// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This module contains the "cleaned" pieces of the AST, and the functions //! that clean them. use syntax; use syntax::ast; use syntax::ast_util; use syntax::attr; use syntax::attr::{AttributeMethods, AttrMetaMethods}; use syntax::codemap::Pos; use syntax::parse::token::InternedString; use syntax::parse::token; use rustc::back::link; use rustc::driver::driver; use rustc::metadata::cstore; use rustc::metadata::csearch; use rustc::metadata::decoder; use rustc::middle::def; use rustc::middle::subst; use rustc::middle::subst::VecPerParamSpace; use rustc::middle::ty; use std::rc::Rc; use std::u32; use std::gc::Gc; use core; use doctree; use visit_ast; /// A stable identifier to the particular version of JSON output. /// Increment this when the `Crate` and related structures change. pub static SCHEMA_VERSION: &'static str = "0.8.2"; mod inline; pub trait Clean { fn clean(&self) -> T; } impl, U> Clean> for Vec { fn clean(&self) -> Vec { self.iter().map(|x| x.clean()).collect() } } impl, U> Clean> for VecPerParamSpace { fn clean(&self) -> VecPerParamSpace { self.map(|x| x.clean()) } } impl, U> Clean for Gc { fn clean(&self) -> U { (**self).clean() } } impl, U> Clean for Rc { fn clean(&self) -> U { (**self).clean() } } impl, U> Clean> for Option { fn clean(&self) -> Option { match self { &None => None, &Some(ref v) => Some(v.clean()) } } } impl, U> Clean> for syntax::owned_slice::OwnedSlice { fn clean(&self) -> Vec { self.iter().map(|x| x.clean()).collect() } } #[deriving(Clone, Encodable, Decodable)] pub struct Crate { pub name: String, pub module: Option, pub externs: Vec<(ast::CrateNum, ExternalCrate)>, pub primitives: Vec, } impl<'a> Clean for visit_ast::RustdocVisitor<'a> { fn clean(&self) -> Crate { let cx = super::ctxtkey.get().unwrap(); let mut externs = Vec::new(); cx.sess().cstore.iter_crate_data(|n, meta| { externs.push((n, meta.clean())); }); externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b)); // Figure out the name of this crate let input = driver::FileInput(cx.src.clone()); let t_outputs = driver::build_output_filenames(&input, &None, &None, self.attrs.as_slice(), cx.sess()); let id = link::find_crate_id(self.attrs.as_slice(), t_outputs.out_filestem.as_slice()); // Clean the crate, translating the entire libsyntax AST to one that is // understood by rustdoc. let mut module = self.module.clean(); // Collect all inner modules which are tagged as implementations of // primitives. // // Note that this loop only searches the top-level items of the crate, // and this is intentional. If we were to search the entire crate for an // item tagged with `#[doc(primitive)]` then we we would also have to // search the entirety of external modules for items tagged // `#[doc(primitive)]`, which is a pretty inefficient process (decoding // all that metadata unconditionally). // // In order to keep the metadata load under control, the // `#[doc(primitive)]` feature is explicitly designed to only allow the // primitive tags to show up as the top level items in a crate. // // Also note that this does not attempt to deal with modules tagged // duplicately for the same primitive. This is handled later on when // rendering by delegating everything to a hash map. let mut primitives = Vec::new(); { let m = match module.inner { ModuleItem(ref mut m) => m, _ => unreachable!(), }; let mut tmp = Vec::new(); for child in m.items.mut_iter() { let inner = match child.inner { ModuleItem(ref mut m) => m, _ => continue, }; let prim = match Primitive::find(child.attrs.as_slice()) { Some(prim) => prim, None => continue, }; primitives.push(prim); let mut i = Item { source: Span::empty(), name: Some(prim.to_url_str().to_string()), attrs: Vec::new(), visibility: None, def_id: ast_util::local_def(prim.to_node_id()), inner: PrimitiveItem(prim), }; // Push one copy to get indexed for the whole crate, and push a // another copy in the proper location which will actually get // documented. The first copy will also serve as a redirect to // the other copy. tmp.push(i.clone()); i.visibility = Some(ast::Public); i.attrs = child.attrs.clone(); inner.items.push(i); } m.items.extend(tmp.move_iter()); } Crate { name: id.name.to_string(), module: Some(module), externs: externs, primitives: primitives, } } } #[deriving(Clone, Encodable, Decodable)] pub struct ExternalCrate { pub name: String, pub attrs: Vec, pub primitives: Vec, } impl Clean for cstore::crate_metadata { fn clean(&self) -> ExternalCrate { let mut primitives = Vec::new(); let cx = super::ctxtkey.get().unwrap(); match cx.maybe_typed { core::Typed(ref tcx) => { csearch::each_top_level_item_of_crate(&tcx.sess.cstore, self.cnum, |def, _, _| { let did = match def { decoder::DlDef(def::DefMod(did)) => did, _ => return }; let attrs = inline::load_attrs(tcx, did); match Primitive::find(attrs.as_slice()) { Some(prim) => primitives.push(prim), None => {} } }); } core::NotTyped(..) => {} } ExternalCrate { name: self.name.to_string(), attrs: decoder::get_crate_attributes(self.data()).clean(), primitives: primitives, } } } /// Anything with a source location and set of attributes and, optionally, a /// name. That is, anything that can be documented. This doesn't correspond /// directly to the AST's concept of an item; it's a strict superset. #[deriving(Clone, Encodable, Decodable)] pub struct Item { /// Stringified span pub source: Span, /// Not everything has a name. E.g., impls pub name: Option, pub attrs: Vec , pub inner: ItemEnum, pub visibility: Option, pub def_id: ast::DefId, } impl Item { /// Finds the `doc` attribute as a List and returns the list of attributes /// nested inside. pub fn doc_list<'a>(&'a self) -> Option<&'a [Attribute]> { for attr in self.attrs.iter() { match *attr { List(ref