modifier) => { GenericBound::TraitBound(t.clean(cx), modifier) } } } } impl<'a, 'tcx> Clean for (&'a ty::TraitRef<'tcx>, Vec) { fn clean(&self, cx: &DocContext<'_>) -> GenericBound { let (trait_ref, ref bounds) = *self; inline::record_extern_fqn(cx, trait_ref.def_id, TypeKind::Trait); let path = external_path(cx, cx.tcx.item_name(trait_ref.def_id), Some(trait_ref.def_id), true, bounds.clone(), trait_ref.substs); debug!("ty::TraitRef\n subst: {:?}\n", trait_ref.substs); // collect any late bound regions let mut late_bounds = vec![]; for ty_s in trait_ref.input_types().skip(1) { if let ty::Tuple(ts) = ty_s.kind { for &ty_s in ts { if let ty::Ref(ref reg, _, _) = ty_s.expect_ty().kind { if let &ty::RegionKind::ReLateBound(..) = *reg { debug!(" hit an ReLateBound {:?}", reg); if let Some(Lifetime(name)) = reg.clean(cx) { late_bounds.push(GenericParamDef { name, kind: GenericParamDefKind::Lifetime, }); } } } } } } GenericBound::TraitBound( PolyTrait { trait_: ResolvedPath { path, param_names: None, did: trait_ref.def_id, is_generic: false, }, generic_params: late_bounds, }, hir::TraitBoundModifier::None ) } } impl<'tcx> Clean for ty::TraitRef<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> GenericBound { (self, vec![]).clean(cx) } } impl<'tcx> Clean>> for InternalSubsts<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> Option> { let mut v = Vec::new(); v.extend(self.regions().filter_map(|r| r.clean(cx)).map(GenericBound::Outlives)); v.extend(self.types().map(|t| GenericBound::TraitBound(PolyTrait { trait_: t.clean(cx), generic_params: Vec::new(), }, hir::TraitBoundModifier::None))); if !v.is_empty() {Some(v)} else {None} } } impl Clean for hir::Lifetime { fn clean(&self, cx: &DocContext<'_>) -> Lifetime { if self.hir_id != hir::DUMMY_HIR_ID { let def = cx.tcx.named_region(self.hir_id); match def { Some(rl::Region::EarlyBound(_, node_id, _)) | Some(rl::Region::LateBound(_, node_id, _)) | Some(rl::Region::Free(_, node_id)) => { if let Some(lt) = cx.lt_substs.borrow().get(&node_id).cloned() { return lt; } } _ => {} } } Lifetime(self.name.ident().to_string()) } } impl Clean for hir::GenericParam { fn clean(&self, _: &DocContext<'_>) -> Lifetime { match self.kind { hir::GenericParamKind::Lifetime { .. } => { if self.bounds.len() > 0 { let mut bounds = self.bounds.iter().map(|bound| match bound { hir::GenericBound::Outlives(lt) => lt, _ => panic!(), }); let name = bounds.next().expect("no more bounds").name.ident(); let mut s = format!("{}: {}", self.name.ident(), name); for bound in bounds { s.push_str(&format!(" + {}", bound.name.ident())); } Lifetime(s) } else { Lifetime(self.name.ident().to_string()) } } _ => panic!(), } } } impl Clean for hir::ConstArg { fn clean(&self, cx: &DocContext<'_>) -> Constant { Constant { type_: cx.tcx.type_of(cx.tcx.hir().body_owner_def_id(self.value.body)).clean(cx), expr: print_const_expr(cx, self.value.body), } } } impl Clean for ty::GenericParamDef { fn clean(&self, _cx: &DocContext<'_>) -> Lifetime { Lifetime(self.name.to_string()) } } impl Clean> for ty::RegionKind { fn clean(&self, cx: &DocContext<'_>) -> Option { match *self { ty::ReStatic => Some(Lifetime::statik()), ty::ReLateBound(_, ty::BrNamed(_, name)) => Some(Lifetime(name.to_string())), ty::ReEarlyBound(ref data) => Some(Lifetime(data.name.clean(cx))), ty::ReLateBound(..) | ty::ReFree(..) | ty::ReScope(..) | ty::ReVar(..) | ty::RePlaceholder(..) | ty::ReEmpty | ty::ReClosureBound(_) | ty::ReErased => { debug!("cannot clean region {:?}", self); None } } } } impl Clean for hir::WherePredicate { fn clean(&self, cx: &DocContext<'_>) -> WherePredicate { match *self { hir::WherePredicate::BoundPredicate(ref wbp) => { WherePredicate::BoundPredicate { ty: wbp.bounded_ty.clean(cx), bounds: wbp.bounds.clean(cx) } } hir::WherePredicate::RegionPredicate(ref wrp) => { WherePredicate::RegionPredicate { lifetime: wrp.lifetime.clean(cx), bounds: wrp.bounds.clean(cx) } } hir::WherePredicate::EqPredicate(ref wrp) => { WherePredicate::EqPredicate { lhs: wrp.lhs_ty.clean(cx), rhs: wrp.rhs_ty.clean(cx) } } } } } impl<'a> Clean> for ty::Predicate<'a> { fn clean(&self, cx: &DocContext<'_>) -> Option { use rustc::ty::Predicate; match *self { Predicate::Trait(ref pred) => Some(pred.clean(cx)), Predicate::Subtype(ref pred) => Some(pred.clean(cx)), Predicate::RegionOutlives(ref pred) => pred.clean(cx), Predicate::TypeOutlives(ref pred) => pred.clean(cx), Predicate::Projection(ref pred) => Some(pred.clean(cx)), Predicate::WellFormed(..) | Predicate::ObjectSafe(..) | Predicate::ClosureKind(..) | Predicate::ConstEvaluatable(..) => panic!("not user writable"), } } } impl<'a> Clean for ty::TraitPredicate<'a> { fn clean(&self, cx: &DocContext<'_>) -> WherePredicate { WherePredicate::BoundPredicate { ty: self.trait_ref.self_ty().clean(cx), bounds: vec![self.trait_ref.clean(cx)] } } } impl<'tcx> Clean for ty::SubtypePredicate<'tcx> { fn clean(&self, _cx: &DocContext<'_>) -> WherePredicate { panic!("subtype predicates are an internal rustc artifact \ and should not be seen by rustdoc") } } impl<'tcx> Clean> for ty::OutlivesPredicate,ty::Region<'tcx>> { fn clean(&self, cx: &DocContext<'_>) -> Option { let ty::OutlivesPredicate(ref a, ref b) = *self; match (a, b) { (ty::ReEmpty, ty::ReEmpty) => { return None; }, _ => {} } Some(WherePredicate::RegionPredicate { lifetime: a.clean(cx).expect("failed to clean lifetime"), bounds: vec![GenericBound::Outlives(b.clean(cx).expect("failed to clean bounds"))] }) } } impl<'tcx> Clean> for ty::OutlivesPredicate, ty::Region<'tcx>> { fn clean(&self, cx: &DocContext<'_>) -> Option { let ty::OutlivesPredicate(ref ty, ref lt) = *self; match lt { ty::ReEmpty => return None, _ => {} } Some(WherePredicate::BoundPredicate { ty: ty.clean(cx), bounds: vec![GenericBound::Outlives(lt.clean(cx).expect("failed to clean lifetimes"))] }) } } impl<'tcx> Clean for ty::ProjectionPredicate<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> WherePredicate { WherePredicate::EqPredicate { lhs: self.projection_ty.clean(cx), rhs: self.ty.clean(cx) } } } impl<'tcx> Clean for ty::ProjectionTy<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> Type { let trait_ = match self.trait_ref(cx.tcx).clean(cx) { GenericBound::TraitBound(t, _) => t.trait_, GenericBound::Outlives(_) => panic!