x, ref list) if "doc" == x.as_slice() => { return Some(list.as_slice()); } _ => {} } } return None; } /// Finds the `doc` attribute as a NameValue and returns the corresponding /// value found. pub fn doc_value<'a>(&'a self) -> Option<&'a str> { for attr in self.attrs.iter() { match *attr { NameValue(ref x, ref v) if "doc" == x.as_slice() => { return Some(v.as_slice()); } _ => {} } } return None; } pub fn is_hidden_from_doc(&self) -> bool { match self.doc_list() { Some(ref l) => { for innerattr in l.iter() { match *innerattr { Word(ref s) if "hidden" == s.as_slice() => { return true } _ => (), } } }, None => () } return false; } pub fn is_mod(&self) -> bool { match self.inner { ModuleItem(..) => true, _ => false } } pub fn is_trait(&self) -> bool { match self.inner { TraitItem(..) => true, _ => false } } pub fn is_struct(&self) -> bool { match self.inner { StructItem(..) => true, _ => false } } pub fn is_enum(&self) -> bool { match self.inner { EnumItem(..) => true, _ => false } } pub fn is_fn(&self) -> bool { match self.inner { FunctionItem(..) => true, _ => false } } } #[deriving(Clone, Encodable, Decodable)] pub enum ItemEnum { StructItem(Struct), EnumItem(Enum), FunctionItem(Function), ModuleItem(Module), TypedefItem(Typedef), StaticItem(Static), TraitItem(Trait), ImplItem(Impl), /// `use` and `extern crate` ViewItemItem(ViewItem), /// A method signature only. Used for required methods in traits (ie, /// non-default-methods). TyMethodItem(TyMethod), /// A method with a body. MethodItem(Method), StructFieldItem(StructField), VariantItem(Variant), /// `fn`s from an extern block ForeignFunctionItem(Function), /// `static`s from an extern block ForeignStaticItem(Static), MacroItem(Macro), PrimitiveItem(Primitive), } #[deriving(Clone, Encodable, Decodable)] pub struct Module { pub items: Vec, pub is_crate: bool, } impl Clean for doctree::Module { fn clean(&self) -> Item { let name = if self.name.is_some() { self.name.unwrap().clean() } else { "".to_string() }; let mut foreigns = Vec::new(); for subforeigns in self.foreigns.clean().move_iter() { for foreign in subforeigns.move_iter() { foreigns.push(foreign) } } let items: Vec > = vec!( self.structs.clean().move_iter().collect(), self.enums.clean().move_iter().collect(), self.fns.clean().move_iter().collect(), foreigns, self.mods.clean().move_iter().collect(), self.typedefs.clean().move_iter().collect(), self.statics.clean().move_iter().collect(), self.traits.clean().move_iter().collect(), self.impls.clean().move_iter().collect(), self.view_items.clean().move_iter() .flat_map(|s| s.move_iter()).collect(), self.macros.clean().move_iter().collect() ); // determine if we should display the inner contents or // the outer `mod` item for the source code. let where = { let ctxt = super::ctxtkey.get().unwrap(); let cm = ctxt.sess().codemap(); let outer = cm.lookup_char_pos(self.where_outer.lo); let inner = cm.lookup_char_pos(self.where_inner.lo); if outer.file.start_pos == inner.file.start_pos { // mod foo { ... } self.where_outer } else { // mod foo; (and a separate FileMap for the contents) self.where_inner } }; Item { name: Some(name), attrs: self.attrs.clean(), source: where.clean(), visibility: self.vis.clean(), def_id: ast_util::local_def(self.id), inner: ModuleItem(Module { is_crate: self.is_crate, items: items.iter() .flat_map(|x| x.iter().map(|x| (*x).clone())) .collect(), }) } } } #[deriving(Clone, Encodable, Decodable)] pub enum Attribute { Word(String), List(String, Vec ), NameValue(String, String) } impl Clean for ast::MetaItem { fn clean(&self) -> Attribute { match self.node { ast::MetaWord(ref s) => Word(s.get().to_string()), ast::MetaList(ref s, ref l) => { List(s.get().to_string(), l.clean().move_iter().collect()) } ast::MetaNameValue(ref s, ref v) => { NameValue(s.get().to_string(), lit_to_str(v)) } } } } impl Clean for ast::Attribute { fn clean(&self) -> Attribute { self.desugar_doc().node.value.clean() } } // This is a rough approximation that gets us what we want. impl attr::AttrMetaMethods for Attribute { fn name(&self) -> InternedString { match *self { Word(ref n) | List(ref n, _) | NameValue(ref n, _) => { token::intern_and_get_ident(n.as_slice()) } } } fn value_str(&self) -> Option { match *self { NameValue(_, ref v) => { Some(token::intern_and_get_ident(v.as_slice())) } _ => None, } } fn meta_item_list<'a>(&'a self) -> Option<&'a [Gc]> { None } } impl<'a> attr::AttrMetaMethods for &'a Attribute { fn name(&self) -> InternedString { (**self).name() } fn value_str(&self) -> Option { (**self).value_str() } fn meta_item_list<'a>(&'a self) -> Option<&'a [Gc]> { None } } #[deriving(Clone, Encodable, Decodable)] pub struct TyParam { pub name: String, pub did: ast::DefId, pub bounds: Vec, } impl Clean for ast::TyParam { fn clean(&self) -> TyParam { TyParam { name: self.ident.clean(), did: ast::DefId { krate: ast::LOCAL_CRATE, node: self.id }, bounds: self.bounds.clean().move_iter().collect(), } } } impl Clean for ty::TypeParameterDef { fn clean(&self) -> TyParam { let cx = super::ctxtkey.get().unwrap(); cx.external_typarams.borrow_mut().get_mut_ref().insert(self.def_id, self.ident.clean()); TyParam { name: self.ident.clean(), did: self.def_id, bounds: self.bounds.clean(), } } } #[deriving(Clone, Encodable, Decodable)] pub enum TyParamBound { RegionBound, TraitBound(Type) } impl Clean for ast::TyParamBound { fn clean(&self) -> TyParamBound { match *self { ast::StaticRegionTyParamBound => RegionBound, ast::OtherRegionTyParamBound(_) => RegionBound, ast::UnboxedFnTyParamBound(_) => { // FIXME(pcwalton): Wrong. RegionBound } ast::TraitTyParamBound(ref t) => TraitBound(t.clean()), } } } fn external_path(name: &str, substs: &subst::Substs) -> Path { let lifetimes = substs.regions().get_vec(subst::TypeSpace) .iter() .filter_map(|v| v.clean()) .collect(); let types = substs.types.get_vec(subst::TypeSpace).clean(); Path { global: false, segments: vec![PathSegment { name: name.to_string(), lifetimes: lifetimes, types: types, }], } } impl Clean for ty::BuiltinBound { fn clean(&self) -> TyParamBound { let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tcx) => tcx, core::NotTyped(_) => return RegionBound, }; let empty = subst::Substs::empty(); let (did, path) = match *self { ty::BoundStatic => return RegionBound, ty::BoundSend => (tcx.lang_items.send_trait().unwrap(), external_path("Send", &empty)), ty::BoundSized => (tcx.lang_items.sized_trait().unwrap(), external_path("Sized", &empty)), ty::BoundCopy => (tcx.lang_items.copy_trait().unwrap(), external_path("Copy", &empty)), ty::BoundShare => (tcx.lang_items.share_trait().unwrap(), external_path("Share", &empty)), }; let fqn = csearch::get_item_path(tcx, did); let fqn = fqn.move_iter().map(|i| i.to_str()).collect(); cx.external_paths.borrow_mut().get_mut_ref().insert(did, (fqn, TypeTrait)); TraitBound(ResolvedPath { path: path, typarams: None, did: did, }) } } impl Clean for ty::TraitRef { fn clean(&self) -> TyParamBound { let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tcx) => tcx, core::NotTyped(_) => return RegionBound, }; let fqn = csearch::get_item_path(tcx, self.def_id); let fqn = fqn.move_iter().map(|i| i.to_str()) .collect::>(); let path = external_path(fqn.last().unwrap().as_slice(), &self.substs); cx.external_paths.borrow_mut().get_mut_ref().insert(self.def_id, (fqn, TypeTrait)); TraitBound(ResolvedPath { path: path, typarams: None, did: self.def_id, }) } } impl Clean> for ty::ParamBounds { fn clean(&self) -> Vec { let mut v = Vec::new(); for b in self.builtin_bounds.iter() { if b != ty::BoundSized { v.push(b.clean()); } } for t in self.trait_bounds.iter() { v.push(t.clean()); } return v; } } impl Clean>> for subst::Substs { fn clean(&self) -> Option> { let mut v = Vec::new(); v.extend(self.regions().iter().map(|_| RegionBound)); v.extend(self.types.iter().map(|t| TraitBound(t.clean()))); if v.len() > 0 {Some(v)} else {None} } } #[deriving(Clone, Encodable, Decodable, PartialEq)] pub struct Lifetime(String); impl Lifetime { pub fn get_ref<'a>(&'a self) -> &'a str { let Lifetime(ref s) = *self; let s: &'a str = s.as_slice(); return s; } } impl Clean for ast::Lifetime { fn clean(&self) -> Lifetime { Lifetime(token::get_name(self.name).get().to_string()) } } impl Clean for ty::RegionParameterDef { fn clean(&self) -> Lifetime { Lifetime(token::get_name(self.name).get().to_string()) } } impl Clean> for ty::Region { fn clean(&self) -> Option { match *self { ty::ReStatic => Some(Lifetime("static".to_string())), ty::ReLateBound(_, ty::BrNamed(_, name)) => Some(Lifetime(token::get_name(name).get().to_string())), ty::ReEarlyBound(_, _, _, name) => Some(Lifetime(name.clean())), ty::ReLateBound(..) | ty::ReFree(..) | ty::ReScope(..) | ty::ReInfer(..) | ty::ReEmpty(..) => None } } } // maybe use a Generic enum and use ~[Generic]? #[deriving(Clone, Encodable, Decodable)] pub struct Generics { pub lifetimes: Vec, pub type_params: Vec, } impl Clean for ast::Generics { fn clean(&self) -> Generics { Generics { lifetimes: self.lifetimes.clean(), type_params: self.ty_params.clean(), } } } impl Clean for ty::Generics { fn clean(&self) -> Generics { // In the type space, generics can come in one of multiple // namespaces. This means that e.g. for fn items the type // parameters will live in FnSpace, but for types the // parameters will live in TypeSpace (trait definitions also // define a parameter in SelfSpace). *Method* definitions are // the one exception: they combine the TypeSpace parameters // from the enclosing impl/trait with their own FnSpace // parameters. // // In general, when we clean, we are trying to produce the // "user-facing" generics. Hence we select the most specific // namespace that is occupied, ignoring SelfSpace because it // is implicit. let space = { if !self.types.get_vec(subst::FnSpace).is_empty() || !self.regions.get_vec(subst::FnSpace).is_empty() { subst::FnSpace } else { subst::TypeSpace } }; Generics { type_params: self.types.get_vec(space).clean(), lifetimes: self.regions.get_vec(space).clean(), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Method { pub generics: Generics, pub self_: SelfTy, pub fn_style: ast::FnStyle, pub decl: FnDecl, } impl Clean for ast::Method { fn clean(&self) -> Item { let inputs = match self.explicit_self.node { ast::SelfStatic => self.decl.inputs.as_slice(), _ => self.decl.inputs.slice_from(1) }; let decl = FnDecl { inputs: Arguments { values: inputs.iter().map(|x| x.clean()).collect(), }, output: (self.decl.output.clean()), cf: self.decl.cf.clean(), attrs: Vec::new() }; Item { name: Some(self.ident.clean()), attrs: self.attrs.clean().move_iter().collect(), source: self.span.clean(), def_id: ast_util::local_def(self.id.clone()), visibility: self.vis.clean(), inner: MethodItem(Method { generics: self.generics.clean(), self_: self.explicit_self.node.clean(), fn_style: self.fn_style.clone(), decl: decl, }), } } } #[deriving(Clone, Encodable, Decodable)] pub struct TyMethod { pub fn_style: ast::FnStyle, pub decl: FnDecl, pub generics: Generics, pub self_: SelfTy, } impl Clean for ast::TypeMethod { fn clean(&self) -> Item { let inputs = match self.explicit_self.node { ast::SelfStatic => self.decl.inputs.as_slice(), _ => self.decl.inputs.slice_from(1) }; let decl = FnDecl { inputs: Arguments { values: inputs.iter().map(|x| x.clean()).collect(), }, output: (self.decl.output.clean()), cf: self.decl.cf.clean(), attrs: Vec::new() }; Item { name: Some(self.ident.clean()), attrs: self.attrs.clean().move_iter().collect(), source: self.span.clean(), def_id: ast_util::local_def(self.id), visibility: None, inner: TyMethodItem(TyMethod { fn_style: self.fn_style.clone(), decl: decl, self_: self.explicit_self.node.clean(), generics: self.generics.clean(), }), } } } #[deriving(Clone, Encodable, Decodable, PartialEq)] pub enum SelfTy { SelfStatic, SelfValue, SelfBorrowed(Option, Mutability), SelfOwned, } impl Clean for ast::ExplicitSelf_ { fn clean(&self) -> SelfTy { match *self { ast::SelfStatic => SelfStatic, ast::SelfValue => SelfValue, ast::SelfUniq => SelfOwned, ast::SelfRegion(lt, mt) => SelfBorrowed(lt.clean(), mt.clean()), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Function { pub decl: FnDecl, pub generics: Generics, pub fn_style: ast::FnStyle, } impl Clean for doctree::Function { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), visibility: self.vis.clean(), def_id: ast_util::local_def(self.id), inner: FunctionItem(Function { decl: self.decl.clean(), generics: self.generics.clean(), fn_style: self.fn_style, }), } } } #[deriving(Clone, Encodable, Decodable)] pub struct ClosureDecl { pub lifetimes: Vec, pub decl: FnDecl, pub onceness: ast::Onceness, pub fn_style: ast::FnStyle, pub bounds: Vec, } impl Clean for ast::ClosureTy { fn clean(&self) -> ClosureDecl { ClosureDecl { lifetimes: self.lifetimes.clean(), decl: self.decl.clean(), onceness: self.onceness, fn_style: self.fn_style, bounds: match self.bounds { Some(ref x) => x.clean().move_iter().collect(), None => Vec::new() }, } } } #[deriving(Clone, Encodable, Decodable)] pub struct FnDecl { pub inputs: Arguments, pub output: Type, pub cf: RetStyle, pub attrs: Vec, } #[deriving(Clone, Encodable, Decodable)] pub struct Arguments { pub values: Vec, } impl Clean for ast::FnDecl { fn clean(&self) -> FnDecl { FnDecl { inputs: Arguments { values: self.inputs.iter().map(|x| x.clean()).collect(), }, output: (self.output.clean()), cf: self.cf.clean(), attrs: Vec::new() } } } impl<'a> Clean for (ast::DefId, &'a ty::FnSig) { fn clean(&self) -> FnDecl { let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tcx) => tcx, core::NotTyped(_) => unreachable!(), }; let (did, sig) = *self; let mut names = if did.node != 0 { csearch::get_method_arg_names(&tcx.sess.cstore, did).move_iter() } else { Vec::new().move_iter() }.peekable(); if names.peek().map(|s| s.as_slice()) == Some("self") { let _ = names.next(); } FnDecl { output: sig.output.clean(), cf: Return, attrs: Vec::new(), inputs: Arguments { values: sig.inputs.iter().map(|t| { Argument { type_: t.clean(), id: 0, name: names.next().unwrap_or("".to_string()), } }).collect(), }, } } } #[deriving(Clone, Encodable, Decodable)] pub struct Argument { pub type_: Type, pub name: String, pub id: ast::NodeId, } impl Clean for ast::Arg { fn clean(&self) -> Argument { Argument { name: name_from_pat(&*self.pat), type_: (self.ty.clean()), id: self.id } } } #[deriving(Clone, Encodable, Decodable)] pub enum RetStyle { NoReturn, Return } impl Clean for ast::RetStyle { fn clean(&self) -> RetStyle { match *self { ast::Return => Return, ast::NoReturn => NoReturn } } } #[deriving(Clone, Encodable, Decodable)] pub struct Trait { pub methods: Vec, pub generics: Generics, pub parents: Vec, } impl Clean for doctree::Trait { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: TraitItem(Trait { methods: self.methods.clean(), generics: self.generics.clean(), parents: self.parents.clean(), }), } } } impl Clean for ast::TraitRef { fn clean(&self) -> Type { resolve_type(self.path.clean(), None, self.ref_id) } } #[deriving(Clone, Encodable, Decodable)] pub enum TraitMethod { Required(Item), Provided(Item), } impl TraitMethod { pub fn is_req(&self) -> bool { match self { &Required(..) => true, _ => false, } } pub fn is_def(&self) -> bool { match self { &Provided(..) => true, _ => false, } } pub fn item<'a>(&'a self) -> &'a Item { match *self { Required(ref item) => item, Provided(ref item) => item, } } } impl Clean for ast::TraitMethod { fn clean(&self) -> TraitMethod { match self { &ast::Required(ref t) => Required(t.clean()), &ast::Provided(ref t) => Provided(t.clean()), } } } impl Clean for ty::Method { fn clean(&self) -> Item { let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tcx) => tcx, core::NotTyped(_) => unreachable!(), }; let (self_, sig) = match self.explicit_self { ast::SelfStatic => (ast::SelfStatic.clean(), self.fty.sig.clone()), s => { let sig = ty::FnSig { inputs: Vec::from_slice(self.fty.sig.inputs.slice_from(1)), ..self.fty.sig.clone() }; let s = match s { ast::SelfRegion(..) => { match ty::get(*self.fty.sig.inputs.get(0)).sty { ty::ty_rptr(r, mt) => { SelfBorrowed(r.clean(), mt.mutbl.clean()) } _ => s.clean(), } } s => s.clean(), }; (s, sig) } }; Item { name: Some(self.ident.clean()), visibility: Some(ast::Inherited), def_id: self.def_id, attrs: inline::load_attrs(tcx, self.def_id), source: Span::empty(), inner: TyMethodItem(TyMethod { fn_style: self.fty.fn_style, generics: self.generics.clean(), self_: self_, decl: (self.def_id, &sig).clean(), }) } } } /// A representation of a Type suitable for hyperlinking purposes. Ideally one can get the original /// type out of the AST/ty::ctxt given one of these, if more information is needed. Most importantly /// it does not preserve mutability or boxes. #[deriving(Clone, Encodable, Decodable)] pub enum Type { /// structs/enums/traits (anything that'd be an ast::TyPath) ResolvedPath { pub path: Path, pub typarams: Option>, pub did: ast::DefId, }, // I have no idea how to usefully use this. TyParamBinder(ast::NodeId), /// For parameterized types, so the consumer of the JSON don't go looking /// for types which don't exist anywhere. Generic(ast::DefId), /// For references to self Self(ast::DefId), /// Primitives are just the fixed-size numeric types (plus int/uint/float), and