("cleaning a trait got a lifetime"), }; Type::QPath { name: cx.tcx.associated_item(self.item_def_id).ident.name.clean(cx), self_type: box self.self_ty().clean(cx), trait_: box trait_ } } } impl Clean for ty::GenericParamDef { fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef { let (name, kind) = match self.kind { ty::GenericParamDefKind::Lifetime => { (self.name.to_string(), GenericParamDefKind::Lifetime) } ty::GenericParamDefKind::Type { has_default, synthetic, .. } => { let default = if has_default { Some(cx.tcx.type_of(self.def_id).clean(cx)) } else { None }; (self.name.clean(cx), GenericParamDefKind::Type { did: self.def_id, bounds: vec![], // These are filled in from the where-clauses. default, synthetic, }) } ty::GenericParamDefKind::Const { .. } => { (self.name.clean(cx), GenericParamDefKind::Const { did: self.def_id, ty: cx.tcx.type_of(self.def_id).clean(cx), }) } }; GenericParamDef { name, kind, } } } impl Clean for hir::GenericParam { fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef { let (name, kind) = match self.kind { hir::GenericParamKind::Lifetime { .. } => { let name = if self.bounds.len() > 0 { let mut bounds = self.bounds.iter().map(|bound| match bound { hir::GenericBound::Outlives(lt) => lt, _ => panic!(), }); let name = bounds.next().expect("no more bounds").name.ident(); let mut s = format!("{}: {}", self.name.ident(), name); for bound in bounds { s.push_str(&format!(" + {}", bound.name.ident())); } s } else { self.name.ident().to_string() }; (name, GenericParamDefKind::Lifetime) } hir::GenericParamKind::Type { ref default, synthetic } => { (self.name.ident().name.clean(cx), GenericParamDefKind::Type { did: cx.tcx.hir().local_def_id(self.hir_id), bounds: self.bounds.clean(cx), default: default.clean(cx), synthetic, }) } hir::GenericParamKind::Const { ref ty } => { (self.name.ident().name.clean(cx), GenericParamDefKind::Const { did: cx.tcx.hir().local_def_id(self.hir_id), ty: ty.clean(cx), }) } }; GenericParamDef { name, kind, } } } impl Clean for hir::Generics { fn clean(&self, cx: &DocContext<'_>) -> Generics { // Synthetic type-parameters are inserted after normal ones. // In order for normal parameters to be able to refer to synthetic ones, // scans them first. fn is_impl_trait(param: &hir::GenericParam) -> bool { match param.kind { hir::GenericParamKind::Type { synthetic, .. } => { synthetic == Some(hir::SyntheticTyParamKind::ImplTrait) } _ => false, } } let impl_trait_params = self.params .iter() .filter(|param| is_impl_trait(param)) .map(|param| { let param: GenericParamDef = param.clean(cx); match param.kind { GenericParamDefKind::Lifetime => unreachable!(), GenericParamDefKind::Type { did, ref bounds, .. } => { cx.impl_trait_bounds.borrow_mut().insert(did.into(), bounds.clone()); } GenericParamDefKind::Const { .. } => unreachable!(), } param }) .collect::>(); let mut params = Vec::with_capacity(self.params.len()); for p in self.params.iter().filter(|p| !is_impl_trait(p)) { let p = p.clean(cx); params.push(p); } params.extend(impl_trait_params); let mut generics = Generics { params, where_predicates: self.where_clause.predicates.clean(cx), }; // Some duplicates are generated for ?Sized bounds between type params and where // predicates. The point in here is to move the bounds definitions from type params // to where predicates when such cases occur. for where_pred in &mut generics.where_predicates { match *where_pred { WherePredicate::BoundPredicate { ty: Generic(ref name), ref mut bounds } => { if bounds.is_empty() { for param in &mut generics.params { match param.kind { GenericParamDefKind::Lifetime => {} GenericParamDefKind::Type { bounds: ref mut ty_bounds, .. } => { if ¶m.name == name { mem::swap(bounds, ty_bounds); break } } GenericParamDefKind::Const { .. } => {} } } } } _ => continue, } } generics } } impl<'a, 'tcx> Clean for (&'a ty::Generics, ty::GenericPredicates<'tcx>) { fn clean(&self, cx: &DocContext<'_>) -> Generics { use self::WherePredicate as WP; use std::collections::BTreeMap; let (gens, preds) = *self; // Don't populate `cx.impl_trait_bounds` before `clean`ning `where` clauses, // since `Clean for ty::Predicate` would consume them. let mut impl_trait = BTreeMap::>::default(); // Bounds in the type_params and lifetimes fields are repeated in the // predicates field (see rustc_typeck::collect::ty_generics), so remove // them. let stripped_typarams = gens.params.iter() .filter_map(|param| match param.kind { ty::GenericParamDefKind::Lifetime => None, ty::GenericParamDefKind::Type { synthetic, .. } => { if param.name == kw::SelfUpper { assert_eq!(param.index, 0); return None; } if synthetic == Some(hir::SyntheticTyParamKind::ImplTrait) { impl_trait.insert(param.index.into(), vec![]); return None; } Some(param.clean(cx)) } ty::GenericParamDefKind::Const { .. } => None, }).collect::>(); // param index -> [(DefId of trait, associated type name, type)] let mut impl_trait_proj = FxHashMap::)>>::default(); let where_predicates = preds.predicates.iter() .flat_map(|(p, _)| { let mut projection = None; let param_idx = (|| { if let Some(trait_ref) = p.to_opt_poly_trait_ref() { if let ty::Param(param) = trait_ref.self_ty().kind { return Some(param.index); } } else if let Some(outlives) = p.to_opt_type_outlives() { if let ty::Param(param) = outlives.skip_binder().0.kind { return Some(param.index); } } else if let ty::Predicate::Projection(p) = p { if let ty::Param(param) = p.skip_binder().projection_ty.self_ty().kind { projection = Some(p); return Some(param.index); } } None })(); if let Some(param_idx) = param_idx { if let Some(b) = impl_trait.get_mut(¶m_idx.into()) { let p = p.clean(cx)?; b.extend( p.get_bounds() .into_iter() .flatten() .cloned() .filter(|b| !b.is_sized_bound(cx)) ); let proj = projection .map(|p| (p.skip_binder().projection_ty.clean(cx), p.skip_binder().ty)); if let Some(((_, trait_did, name), rhs)) = proj.as_ref().and_then(|(lhs, rhs)| Some((lhs.projection()?, rhs))) { impl_trait_proj .entry(param_idx) .or_default() .push((trait_did, name.to_string(), rhs)); } return None; } } Some(p) }) .collect::>(); for (param, mut bounds) in impl_trait { // Move trait bounds to the front. bounds.sort_by_key(|b| if let GenericBound::TraitBound(..) = b { false } else { true }); if let crate::core::ImplTraitParam::ParamIndex(idx) = param { if let Some(proj) = impl_trait_proj.remove(&idx) { for (trait_did, name, rhs) in proj { simplify::merge_bounds( cx, &mut bounds, trait_did, &name, &rhs.clean(cx), ); } } } else { unreachable!(); } cx.impl_trait_bounds.borrow_mut().insert(param, bounds); } // Now that `cx.impl_trait_bounds` is populated, we can process // remaining predicates which could contain `impl Trait`. let mut where_predicates = where_predicates .into_iter() .flat_map(|p| p.clean(cx)) .collect::>(); // Type parameters and have a Sized bound by default unless removed with // ?Sized. Scan through the predicates and mark any type parameter with // a Sized bound, removing the bounds as we find them. // // Note that associated types also have a sized bound by default, but we // don't actually know the set of associated types right here so that's // handled in cleaning associated types let mut sized_params = FxHashSet::default(); where_predicates.retain(|pred| { match *pred { WP::BoundPredicate { ty: Generic(ref g), ref bounds } => { if bounds.iter().any(|b| b.is_sized_bound(cx)) { sized_params.insert(g.clone()); false } else { true } } _ => true, } }); // Run through the type parameters again and insert a ?Sized // unbound for any we didn't find to be Sized. for tp in &stripped_typarams { if !sized_params.contains(&tp.name) { where_predicates.push(WP::BoundPredicate { ty: Type::Generic(tp.name.clone()), bounds: vec![GenericBound::maybe_sized(cx)], }) } } // It would be nice to collect all of the bounds on a type and recombine // them if possible, to avoid e.g., `where T: Foo, T: Bar, T: Sized, T: 'a` // and instead see `where T: Foo + Bar + Sized + 'a` Generics { params: gens.params .iter() .flat_map(|param| match param.kind { ty::GenericParamDefKind::Lifetime => Some(param.clean(cx)), ty::GenericParamDefKind::Type { .. } => None, ty::GenericParamDefKind::Const { .. } => Some(param.clean(cx)), }).chain(simplify::ty_params(stripped_typarams).into_iter()) .collect(), where_predicates: simplify::where_clauses(cx, where_predicates), } } } impl<'a> Clean for (&'a hir::FnSig, &'a hir::Generics, hir::BodyId, Option) { fn clean(&self, cx: &DocContext<'_>) -> Method { let (generics, decl) = enter_impl_trait(cx, || { (self.1.clean(cx), (&*self.0.decl, self.2).clean(cx)) }); let (all_types, ret_types) = get_all_types(&generics, &decl, cx); Method { decl, generics, header: self.0.header, defaultness: self.3, all_types, ret_types, } } } impl Clean for doctree::Function<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let (generics, decl) = enter_impl_trait(cx, || { (self.generics.clean(cx), (self.decl, self.body).clean(cx)) }); let did = cx.tcx.hir().local_def_id(self.id); let constness = if cx.tcx.is_min_const_fn(did) { hir::Constness::Const } else { hir::Constness::NotConst }; let (all_types, ret_types) = get_all_types(&generics, &decl, cx); Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), def_id: did, inner: FunctionItem(Function { decl, generics, header: hir::FnHeader { constness, ..self.header }, all_types, ret_types, }), } } } impl<'a> Clean for (&'a [hir::Ty], &'a [ast::Ident]) { fn clean(&self, cx: &DocContext<'_>) -> Arguments { Arguments { values: self.0.iter().enumerate().map(|(i, ty)| { let mut name = self.1.get(i).map(|ident| ident.to_string()) .unwrap_or(String::new()); if name.is_empty() { name = "_".to_string(); } Argument { name, type_: ty.clean(cx), } }).collect() } } } impl<'a> Clean for (&'a [hir::Ty], hir::BodyId) { fn clean(&self, cx: &DocContext<'_>) -> Arguments { let body = cx.tcx.hir().body(self.1); Arguments { values: self.0.iter().enumerate().map(|(i, ty)| { Argument { name: name_from_pat(&body.params[i].pat), type_: ty.clean(cx), } }).collect() } } } impl<'a, A: Copy> Clean for (&'a hir::FnDecl, A) where (&'a [hir::Ty], A): Clean { fn clean(&self, cx: &DocContext<'_>) -> FnDecl { FnDecl { inputs: (&self.0.inputs[..], self.1).clean(cx), output: self.0.output.clean(cx), c_variadic: self.0.c_variadic, attrs: Attributes::default(), } } } impl<'tcx> Clean for (DefId, ty::PolyFnSig<'tcx>) { fn clean(&self, cx: &DocContext<'_>) -> FnDecl { let (did, sig) = *self; let mut names = if cx.tcx.hir().as_local_hir_id(did).is_some() { vec![].into_iter() } else { cx.tcx.fn_arg_names(did).into_iter() }; FnDecl { output: Return(sig.skip_binder().output().clean(cx)), attrs: Attributes::default(), c_variadic: sig.skip_binder().c_variadic, inputs: Arguments { values: sig.skip_binder().inputs().iter().map(|t| { Argument { type_: t.clean(cx), name: names.next().map_or(String::new(), |name| name.to_string()), } }).collect(), }, } } } impl Clean for hir::FunctionRetTy { fn clean(&self, cx: &DocContext<'_>) -> FunctionRetTy { match *self { hir::Return(ref typ) => Return(typ.clean(cx)), hir::DefaultReturn(..) => DefaultReturn, } } } impl Clean for doctree::Trait<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let attrs = self.attrs.clean(cx); let is_spotlight = attrs.has_doc_flag(sym::spotlight); Item { name: Some(self.name.clean(cx)), attrs, source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: TraitItem(Trait { auto: self.is_auto.clean(cx), unsafety: self.unsafety, items: self.items.iter().map(|ti| ti.clean(cx)).collect(), generics: self.generics.clean(cx), bounds: self.bounds.clean(cx), is_spotlight, is_auto: self.is_auto.clean(cx), }), } } } impl Clean for doctree::TraitAlias<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let attrs = self.attrs.clean(cx); Item { name: Some(self.name.clean(cx)), attrs, source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: TraitAliasItem(TraitAlias { generics: self.generics.clean(cx), bounds: self.bounds.clean(cx), }), } } } impl Clean for hir::IsAuto { fn clean(&self, _: &DocContext<'_>) -> bool { match *self { hir::IsAuto::Yes => true, hir::IsAuto::No => false, } } } impl Clean for hir::TraitRef { fn clean(&self, cx: &DocContext<'_>) -> Type { resolve_type(cx, self.path.clean(cx), self.hir_ref_id) } } impl Clean for hir::PolyTraitRef { fn clean(&self, cx: &DocContext<'_>) -> PolyTrait { PolyTrait { trait_: self.trait_ref.clean(cx), generic_params: self.bound_generic_params.clean(cx) } } } impl Clean for hir::TraitItem { fn clean(&self, cx: &DocContext<'_>) -> Item { let inner = match self.kind { hir::TraitItemKind::Const(ref ty, default) => { AssocConstItem(ty.clean(cx), default.map(|e| print_const_expr(cx, e))) } hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) => { MethodItem((sig, &self.generics, body, None).clean(cx)) } hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Required(ref names)) => { let (generics, decl) = enter_impl_trait(cx, || { (self.generics.clean(cx), (&*sig.decl, &names[..]).clean(cx)) }); let (all_types, ret_types) = get_all_types(&generics, &decl, cx); TyMethodItem(TyMethod { header: sig.header, decl, generics, all_types, ret_types, }) } hir::TraitItemKind::Type(ref bounds, ref default) => { AssocTypeItem(bounds.clean(cx), default.clean(cx)) } }; let local_did = cx.tcx.hir().local_def_id(self.hir_id); Item { name: Some(self.ident.