char. Primitive(Primitive), Closure(Box, Option), Proc(Box), /// extern "ABI" fn BareFunction(Box), Tuple(Vec), Vector(Box), FixedVector(Box, String), /// aka TyBot Bottom, Unique(Box), Managed(Box), RawPointer(Mutability, Box), BorrowedRef { pub lifetime: Option, pub mutability: Mutability, pub type_: Box, }, // region, raw, other boxes, mutable } #[deriving(Clone, Encodable, Decodable, PartialEq, Eq, Hash)] pub enum Primitive { Int, I8, I16, I32, I64, Uint, U8, U16, U32, U64, F32, F64, F128, Char, Bool, Nil, Str, Slice, PrimitiveTuple, } #[deriving(Clone, Encodable, Decodable)] pub enum TypeKind { TypeEnum, TypeFunction, TypeModule, TypeStatic, TypeStruct, TypeTrait, TypeVariant, } impl Primitive { fn from_str(s: &str) -> Option { match s.as_slice() { "int" => Some(Int), "i8" => Some(I8), "i16" => Some(I16), "i32" => Some(I32), "i64" => Some(I64), "uint" => Some(Uint), "u8" => Some(U8), "u16" => Some(U16), "u32" => Some(U32), "u64" => Some(U64), "bool" => Some(Bool), "nil" => Some(Nil), "char" => Some(Char), "str" => Some(Str), "f32" => Some(F32), "f64" => Some(F64), "f128" => Some(F128), "slice" => Some(Slice), "tuple" => Some(PrimitiveTuple), _ => None, } } fn find(attrs: &[Attribute]) -> Option { for attr in attrs.iter() { let list = match *attr { List(ref k, ref l) if k.as_slice() == "doc" => l, _ => continue, }; for sub_attr in list.iter() { let value = match *sub_attr { NameValue(ref k, ref v) if k.as_slice() == "primitive" => v.as_slice(), _ => continue, }; match Primitive::from_str(value) { Some(p) => return Some(p), None => {} } } } return None } pub fn to_str(&self) -> &'static str { match *self { Int => "int", I8 => "i8", I16 => "i16", I32 => "i32", I64 => "i64", Uint => "uint", U8 => "u8", U16 => "u16", U32 => "u32", U64 => "u64", F32 => "f32", F64 => "f64", F128 => "f128", Str => "str", Bool => "bool", Char => "char", Nil => "()", Slice => "slice", PrimitiveTuple => "tuple", } } pub fn to_url_str(&self) -> &'static str { match *self { Nil => "nil", other => other.to_str(), } } /// Creates a rustdoc-specific node id for primitive types. /// /// These node ids are generally never used by the AST itself. pub fn to_node_id(&self) -> ast::NodeId { u32::MAX - 1 - (*self as u32) } } impl Clean for ast::Ty { fn clean(&self) -> Type { use syntax::ast::*; match self.node { TyNil => Primitive(Nil), TyPtr(ref m) => RawPointer(m.mutbl.clean(), box m.ty.clean()), TyRptr(ref l, ref m) => BorrowedRef {lifetime: l.clean(), mutability: m.mutbl.clean(), type_: box m.ty.clean()}, TyBox(ty) => Managed(box ty.clean()), TyUniq(ty) => Unique(box ty.clean()), TyVec(ty) => Vector(box ty.clean()), TyFixedLengthVec(ty, ref e) => FixedVector(box ty.clean(), e.span.to_src()), TyTup(ref tys) => Tuple(tys.iter().map(|x| x.clean()).collect()), TyPath(ref p, ref tpbs, id) => { resolve_type(p.clean(), tpbs.clean().map(|x| x.move_iter().collect()), id) } TyClosure(ref c, region) => Closure(box c.clean(), region.clean()), TyProc(ref c) => Proc(box c.clean()), TyBareFn(ref barefn) => BareFunction(box barefn.clean()), TyParen(ref ty) => ty.clean(), TyBot => Bottom, ref x => fail!("Unimplemented type {:?}", x), } } } impl Clean for ty::t { fn clean(&self) -> Type { match ty::get(*self).sty { ty::ty_bot => Bottom, ty::ty_nil => Primitive(Nil), ty::ty_bool => Primitive(Bool), ty::ty_char => Primitive(Char), ty::ty_int(ast::TyI) => Primitive(Int), ty::ty_int(ast::TyI8) => Primitive(I8), ty::ty_int(ast::TyI16) => Primitive(I16), ty::ty_int(ast::TyI32) => Primitive(I32), ty::ty_int(ast::TyI64) => Primitive(I64), ty::ty_uint(ast::TyU) => Primitive(Uint), ty::ty_uint(ast::TyU8) => Primitive(U8), ty::ty_uint(ast::TyU16) => Primitive(U16), ty::ty_uint(ast::TyU32) => Primitive(U32), ty::ty_uint(ast::TyU64) => Primitive(U64), ty::ty_float(ast::TyF32) => Primitive(F32), ty::ty_float(ast::TyF64) => Primitive(F64), ty::ty_float(ast::TyF128) => Primitive(F128), ty::ty_str => Primitive(Str), ty::ty_box(t) => Managed(box t.clean()), ty::ty_uniq(t) => Unique(box t.clean()), ty::ty_vec(mt, None) => Vector(box mt.ty.clean()), ty::ty_vec(mt, Some(i)) => FixedVector(box mt.ty.clean(), format!("{}", i)), ty::ty_ptr(mt) => RawPointer(mt.mutbl.clean(), box mt.ty.clean()), ty::ty_rptr(r, mt) => BorrowedRef { lifetime: r.clean(), mutability: mt.mutbl.clean(), type_: box mt.ty.clean(), }, ty::ty_bare_fn(ref fty) => BareFunction(box BareFunctionDecl { fn_style: fty.fn_style, generics: Generics { lifetimes: Vec::new(), type_params: Vec::new() }, decl: (ast_util::local_def(0), &fty.sig).clean(), abi: fty.abi.to_str(), }), ty::ty_closure(ref fty) => { let decl = box ClosureDecl { lifetimes: Vec::new(), // FIXME: this looks wrong... decl: (ast_util::local_def(0), &fty.sig).clean(), onceness: fty.onceness, fn_style: fty.fn_style, bounds: fty.bounds.iter().map(|i| i.clean()).collect(), }; match fty.store { ty::UniqTraitStore => Proc(decl), ty::RegionTraitStore(ref r, _) => Closure(decl, r.clean()), } } ty::ty_struct(did, ref substs) | ty::ty_enum(did, ref substs) | ty::ty_trait(box ty::TyTrait { def_id: did, ref substs, .. }) => { let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tycx) => tycx, core::NotTyped(_) => unreachable!(), }; let fqn = csearch::get_item_path(tcx, did); let fqn: Vec = fqn.move_iter().map(|i| { i.to_str() }).collect(); let kind = match ty::get(*self).sty { ty::ty_struct(..) => TypeStruct, ty::ty_trait(..) => TypeTrait, _ => TypeEnum, }; let path = external_path(fqn.last().unwrap().to_str().as_slice(), substs); cx.external_paths.borrow_mut().get_mut_ref().insert(did, (fqn, kind)); ResolvedPath { path: path, typarams: None, did: did, } } ty::ty_tup(ref t) => Tuple(t.iter().map(|t| t.clean()).collect()), ty::ty_param(ref p) => { if p.space == subst::SelfSpace { Self(p.def_id) } else { Generic(p.def_id) } } ty::ty_infer(..) => fail!("ty_infer"), ty::ty_err => fail!("ty_err"), } } } #[deriving(Clone, Encodable, Decodable)] pub enum StructField { HiddenStructField, // inserted later by strip passes TypedStructField(Type), } impl Clean for ast::StructField { fn clean(&self) -> Item { let (name, vis) = match self.node.kind { ast::NamedField(id, vis) => (Some(id), vis), ast::UnnamedField(vis) => (None, vis) }; Item { name: name.clean(), attrs: self.node.attrs.clean().move_iter().collect(), source: self.span.clean(), visibility: Some(vis), def_id: ast_util::local_def(self.node.id), inner: StructFieldItem(TypedStructField(self.node.ty.clean())), } } } impl Clean for ty::field_ty { fn clean(&self) -> Item { use syntax::parse::token::special_idents::unnamed_field; let name = if self.name == unnamed_field.name { None } else { Some(self.name) }; let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tycx) => tycx, core::NotTyped(_) => unreachable!(), }; let ty = ty::lookup_item_type(tcx, self.id); Item { name: name.clean(), attrs: inline::load_attrs(tcx, self.id), source: Span::empty(), visibility: Some(self.vis), def_id: self.id, inner: StructFieldItem(TypedStructField(ty.ty.clean())), } } } pub type Visibility = ast::Visibility; impl Clean> for ast::Visibility { fn clean(&self) -> Option { Some(*self) } } #[deriving(Clone, Encodable, Decodable)] pub struct Struct { pub struct_type: doctree::StructType, pub generics: Generics, pub fields: Vec, pub fields_stripped: bool, } impl Clean for doctree::Struct { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: StructItem(Struct { struct_type: self.struct_type, generics: self.generics.clean(), fields: self.fields.clean(), fields_stripped: false, }), } } } /// This is a more limited form of the standard Struct, different in that /// it lacks the things most items have (name, id, parameterization). Found /// only as a variant in an enum. #[deriving(Clone, Encodable, Decodable)] pub struct VariantStruct { pub struct_type: doctree::StructType, pub fields: Vec, pub fields_stripped: bool, } impl Clean for syntax::ast::StructDef { fn clean(&self) -> VariantStruct { VariantStruct { struct_type: doctree::struct_type_from_def(self), fields: self.fields.clean().move_iter().collect(), fields_stripped: false, } } } #[deriving(Clone, Encodable, Decodable)] pub struct Enum { pub variants: Vec, pub generics: Generics, pub variants_stripped: bool, } impl Clean for doctree::Enum { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: EnumItem(Enum { variants: self.variants.clean(), generics: self.generics.clean(), variants_stripped: false, }), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Variant { pub kind: VariantKind, } impl Clean for doctree::Variant { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), visibility: self.vis.clean(), def_id: ast_util::local_def(self.id), inner: VariantItem(Variant { kind: self.kind.clean(), }), } } } impl Clean for ty::VariantInfo { fn clean(&self) -> Item { // use syntax::parse::token::special_idents::unnamed_field; let cx = super::ctxtkey.get().unwrap(); let tcx = match cx.maybe_typed { core::Typed(ref tycx) => tycx, core::NotTyped(_) => fail!("tcx not present"), }; let kind = match self.arg_names.as_ref().map(|s| s.as_slice()) { None | Some([]) if self.args.len() == 0 => CLikeVariant, None | Some([]) => { TupleVariant(self.args.iter().map(|t| t.clean()).collect()) } Some(s) => { StructVariant(VariantStruct { struct_type: doctree::Plain, fields_stripped: false, fields: s.iter().zip(self.args.iter()).map(|(name, ty)| { Item { source: Span::empty(), name: Some(name.clean()), attrs: Vec::new(), visibility: Some(ast::Public), // FIXME: this is not accurate, we need an id for // the specific field but we're using the id // for the whole variant. Nothing currently // uses this so we should be good for now. def_id: self.id, inner: StructFieldItem( TypedStructField(ty.clean()) ) } }).collect() }) } }; Item { name: Some(self.name.clean()), attrs: inline::load_attrs(tcx, self.id), source: Span::empty(), visibility: Some(ast::Public), def_id: self.id, inner: VariantItem(Variant { kind: kind }), } } } #[deriving(Clone, Encodable, Decodable)] pub enum VariantKind { CLikeVariant, TupleVariant(Vec), StructVariant(VariantStruct), } impl Clean for ast::VariantKind { fn clean(&self) -> VariantKind { match self { &ast::TupleVariantKind(ref args) => { if args.len() == 0 { CLikeVariant } else { TupleVariant(args.iter().map(|x| x.ty.clean()).collect()) } }, &ast::StructVariantKind(ref sd) => StructVariant(sd.clean()), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Span { pub filename: String, pub loline: uint, pub locol: uint, pub hiline: uint, pub hicol: uint, } impl Span { fn empty() -> Span { Span { filename: "".to_string(), loline: 0, locol: 0, hiline: 0, hicol: 0, } } } impl Clean for syntax::codemap::Span { fn clean(&self) -> Span { let ctxt = super::ctxtkey.get().unwrap(); let cm = ctxt.sess().codemap(); let filename = cm.span_to_filename(*self); let lo = cm.lookup_char_pos(self.lo); let hi = cm.lookup_char_pos(self.hi); Span { filename: filename.to_string(), loline: lo.line, locol: lo.col.to_uint(), hiline: hi.line, hicol: hi.col.to_uint(), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Path { pub global: bool, pub segments: Vec, } impl Clean for ast::Path { fn clean(&self) -> Path { Path { global: self.global, segments: self.segments.clean().move_iter().collect(), } } } #[deriving(Clone, Encodable, Decodable)] pub struct PathSegment { pub name: String, pub lifetimes: Vec, pub types: Vec, } impl Clean for ast::PathSegment { fn clean(&self) -> PathSegment { PathSegment { name: self.identifier.clean(), lifetimes: self.lifetimes.clean().move_iter().collect(), types: self.types.clean().move_iter().collect() } } } fn