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.span.clean(cx), def_id: local_did, visibility: Visibility::Inherited, stability: get_stability(cx, local_did), deprecation: get_deprecation(cx, local_did), inner, } } } impl Clean for hir::ImplItem { fn clean(&self, cx: &DocContext<'_>) -> Item { let inner = match self.kind { hir::ImplItemKind::Const(ref ty, expr) => { AssocConstItem(ty.clean(cx), Some(print_const_expr(cx, expr))) } hir::ImplItemKind::Method(ref sig, body) => { MethodItem((sig, &self.generics, body, Some(self.defaultness)).clean(cx)) } hir::ImplItemKind::TyAlias(ref ty) => TypedefItem(Typedef { type_: ty.clean(cx), generics: Generics::default(), }, true), hir::ImplItemKind::OpaqueTy(ref bounds) => OpaqueTyItem(OpaqueTy { bounds: bounds.clean(cx), generics: Generics::default(), }, true), }; let local_did = cx.tcx.hir().local_def_id(self.hir_id); Item { name: Some(self.ident.name.clean(cx)), source: self.span.clean(cx), attrs: self.attrs.clean(cx), def_id: local_did, visibility: self.vis.clean(cx), stability: get_stability(cx, local_did), deprecation: get_deprecation(cx, local_did), inner, } } } impl Clean for ty::AssocItem { fn clean(&self, cx: &DocContext<'_>) -> Item { let inner = match self.kind { ty::AssocKind::Const => { let ty = cx.tcx.type_of(self.def_id); let default = if self.defaultness.has_value() { Some(inline::print_inlined_const(cx, self.def_id)) } else { None }; AssocConstItem(ty.clean(cx), default) } ty::AssocKind::Method => { let generics = (cx.tcx.generics_of(self.def_id), cx.tcx.explicit_predicates_of(self.def_id)).clean(cx); let sig = cx.tcx.fn_sig(self.def_id); let mut decl = (self.def_id, sig).clean(cx); if self.method_has_self_argument { let self_ty = match self.container { ty::ImplContainer(def_id) => { cx.tcx.type_of(def_id) } ty::TraitContainer(_) => cx.tcx.types.self_param, }; let self_arg_ty = *sig.input(0).skip_binder(); if self_arg_ty == self_ty { decl.inputs.values[0].type_ = Generic(String::from("Self")); } else if let ty::Ref(_, ty, _) = self_arg_ty.kind { if ty == self_ty { match decl.inputs.values[0].type_ { BorrowedRef{ref mut type_, ..} => { **type_ = Generic(String::from("Self")) } _ => unreachable!(), } } } } let provided = match self.container { ty::ImplContainer(_) => true, ty::TraitContainer(_) => self.defaultness.has_value() }; let (all_types, ret_types) = get_all_types(&generics, &decl, cx); if provided { let constness = if cx.tcx.is_min_const_fn(self.def_id) { hir::Constness::Const } else { hir::Constness::NotConst }; let asyncness = cx.tcx.asyncness(self.def_id); let defaultness = match self.container { ty::ImplContainer(_) => Some(self.defaultness), ty::TraitContainer(_) => None, }; MethodItem(Method { generics, decl, header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness, }, defaultness, all_types, ret_types, }) } else { TyMethodItem(TyMethod { generics, decl, header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness: hir::Constness::NotConst, asyncness: hir::IsAsync::NotAsync, }, all_types, ret_types, }) } } ty::AssocKind::Type => { let my_name = self.ident.name.clean(cx); if let ty::TraitContainer(did) = self.container { // When loading a cross-crate associated type, the bounds for this type // are actually located on the trait/impl itself, so we need to load // all of the generics from there and then look for bounds that are // applied to this associated type in question. let predicates = cx.tcx.explicit_predicates_of(did); let generics = (cx.tcx.generics_of(did), predicates).clean(cx); let mut bounds = generics.where_predicates.iter().filter_map(|pred| { let (name, self_type, trait_, bounds) = match *pred { WherePredicate::BoundPredicate { ty: QPath { ref name, ref self_type, ref trait_ }, ref bounds } => (name, self_type, trait_, bounds), _ => return None, }; if *name != my_name { return None } match **trait_ { ResolvedPath { did, .. } if did == self.container.id() => {} _ => return None, } match **self_type { Generic(ref s) if *s == "Self" => {} _ => return None, } Some(bounds) }).flat_map(|i| i.iter().cloned()).collect::>(); // Our Sized/?Sized bound didn't get handled when creating the generics // because we didn't actually get our whole set of bounds until just now // (some of them may have come from the trait). If we do have a sized // bound, we remove it, and if we don't then we add the `?Sized` bound // at the end. match bounds.iter().position(|b| b.is_sized_bound(cx)) { Some(i) => { bounds.remove(i); } None => bounds.push(GenericBound::maybe_sized(cx)), } let ty = if self.defaultness.has_value() { Some(cx.tcx.type_of(self.def_id)) } else { None }; AssocTypeItem(bounds, ty.clean(cx)) } else { TypedefItem(Typedef { type_: cx.tcx.type_of(self.def_id).clean(cx), generics: Generics { params: Vec::new(), where_predicates: Vec::new(), }, }, true) } } ty::AssocKind::OpaqueTy => unimplemented!(), }; let visibility = match self.container { ty::ImplContainer(_) => self.vis.clean(cx), ty::TraitContainer(_) => Inherited, }; Item { name: Some(self.ident.name.clean(cx)), visibility, stability: get_stability(cx, self.def_id), deprecation: get_deprecation(cx, self.def_id), def_id: self.def_id, attrs: inline::load_attrs(cx, self.def_id).clean(cx), source: cx.tcx.def_span(self.def_id).clean(cx), inner, } } } impl Clean for hir::Ty { fn clean(&self, cx: &DocContext<'_>) -> Type { use rustc::hir::*; match self.kind { TyKind::Never => Never, TyKind::Ptr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)), TyKind::Rptr(ref l, ref m) => { let lifetime = if l.is_elided() { None } else { Some(l.clean(cx)) }; BorrowedRef {lifetime, mutability: m.mutbl.clean(cx), type_: box m.ty.clean(cx)} } TyKind::Slice(ref ty) => Slice(box ty.clean(cx)), TyKind::Array(ref ty, ref length) => { let def_id = cx.tcx.hir().local_def_id(length.hir_id); let param_env = cx.tcx.param_env(def_id); let substs = InternalSubsts::identity_for_item(cx.tcx, def_id); let cid = GlobalId { instance: ty::Instance::new(def_id, substs), promoted: None }; let length = match cx.tcx.const_eval(param_env.and(cid)) { Ok(length) => print_const(cx, length), Err(_) => cx.sess() .source_map() .span_to_snippet(cx.tcx.def_span(def_id)) .unwrap_or_else(|_| "_".to_string()), }; Array(box ty.clean(cx), length) }, TyKind::Tup(ref tys) => Tuple(tys.clean(cx)), TyKind::Def(item_id, _) => { let item = cx.tcx.hir().expect_item(item_id.id); if let hir::ItemKind::OpaqueTy(ref ty) = item.kind { ImplTrait(ty.bounds.clean(cx)) } else { unreachable!() } } TyKind::Path(hir::QPath::Resolved(None, ref path)) => { if let Res::Def(DefKind::TyParam, did) = path.res { if let Some(new_ty) = cx.ty_substs.borrow().get(&did).cloned() { return new_ty; } if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&did.into()) { return ImplTrait(bounds); } } let mut alias = None; if let Res::Def(DefKind::TyAlias, def_id) = path.res { // Substitute private type aliases if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(def_id) { if !cx.renderinfo.borrow().access_levels.is_exported(def_id) { alias = Some(&cx.tcx.hir().expect_item(hir_id).kind); } } }; if let Some(&hir::ItemKind::TyAlias(ref ty, ref generics)) = alias { let provided_params = &path.segments.last().expect("segments were empty"); let mut ty_substs = FxHashMap::default(); let mut lt_substs = FxHashMap::default(); let mut ct_substs = FxHashMap::default(); let generic_args = provided_params.generic_args(); { let mut indices: GenericParamCount = Default::default(); for param in generics.params.iter() { match param.kind { hir::GenericParamKind::Lifetime { .. } => { let mut j = 0; let lifetime = generic_args.args.iter().find_map(|arg| { match arg { hir::GenericArg::Lifetime(lt) => { if indices.lifetimes == j { return Some(lt); } j += 1; None } _ => None, } }); if let Some(lt) = lifetime.cloned() { if !lt.is_elided() { let lt_def_id = cx.tcx.hir().local_def_id(param.hir_id); lt_substs.insert(lt_def_id, lt.clean(cx)); } } indices.lifetimes += 1; } hir::GenericParamKind::Type { ref default, .. } => { let ty_param_def_id = cx.tcx.hir().local_def_id(param.hir_id); let mut j = 0; let type_ = generic_args.args.iter().find_map(|arg| { match arg { hir::GenericArg::Type(ty) => { if indices.types == j { return Some(ty); } j += 1; None } _ => None, } }); if let Some(ty) = type_ { ty_substs.insert(ty_param_def_id, ty.clean(cx)); } else if let Some(default) = default.clone() { ty_substs.insert(ty_param_def_id, default.clean(cx)); } indices.types += 1; } hir::GenericParamKind::Const { .. } => { let const_param_def_id = cx.tcx.hir().local_def_id(param.hir_id); let mut j = 0; let const_ = generic_args.args.iter().find_map(|arg| { match arg { hir::GenericArg::Const(ct) => { if indices.consts == j { return Some(ct); } j += 1; None } _ => None, } }); if let Some(ct) = const_ { ct_substs.insert(const_param_def_id, ct.clean(cx)); } // FIXME(const_generics:defaults) indices.consts += 1; } } } } return cx.enter_alias(ty_substs, lt_substs, ct_substs, || ty.clean(cx)); } resolve_type(cx, path.clean(cx), self.hir_id) } TyKind::Path(hir::QPath::Resolved(Some(ref qself), ref p)) => { let segments = if p.is_global() { &p.segments[1..] } else { &p.segments }; let trait_segments = &segments[..segments.len() - 1]; let trait_path = self::Path { global: p.is_global(), res: Res::Def( DefKind::Trait, cx.tcx.associated_item(p.res.def_id()).container.id(), ), segments: trait_segments.clean(cx), }; Type::QPath { name: p.segments.last().expect("segments were empty").ident.name.clean(cx), self_type: box qself.clean(cx), trait_: box resolve_type(cx, trait_path, self.hir_id) } } TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => { let mut res = Res::Err; let ty = hir_ty_to_ty(cx.tcx, self); if let ty::Projection(proj) = ty.kind { res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id); } let trait_path = hir::Path { span: self.span, res, segments: vec![].into(), }; Type::QPath { name: segment.ident.name.clean(cx), self_type: box qself.clean(cx), trait_: box resolve_type(cx, trait_path.clean(cx), self.hir_id) } } TyKind::TraitObject(ref bounds, ref lifetime) => { match bounds[0].clean(cx).trait_ { ResolvedPath { path, param_names: None, did, is_generic } => { let mut bounds: Vec = bounds[1..].iter().map(|bound| { self::GenericBound::TraitBound(bound.clean(cx), hir::TraitBoundModifier::None) }).collect(); if !lifetime.is_elided() { bounds.push(self::GenericBound::Outlives(lifetime.clean(cx))); } ResolvedPath { path, param_names: Some(bounds), did, is_generic, } } _ => Infer, // shouldn't happen } } TyKind::BareFn(ref barefn) => BareFunction(box barefn.clean(cx)), TyKind::Infer | TyKind::Err => Infer, TyKind::Typeof(..) => panic!("unimplemented type {:?}", self.kind), } } } impl<'tcx> Clean for Ty<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> Type { debug!("cleaning type: {:?}", self); match self.kind { ty::Never => Never, ty::Bool => Primitive(PrimitiveType::Bool), ty::Char => Primitive(PrimitiveType::Char), ty::Int(int_ty) => Primitive(int_ty.into()), ty::Uint(uint_ty) => Primitive(uint_ty.into()), ty::Float(float_ty) => Primitive(float_ty.into()), ty::Str => Primitive(PrimitiveType::Str), ty::Slice(ty) => Slice(box ty.clean(cx)), ty::Array(ty, n) => { let mut n = cx.tcx.lift(&n).expect("array lift failed"); if let ty::ConstKind::Unevaluated(def_id, substs) = n.val { let param_env = cx.tcx.param_env(def_id); let cid = GlobalId { instance: ty::Instance::new(def_id, substs), promoted: None }; if let Ok(new_n) = cx.tcx.const_eval(param_env.and(cid)) { n = new_n; } }; let n = print_const(cx, n); Array(box ty.clean(cx), n) } ty::RawPtr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)), ty::Ref(r, ty, mutbl) => BorrowedRef { lifetime: r.clean(cx), mutability: mutbl.clean(cx), type_: box ty.clean(cx), }, ty::FnDef(..) | ty::FnPtr(_) => { let ty = cx.tcx.lift(self).expect("FnPtr lift failed"); let sig = ty.fn_sig(cx.tcx); let local_def_id = cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID); BareFunction(box BareFunctionDecl { unsafety: sig.unsafety(), generic_params: Vec::new(), decl: (local_def_id, sig).clean(cx), abi: sig.abi(), }) } ty::Adt(def, substs) => { let did = def.did; let kind = match def.adt_kind() { AdtKind::Struct => TypeKind::Struct, AdtKind::Union => TypeKind::Union, AdtKind::Enum => TypeKind::Enum, }; inline::record_extern_fqn(cx, did, kind); let path = external_path(cx, cx.tcx.item_name(did), None, false, vec![], substs); ResolvedPath { path, param_names: None, did, is_generic: false, } } ty::Foreign(did) => { inline::record_extern_fqn(cx, did, TypeKind::Foreign); let path = external_path(cx, cx.tcx.item_name(did), None, false, vec![], InternalSubsts::empty()); ResolvedPath { path, param_names: None, did, is_generic: false, } } ty::Dynamic(ref obj, ref reg) => { // HACK: pick the first `did` as the `did` of the trait object. Someone // might want to implement "native" support for marker-trait-only // trait objects. let mut dids = obj.principal_def_id().into_iter().chain(obj.auto_traits()); let did = dids.next().unwrap_or_else(|| { panic!