path_to_str(p: &ast::Path) -> String { use syntax::parse::token; let mut s = String::new(); let mut first = true; for i in p.segments.iter().map(|x| token::get_ident(x.identifier)) { if !first || p.global { s.push_str("::"); } else { first = false; } s.push_str(i.get()); } s } impl Clean for ast::Ident { fn clean(&self) -> String { token::get_ident(*self).get().to_string() } } impl Clean for ast::Name { fn clean(&self) -> String { token::get_name(*self).get().to_string() } } #[deriving(Clone, Encodable, Decodable)] pub struct Typedef { pub type_: Type, pub generics: Generics, } impl Clean for doctree::Typedef { fn clean(&self) -> Item { Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id.clone()), visibility: self.vis.clean(), inner: TypedefItem(Typedef { type_: self.ty.clean(), generics: self.gen.clean(), }), } } } #[deriving(Clone, Encodable, Decodable)] pub struct BareFunctionDecl { pub fn_style: ast::FnStyle, pub generics: Generics, pub decl: FnDecl, pub abi: String, } impl Clean for ast::BareFnTy { fn clean(&self) -> BareFunctionDecl { BareFunctionDecl { fn_style: self.fn_style, generics: Generics { lifetimes: self.lifetimes.clean().move_iter().collect(), type_params: Vec::new(), }, decl: self.decl.clean(), abi: self.abi.to_str(), } } } #[deriving(Clone, Encodable, Decodable)] pub struct Static { pub type_: Type, pub mutability: Mutability, /// It's useful to have the value of a static documented, but I have no /// desire to represent expressions (that'd basically be all of the AST, /// which is huge!). So, have a string. pub expr: String, } impl Clean for doctree::Static { fn clean(&self) -> Item { debug!("claning static {}: {:?}", self.name.clean(), self); Item { name: Some(self.name.clean()), attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: StaticItem(Static { type_: self.type_.clean(), mutability: self.mutability.clean(), expr: self.expr.span.to_src(), }), } } } #[deriving(Show, Clone, Encodable, Decodable, PartialEq)] pub enum Mutability { Mutable, Immutable, } impl Clean for ast::Mutability { fn clean(&self) -> Mutability { match self { &ast::MutMutable => Mutable, &ast::MutImmutable => Immutable, } } } #[deriving(Clone, Encodable, Decodable)] pub struct Impl { pub generics: Generics, pub trait_: Option, pub for_: Type, pub methods: Vec, pub derived: bool, } fn detect_derived(attrs: &[M]) -> bool { attr::contains_name(attrs, "automatically_derived") } impl Clean for doctree::Impl { fn clean(&self) -> Item { Item { name: None, attrs: self.attrs.clean(), source: self.where.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: ImplItem(Impl { generics: self.generics.clean(), trait_: self.trait_.clean(), for_: self.for_.clean(), methods: self.methods.clean(), derived: detect_derived(self.attrs.as_slice()), }), } } } #[deriving(Clone, Encodable, Decodable)] pub struct ViewItem { pub inner: ViewItemInner, } impl Clean> for ast::ViewItem { fn clean(&self) -> Vec { // We consider inlining the documentation of `pub use` statments, but we // forcefully don't inline if this is not public or if the // #[doc(no_inline)] attribute is present. let denied = self.vis != ast::Public || self.attrs.iter().any(|a| { a.name().get() == "doc" && match a.meta_item_list() { Some(l) => attr::contains_name(l, "no_inline"), None => false, } }); let convert = |node: &ast::ViewItem_| { Item { name: None, attrs: self.attrs.clean().move_iter().collect(), source: self.span.clean(), def_id: ast_util::local_def(0), visibility: self.vis.clean(), inner: ViewItemItem(ViewItem { inner: node.clean() }), } }; let mut ret = Vec::new(); match self.node { ast::ViewItemUse(ref path) if !denied => { match path.node { ast::ViewPathGlob(..) => ret.push(convert(&self.node)), ast::ViewPathList(ref a, ref list, ref b) => { // Attempt to inline all reexported items, but be sure // to keep any non-inlineable reexports so they can be // listed in the documentation. let remaining = list.iter().filter(|path| { match inline::try_inline(path.node.id) { Some(items) => { ret.extend(items.move_iter()); false } None => true, } }).map(|a| a.clone()).collect::>(); if remaining.len() > 0 { let path = ast::ViewPathList(a.clone(), remaining, b.clone()); let path = syntax::codemap::dummy_spanned(path); ret.push(convert(&ast::ViewItemUse(box(GC) path))); } } ast::ViewPathSimple(_, _, id) => { match inline::try_inline(id) { Some(items) => ret.extend(items.move_iter()), None => ret.push(convert(&self.node)), } } } } ref n => ret.push(convert(n)), } return ret; } } #[deriving(Clone, Encodable, Decodable)] pub enum ViewItemInner { ExternCrate(String, Option, ast::NodeId), Import(ViewPath) } impl Clean for ast::ViewItem_ { fn clean(&self) -> ViewItemInner { match self { &ast::ViewItemExternCrate(ref i, ref p, ref id) => { let string = match *p { None => None, Some((ref x, _)) => Some(x.get().to_string()), }; ExternCrate(i.clean(), string, *id) } &ast::ViewItemUse(ref vp) => { Import(vp.clean()) } } } } #[deriving(Clone, Encodable, Decodable)] pub enum ViewPath { // use str = source; SimpleImport(String, ImportSource), // use source::*; GlobImport(ImportSource), // use source::{a, b, c}; ImportList(ImportSource, Vec), } #[deriving(Clone, Encodable, Decodable)] pub struct ImportSource { pub path: Path, pub did: Option, } impl Clean for ast::ViewPath { fn clean(&self) -> ViewPath { match self.node { ast::ViewPathSimple(ref i, ref p, id) => SimpleImport(i.clean(), resolve_use_source(p.clean(), id)), ast::ViewPathGlob(ref p, id) => GlobImport(resolve_use_source(p.clean(), id)), ast::ViewPathList(ref p, ref pl, id) => { ImportList(resolve_use_source(p.clean(), id), pl.clean().move_iter().collect()) } } } } #[deriving(Clone, Encodable, Decodable)] pub struct ViewListIdent { pub name: String, pub source: Option, } impl