("found trait object `{:?}` with no traits?", self) }); let substs = match obj.principal() { Some(principal) => principal.skip_binder().substs, // marker traits have no substs. _ => cx.tcx.intern_substs(&[]) }; inline::record_extern_fqn(cx, did, TypeKind::Trait); let mut param_names = vec![]; reg.clean(cx).map(|b| param_names.push(GenericBound::Outlives(b))); for did in dids { let empty = cx.tcx.intern_substs(&[]); let path = external_path(cx, cx.tcx.item_name(did), Some(did), false, vec![], empty); inline::record_extern_fqn(cx, did, TypeKind::Trait); let bound = GenericBound::TraitBound(PolyTrait { trait_: ResolvedPath { path, param_names: None, did, is_generic: false, }, generic_params: Vec::new(), }, hir::TraitBoundModifier::None); param_names.push(bound); } let mut bindings = vec![]; for pb in obj.projection_bounds() { bindings.push(TypeBinding { name: cx.tcx.associated_item(pb.item_def_id()).ident.name.clean(cx), kind: TypeBindingKind::Equality { ty: pb.skip_binder().ty.clean(cx) }, }); } let path = external_path(cx, cx.tcx.item_name(did), Some(did), false, bindings, substs); ResolvedPath { path, param_names: Some(param_names), did, is_generic: false, } } ty::Tuple(ref t) => { Tuple(t.iter().map(|t| t.expect_ty()).collect::>().clean(cx)) } ty::Projection(ref data) => data.clean(cx), ty::Param(ref p) => { if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&p.index.into()) { ImplTrait(bounds) } else { Generic(p.name.to_string()) } } ty::Opaque(def_id, substs) => { // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`, // by looking up the projections associated with the def_id. let predicates_of = cx.tcx.explicit_predicates_of(def_id); let substs = cx.tcx.lift(&substs).expect("Opaque lift failed"); let bounds = predicates_of.instantiate(cx.tcx, substs); let mut regions = vec![]; let mut has_sized = false; let mut bounds = bounds.predicates.iter().filter_map(|predicate| { let trait_ref = if let Some(tr) = predicate.to_opt_poly_trait_ref() { tr } else if let ty::Predicate::TypeOutlives(pred) = *predicate { // these should turn up at the end pred.skip_binder().1.clean(cx).map(|r| { regions.push(GenericBound::Outlives(r)) }); return None; } else { return None; }; if let Some(sized) = cx.tcx.lang_items().sized_trait() { if trait_ref.def_id() == sized { has_sized = true; return None; } } let bounds = bounds.predicates.iter().filter_map(|pred| if let ty::Predicate::Projection(proj) = *pred { let proj = proj.skip_binder(); if proj.projection_ty.trait_ref(cx.tcx) == *trait_ref.skip_binder() { Some(TypeBinding { name: cx.tcx.associated_item(proj.projection_ty.item_def_id) .ident.name.clean(cx), kind: TypeBindingKind::Equality { ty: proj.ty.clean(cx), }, }) } else { None } } else { None } ).collect(); Some((trait_ref.skip_binder(), bounds).clean(cx)) }).collect::>(); bounds.extend(regions); if !has_sized && !bounds.is_empty() { bounds.insert(0, GenericBound::maybe_sized(cx)); } ImplTrait(bounds) } ty::Closure(..) | ty::Generator(..) => Tuple(vec![]), // FIXME(pcwalton) ty::Bound(..) => panic!("Bound"), ty::Placeholder(..) => panic!("Placeholder"), ty::UnnormalizedProjection(..) => panic!("UnnormalizedProjection"), ty::GeneratorWitness(..) => panic!("GeneratorWitness"), ty::Infer(..) => panic!("Infer"), ty::Error => panic!("Error"), } } } impl<'tcx> Clean for ty::Const<'tcx> { fn clean(&self, cx: &DocContext<'_>) -> Constant { Constant { type_: self.ty.clean(cx), expr: format!("{}", self), } } } impl Clean for hir::StructField { fn clean(&self, cx: &DocContext<'_>) -> Item { let local_did = cx.tcx.hir().local_def_id(self.hir_id); Item { name: Some(self.ident.name).clean(cx), attrs: self.attrs.clean(cx), source: self.span.clean(cx), visibility: self.vis.clean(cx), stability: get_stability(cx, local_did), deprecation: get_deprecation(cx, local_did), def_id: local_did, inner: StructFieldItem(self.ty.clean(cx)), } } } impl Clean for ty::FieldDef { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.ident.name).clean(cx), attrs: cx.tcx.get_attrs(self.did).clean(cx), source: cx.tcx.def_span(self.did).clean(cx), visibility: self.vis.clean(cx), stability: get_stability(cx, self.did), deprecation: get_deprecation(cx, self.did), def_id: self.did, inner: StructFieldItem(cx.tcx.type_of(self.did).clean(cx)), } } } impl Clean for hir::Visibility { fn clean(&self, cx: &DocContext<'_>) -> Visibility { match self.node { hir::VisibilityKind::Public => Visibility::Public, hir::VisibilityKind::Inherited => Visibility::Inherited, hir::VisibilityKind::Crate(_) => Visibility::Crate, hir::VisibilityKind::Restricted { ref path, .. } => { let path = path.clean(cx); let did = register_res(cx, path.res); Visibility::Restricted(did, path) } } } } impl Clean for ty::Visibility { fn clean(&self, _: &DocContext<'_>) -> Visibility { if *self == ty::Visibility::Public { Public } else { Inherited } } } impl Clean for doctree::Struct<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: StructItem(Struct { struct_type: self.struct_type, generics: self.generics.clean(cx), fields: self.fields.clean(cx), fields_stripped: false, }), } } } impl Clean for doctree::Union<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: UnionItem(Union { struct_type: self.struct_type, generics: self.generics.clean(cx), fields: self.fields.clean(cx), fields_stripped: false, }), } } } impl Clean for ::rustc::hir::VariantData { fn clean(&self, cx: &DocContext<'_>) -> VariantStruct { VariantStruct { struct_type: doctree::struct_type_from_def(self), fields: self.fields().iter().map(|x| x.clean(cx)).collect(), fields_stripped: false, } } } impl Clean for doctree::Enum<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: EnumItem(Enum { variants: self.variants.iter().map(|v| v.clean(cx)).collect(), generics: self.generics.clean(cx), variants_stripped: false, }), } } } impl Clean for doctree::Variant<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: Inherited, stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), inner: VariantItem(Variant { kind: self.def.clean(cx), }), } } } impl Clean for ty::VariantDef { fn clean(&self, cx: &DocContext<'_>) -> Item { let kind = match self.ctor_kind { CtorKind::Const => VariantKind::CLike, CtorKind::Fn => { VariantKind::Tuple( self.fields.iter().map(|f| cx.tcx.type_of(f.did).clean(cx)).collect() ) } CtorKind::Fictive => { VariantKind::Struct(VariantStruct { struct_type: doctree::Plain, fields_stripped: false, fields: self.fields.iter().map(|field| { Item { source: cx.tcx.def_span(field.did).clean(cx), name: Some(field.ident.name.clean(cx)), attrs: cx.tcx.get_attrs(field.did).clean(cx), visibility: field.vis.clean(cx), def_id: field.did, stability: get_stability(cx, field.did), deprecation: get_deprecation(cx, field.did), inner: StructFieldItem(cx.tcx.type_of(field.did).clean(cx)) } }).collect() }) } }; Item { name: Some(self.ident.clean(cx)), attrs: inline::load_attrs(cx, self.def_id).clean(cx), source: cx.tcx.def_span(self.def_id).clean(cx), visibility: Inherited, def_id: self.def_id, inner: VariantItem(Variant { kind }), stability: get_stability(cx, self.def_id), deprecation: get_deprecation(cx, self.def_id), } } } impl Clean for hir::VariantData { fn clean(&self, cx: &DocContext<'_>) -> VariantKind { match self { hir::VariantData::Struct(..) => VariantKind::Struct(self.clean(cx)), hir::VariantData::Tuple(..) => VariantKind::Tuple(self.fields().iter().map(|x| x.ty.clean(cx)).collect()), hir::VariantData::Unit(..) => VariantKind::CLike, } } } impl Clean for syntax_pos::Span { fn clean(&self, cx: &DocContext<'_>) -> Span { if self.is_dummy() { return Span::empty(); } let cm = cx.sess().source_map(); let filename = cm.span_to_filename(*self); let lo = cm.lookup_char_pos(self.lo()); let hi = cm.lookup_char_pos(self.hi()); Span { filename, loline: lo.line, locol: lo.col.to_usize(), hiline: hi.line, hicol: hi.col.to_usize(), original: *self, } } } impl Clean for hir::Path { fn clean(&self, cx: &DocContext<'_>) -> Path { Path { global: self.is_global(), res: self.res, segments: if self.is_global() { &self.segments[1..] } else { &self.segments }.clean(cx), } } } impl Clean for hir::GenericArgs { fn clean(&self, cx: &DocContext<'_>) -> GenericArgs { if self.parenthesized { let output = self.bindings[0].ty().clean(cx); GenericArgs::Parenthesized { inputs: self.inputs().clean(cx), output: if output != Type::Tuple(Vec::new()) { Some(output) } else { None } } } else { let elide_lifetimes = self.args.iter().all(|arg| match arg { hir::GenericArg::Lifetime(lt) => lt.is_elided(), _ => true, }); GenericArgs::AngleBracketed { args: self.args.iter().filter_map(|arg| match arg { hir::GenericArg::Lifetime(lt) if !elide_lifetimes => { Some(GenericArg::Lifetime(lt.clean(cx))) } hir::GenericArg::Lifetime(_) => None, hir::GenericArg::Type(ty) => Some(GenericArg::Type(ty.clean(cx))), hir::GenericArg::Const(ct) => Some(GenericArg::Const(ct.clean(cx))), }).collect(), bindings: self.bindings.clean(cx), } } } } impl Clean for hir::PathSegment { fn clean(&self, cx: &DocContext<'_>) -> PathSegment { PathSegment { name: self.ident.name.clean(cx), args: self.generic_args().clean(cx), } } } impl Clean for Ident { #[inline] fn clean(&self, cx: &DocContext<'_>) -> String { self.name.clean(cx) } } impl Clean for ast::Name { #[inline] fn clean(&self, _: &DocContext<'_>) -> String { self.to_string() } } impl Clean for doctree::Typedef<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: TypedefItem(Typedef { type_: self.ty.clean(cx), generics: self.gen.clean(cx), }, false), } } } impl Clean for doctree::OpaqueTy<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: OpaqueTyItem(OpaqueTy { bounds: self.opaque_ty.bounds.clean(cx), generics: self.opaque_ty.generics.clean(cx), }, false), } } } impl Clean for hir::BareFnTy { fn clean(&self, cx: &DocContext<'_>) -> BareFunctionDecl { let (generic_params, decl) = enter_impl_trait(cx, || { (self.generic_params.clean(cx), (&*self.decl, &self.param_names[..]).clean(cx)) }); BareFunctionDecl { unsafety: self.unsafety, abi: self.abi, decl, generic_params, } } } impl Clean for doctree::Static<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { debug!("cleaning static {}: {:?}", self.name.clean(cx), self); Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: StaticItem(Static { type_: self.type_.clean(cx), mutability: self.mutability.clean(cx), expr: print_const_expr(cx, self.expr), }), } } } impl Clean for doctree::Constant<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: ConstantItem(Constant { type_: self.type_.clean(cx), expr: print_const_expr(cx, self.expr), }), } } } impl Clean for hir::Mutability { fn clean(&self, _: &DocContext<'_>) -> Mutability { match self { &hir::Mutability::Mutable => Mutable, &hir::Mutability::Immutable => Immutable, } } } impl Clean for ty::ImplPolarity { fn clean(&self, _: &DocContext<'_>) -> ImplPolarity { match self { &ty::ImplPolarity::Positive | // FIXME: do we want to do something else here? &ty::ImplPolarity::Reservation => ImplPolarity::Positive, &ty::ImplPolarity::Negative => ImplPolarity::Negative, } } } impl Clean> for doctree::Impl<'_> { fn clean(&self, cx: &DocContext<'_>) -> Vec { let mut ret = Vec::new(); let trait_ = self.trait_.clean(cx); let items = self.items.iter().map(|ii| ii.clean(cx)).collect::>(); let def_id = cx.tcx.hir().local_def_id(self.id); // If this impl block is an implementation of the Deref trait, then we // need to try inlining the target's inherent impl blocks as well. if trait_.def_id() == cx.tcx.lang_items().deref_trait() { build_deref_target_impls(cx, &items, &mut ret); } let provided = trait_.def_id().map(|did| { cx.tcx.provided_trait_methods(did) .into_iter() .map(|meth| meth.ident.to_string()) .collect() }).unwrap_or_default(); ret.push(Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id, visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner: ImplItem(Impl { unsafety: self.unsafety, generics: self.generics.clean(cx), provided_trait_methods: provided, trait_, for_: self.for_.clean(cx), items, polarity: Some(cx.tcx.impl_polarity(def_id).clean(cx)), synthetic: false, blanket_impl: None, }) }); ret } } impl Clean> for doctree::ExternCrate<'_> { fn clean(&self, cx: &DocContext<'_>) -> Vec { let please_inline = self.vis.node.is_pub() && self.attrs.iter().any(|a| { a.check_name(sym::doc) && match a.meta_item_list() { Some(l) => attr::list_contains_name(&l, sym::inline), None => false, } }); if please_inline { let mut visited = FxHashSet::default(); let res = Res::Def( DefKind::Mod, DefId { krate: self.cnum, index: CRATE_DEF_INDEX, }, ); if let Some(items) = inline::try_inline( cx, res, self.name, Some(rustc::ty::Attributes::Borrowed(self.attrs)), &mut visited ) { return items; } } vec![Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: DefId { krate: self.cnum, index: CRATE_DEF_INDEX }, visibility: self.vis.clean(cx), stability: None, deprecation: None, inner: ExternCrateItem(self.name.clean(cx), self.path.clone()) }] } } impl Clean> for doctree::Import<'_> { fn clean(&self, cx: &DocContext<'_>) -> Vec { // We consider inlining the documentation of `pub use` statements, but we // forcefully don't inline if this is not public or if the // #[doc(no_inline)] attribute is present. // Don't inline doc(hidden) imports so they can be stripped at a later stage. let mut denied = !self.vis.node.is_pub() || self.attrs.iter().any(|a| { a.check_name(sym::doc) && match a.meta_item_list() { Some(l) => attr::list_contains_name(&l, sym::no_inline) || attr::list_contains_name(&l, sym::hidden), None => false, } }); // Also check whether imports were asked to be inlined, in case we're trying to re-export a // crate in Rust 2018+ let please_inline = self.attrs.lists(sym::doc).has_word(sym::inline); let path = self.path.clean(cx); let inner = if self.glob { if !denied { let mut visited = FxHashSet::default(); if let Some(items) = inline::try_inline_glob(cx, path.res, &mut visited) { return items; } } Import::Glob(resolve_use_source(cx, path)) } else { let name = self.name; if !please_inline { match path.res { Res::Def(DefKind::Mod, did) => { if !did.is_local() && did.index == CRATE_DEF_INDEX { // if we're `pub use`ing an extern crate root, don't inline it unless we // were specifically asked for it denied = true; } } _ => {} } } if !denied { let mut visited = FxHashSet::default(); if let Some(items) = inline::try_inline( cx, path.res, name, Some(rustc::ty::Attributes::Borrowed(self.attrs)), &mut visited ) { return items; } } Import::Simple(name.clean(cx), resolve_use_source(cx, path)) }; vec![Item { name: None, attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID), visibility: self.vis.clean(cx), stability: None, deprecation: None, inner: ImportItem(inner) }] } } impl Clean for doctree::ForeignItem<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let inner = match self.kind { hir::ForeignItemKind::Fn(ref decl, ref names, ref generics) => { let abi = cx.tcx.hir().get_foreign_abi(self.id); let (generics, decl) = enter_impl_trait(cx, || { (generics.clean(cx), (&**decl, &names[..]).clean(cx)) }); let (all_types, ret_types) = get_all_types(&generics, &decl, cx); ForeignFunctionItem(Function { decl, generics, header: hir::FnHeader { unsafety: hir::Unsafety::Unsafe, abi, constness: hir::Constness::NotConst, asyncness: hir::IsAsync::NotAsync, }, all_types, ret_types, }) } hir::ForeignItemKind::Static(ref ty, mutbl) => { ForeignStaticItem(Static { type_: ty.clean(cx), mutability: mutbl.clean(cx), expr: String::new(), }) } hir::ForeignItemKind::Type => { ForeignTypeItem } }; Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), visibility: self.vis.clean(cx), stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), inner, } } } impl Clean for doctree::Macro<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { let name = self.name.clean(cx); Item { name: Some(name.clone()), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: Public, stability: cx.stability(self.hid).clean(cx), deprecation: cx.deprecation(self.hid).clean(cx), def_id: self.def_id, inner: MacroItem(Macro { source: format!("macro_rules! {} {{\n{}}}", name, self.matchers.iter().map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) }).collect::()), imported_from: self.imported_from.clean(cx), }), } } } impl Clean for doctree::ProcMacro<'_> { fn clean(&self, cx: &DocContext<'_>) -> Item { Item { name: Some(self.name.clean(cx)), attrs: self.attrs.clean(cx), source: self.whence.clean(cx), visibility: Public, stability: cx.stability(self.id).clean(cx), deprecation: cx.deprecation(self.id).clean(cx), def_id: cx.tcx.hir().local_def_id(self.id), inner: ProcMacroItem(ProcMacro { kind: self.kind, helpers: self.helpers.clean(cx), }), } } } impl Clean for attr::Stability { fn clean(&self, _: &DocContext<'_>) -> Stability { Stability { level: stability::StabilityLevel::from_attr_level(&self.level), feature: Some(self.feature.to_string()).filter(|f| !f.is_empty()), since: match self.level { attr::Stable {ref since} => since.to_string(), _ => String::new(), }, deprecation: self.rustc_depr.as_ref().map(|d| { Deprecation { note: Some(d.reason.to_string()).filter(|r| !r.is_empty()), since: Some(d.since.to_string()).filter(|d| !d.is_empty()), } }), unstable_reason: match self.level { attr::Unstable { reason: Some(ref reason), .. } => Some(reason.to_string()), _ => None, }, issue: match self.level { attr::Unstable {issue, ..} => issue, _ => None, } } } } impl<'a> Clean for &'a attr::Stability { fn clean(&self, dc: &DocContext<'_>) -> Stability { (**self).clean(dc) } } impl Clean for attr::Deprecation { fn clean(&self, _: &DocContext<'_>) -> Deprecation { Deprecation { since: self.since.map(|s| s.to_string()).filter(|s| !s.is_empty()), note: self.note.map(|n| n.to_string()).filter(|n| !n.is_empty()), } } } impl Clean for hir::TypeBinding { fn clean(&self, cx: &DocContext<'_>) -> TypeBinding { TypeBinding { name: self.ident.name.clean(cx), kind: self.kind.clean(cx), } } } impl Clean for hir::TypeBindingKind { fn clean(&self, cx: &DocContext<'_>) -> TypeBindingKind { match *self { hir::TypeBindingKind::Equality { ref ty } => TypeBindingKind::Equality { ty: ty.clean(cx), }, hir::TypeBindingKind::Constraint { ref bounds } => TypeBindingKind::Constraint { bounds: bounds.into_iter().map(|b| b.clean(cx)).collect(), }, } } } enum SimpleBound { TraitBound(Vec, Vec, Vec, hir::TraitBoundModifier), Outlives(Lifetime), } impl From for SimpleBound { fn from(bound: GenericBound) -> Self { match bound.clone() { GenericBound::Outlives(l) => SimpleBound::Outlives(l), GenericBound::TraitBound(t, mod_) => match t.trait_ { Type::ResolvedPath { path, param_names, .. } => { SimpleBound::TraitBound(path.segments, param_names .map_or_else(|| Vec::new(), |v| v.iter() .map(|p| SimpleBound::from(p.clone())) .collect()), t.generic_params, mod_) } _ => panic!("Unexpected bound {:?}", bound), } } } }