Clean for ast::PathListIdent { fn clean(&self) -> ViewListIdent { ViewListIdent { name: self.node.name.clean(), source: resolve_def(self.node.id), } } } impl Clean> for ast::ForeignMod { fn clean(&self) -> Vec { self.items.clean() } } impl Clean for ast::ForeignItem { fn clean(&self) -> Item { let inner = match self.node { ast::ForeignItemFn(ref decl, ref generics) => { ForeignFunctionItem(Function { decl: decl.clean(), generics: generics.clean(), fn_style: ast::UnsafeFn, }) } ast::ForeignItemStatic(ref ty, mutbl) => { ForeignStaticItem(Static { type_: ty.clean(), mutability: if mutbl {Mutable} else {Immutable}, expr: "".to_string(), }) } }; Item { name: Some(self.ident.clean()), attrs: self.attrs.clean().move_iter().collect(), source: self.span.clean(), def_id: ast_util::local_def(self.id), visibility: self.vis.clean(), inner: inner, } } } // Utilities trait ToSource { fn to_src(&self) -> String; } impl ToSource for syntax::codemap::Span { fn to_src(&self) -> String { debug!("converting span {:?} to snippet", self.clean()); let ctxt = super::ctxtkey.get().unwrap(); let cm = ctxt.sess().codemap().clone(); let sn = match cm.span_to_snippet(*self) { Some(x) => x.to_string(), None => "".to_string() }; debug!("got snippet {}", sn); sn } } fn lit_to_str(lit: &ast::Lit) -> String { match lit.node { ast::LitStr(ref st, _) => st.get().to_string(), ast::LitBinary(ref data) => format!("{:?}", data.as_slice()), ast::LitChar(c) => format!("'{}'", c), ast::LitInt(i, _t) => i.to_str(), ast::LitUint(u, _t) => u.to_str(), ast::LitIntUnsuffixed(i) => i.to_str(), ast::LitFloat(ref f, _t) => f.get().to_string(), ast::LitFloatUnsuffixed(ref f) => f.get().to_string(), ast::LitBool(b) => b.to_str(), ast::LitNil => "".to_string(), } } fn name_from_pat(p: &ast::Pat) -> String { use syntax::ast::*; debug!("Trying to get a name from pattern: {:?}", p); match p.node { PatWild => "_".to_string(), PatWildMulti => "..".to_string(), PatIdent(_, ref p, _) => path_to_str(p), PatEnum(ref p, _) => path_to_str(p), PatStruct(..) => fail!("tried to get argument name from pat_struct, \ which is not allowed in function arguments"), PatTup(..) => "(tuple arg NYI)".to_string(), PatBox(p) => name_from_pat(&*p), PatRegion(p) => name_from_pat(&*p), PatLit(..) => { warn!("tried to get argument name from PatLit, \ which is silly in function arguments"); "()".to_string() }, PatRange(..) => fail!("tried to get argument name from PatRange, \ which is not allowed in function arguments"), PatVec(..) => fail!("tried to get argument name from pat_vec, \ which is not allowed in function arguments"), PatMac(..) => { warn!("can't document the name of a function argument \ produced by a pattern macro"); "(argument produced by macro)".to_string() } } } /// Given a Type, resolve it using the def_map fn resolve_type(path: Path, tpbs: Option>, id: ast::NodeId) -> Type { let cx = super::ctxtkey.get().unwrap(); let tycx = match cx.maybe_typed { core::Typed(ref tycx) => tycx, // If we're extracting tests, this return value doesn't matter. core::NotTyped(_) => return Primitive(Bool), }; debug!("searching for {:?} in defmap", id); let def = match tycx.def_map.borrow().find(&id) { Some(&k) => k, None => fail!("unresolved id not in defmap") }; match def { def::DefSelfTy(i) => return Self(ast_util::local_def(i)), def::DefPrimTy(p) => match p { ast::TyStr => return Primitive(Str), ast::TyBool => return Primitive(Bool), ast::TyChar => return Primitive(Char), ast::TyInt(ast::TyI) => return Primitive(Int), ast::TyInt(ast::TyI8) => return Primitive(I8), ast::TyInt(ast::TyI16) => return Primitive(I16), ast::TyInt(ast::TyI32) => return Primitive(I32), ast::TyInt(ast::TyI64) => return Primitive(I64), ast::TyUint(ast::TyU) => return Primitive(Uint), ast::TyUint(ast::TyU8) => return Primitive(U8), ast::TyUint(ast::TyU16) => return Primitive(U16), ast::TyUint(ast::TyU32) => return Primitive(U32), ast::TyUint(ast::TyU64) => return Primitive(U64), ast::TyFloat(ast::TyF32) => return Primitive(F32), ast::TyFloat(ast::TyF64) => return Primitive(F64), ast::TyFloat(ast::TyF128) => return Primitive(F128), }, def::DefTyParam(_, i, _) => return Generic(i), def::DefTyParamBinder(i) => return TyParamBinder(i), _ => {} }; let did = register_def(&**cx, def); ResolvedPath { path: path, typarams: tpbs, did: did } } fn register_def(cx: &core::DocContext, def: def::Def) -> ast::DefId { let (did, kind) = match def { def::DefFn(i, _) => (i, TypeFunction), def::DefTy(i) => (i, TypeEnum), def::DefTrait(i) => (i, TypeTrait), def::DefStruct(i) => (i, TypeStruct), def::DefMod(i) => (i, TypeModule), def::DefStatic(i, _) => (i, TypeStatic), def::DefVariant(i, _, _) => (i, TypeEnum), _ => return def.def_id() }; if ast_util::is_local(did) { return did } let tcx = match cx.maybe_typed { core::Typed(ref t) => t, core::NotTyped(_) => return did }; inline::record_extern_fqn(cx, did, kind); match kind { TypeTrait => { let t = inline::build_external_trait(tcx, did); cx.external_traits.borrow_mut().get_mut_ref().insert(did, t); } _ => {} } return did; } fn resolve_use_source(path: Path, id: ast::NodeId) -> ImportSource { ImportSource { path: path, did: resolve_def(id), } } fn resolve_def(id: ast::NodeId) -> Option { let cx = super::ctxtkey.get().unwrap(); match cx.maybe_typed { core::Typed(ref tcx) => { tcx.def_map.borrow().find(&id).map(|&def| register_def(&**cx, def)) } core::NotTyped(_) => None } } #[deriving(Clone, Encodable, Decodable)] pub struct Macro { pub source: String, } impl Clean for doctree::Macro { fn clean(&self) -> Item { Item { name: Some(format!("{}!", self.name.clean())), attrs: self.attrs.clean(), source: self.where.clean(), visibility: ast::Public.clean(), def_id: ast_util::local_def(self.id), inner: MacroItem(Macro { source: self.where.to_src(), }), } } }