use std::cell::RefCell; use std::collections::BTreeMap; use std::mem; use std::path::{Path, PathBuf}; use std::sync::Arc; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX}; use rustc_middle::middle::privacy::AccessLevels; use rustc_span::source_map::FileName; use rustc_span::Symbol; use crate::clean::{self, GetDefId}; use crate::config::RenderInfo; use crate::fold::DocFolder; use crate::formats::item_type::ItemType; use crate::formats::Impl; use crate::html::markdown::short_markdown_summary; use crate::html::render::cache::{extern_location, get_index_search_type, ExternalLocation}; use crate::html::render::IndexItem; thread_local!(crate static CACHE_KEY: RefCell> = Default::default()); /// This cache is used to store information about the [`clean::Crate`] being /// rendered in order to provide more useful documentation. This contains /// information like all implementors of a trait, all traits a type implements, /// documentation for all known traits, etc. /// /// This structure purposefully does not implement `Clone` because it's intended /// to be a fairly large and expensive structure to clone. Instead this adheres /// to `Send` so it may be stored in a `Arc` instance and shared among the various /// rendering threads. #[derive(Default)] crate struct Cache { /// Maps a type ID to all known implementations for that type. This is only /// recognized for intra-crate `ResolvedPath` types, and is used to print /// out extra documentation on the page of an enum/struct. /// /// The values of the map are a list of implementations and documentation /// found on that implementation. crate impls: FxHashMap>, /// Maintains a mapping of local crate `DefId`s to the fully qualified name /// and "short type description" of that node. This is used when generating /// URLs when a type is being linked to. External paths are not located in /// this map because the `External` type itself has all the information /// necessary. crate paths: FxHashMap, ItemType)>, /// Similar to `paths`, but only holds external paths. This is only used for /// generating explicit hyperlinks to other crates. crate external_paths: FxHashMap, ItemType)>, /// Maps local `DefId`s of exported types to fully qualified paths. /// Unlike 'paths', this mapping ignores any renames that occur /// due to 'use' statements. /// /// This map is used when writing out the special 'implementors' /// javascript file. By using the exact path that the type /// is declared with, we ensure that each path will be identical /// to the path used if the corresponding type is inlined. By /// doing this, we can detect duplicate impls on a trait page, and only display /// the impl for the inlined type. crate exact_paths: FxHashMap>, /// This map contains information about all known traits of this crate. /// Implementations of a crate should inherit the documentation of the /// parent trait if no extra documentation is specified, and default methods /// should show up in documentation about trait implementations. crate traits: FxHashMap, /// When rendering traits, it's often useful to be able to list all /// implementors of the trait, and this mapping is exactly, that: a mapping /// of trait ids to the list of known implementors of the trait crate implementors: FxHashMap>, /// Cache of where external crate documentation can be found. crate extern_locations: FxHashMap, /// Cache of where documentation for primitives can be found. crate primitive_locations: FxHashMap, // Note that external items for which `doc(hidden)` applies to are shown as // non-reachable while local items aren't. This is because we're reusing // the access levels from the privacy check pass. crate access_levels: AccessLevels, /// The version of the crate being documented, if given from the `--crate-version` flag. crate crate_version: Option, /// Whether to document private items. /// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions. crate document_private: bool, // Private fields only used when initially crawling a crate to build a cache stack: Vec, parent_stack: Vec, parent_is_trait_impl: bool, stripped_mod: bool, masked_crates: FxHashSet, crate search_index: Vec, crate deref_trait_did: Option, crate deref_mut_trait_did: Option, crate owned_box_did: Option, // In rare case where a structure is defined in one module but implemented // in another, if the implementing module is parsed before defining module, // then the fully qualified name of the structure isn't presented in `paths` // yet when its implementation methods are being indexed. Caches such methods // and their parent id here and indexes them at the end of crate parsing. crate orphan_impl_items: Vec<(DefId, clean::Item)>, // Similarly to `orphan_impl_items`, sometimes trait impls are picked up // even though the trait itself is not exported. This can happen if a trait // was defined in function/expression scope, since the impl will be picked // up by `collect-trait-impls` but the trait won't be scraped out in the HIR // crawl. In order to prevent crashes when looking for spotlight traits or // when gathering trait documentation on a type, hold impls here while // folding and add them to the cache later on if we find the trait. orphan_trait_impls: Vec<(DefId, FxHashSet, Impl)>, /// Aliases added through `#[doc(alias = "...")]`. Since a few items can have the same alias, /// we need the alias element to have an array of items. crate aliases: BTreeMap>, } impl Cache { crate fn from_krate( render_info: RenderInfo, document_private: bool, extern_html_root_urls: &BTreeMap, dst: &Path, mut krate: clean::Crate, ) -> (clean::Crate, Cache) { // Crawl the crate to build various caches used for the output let RenderInfo { inlined: _, external_paths, exact_paths, access_levels, deref_trait_did, deref_mut_trait_did, owned_box_did, .. } = render_info; let external_paths = external_paths.into_iter().map(|(k, (v, t))| (k, (v, ItemType::from(t)))).collect(); let mut cache = Cache { external_paths, exact_paths, parent_is_trait_impl: false, stripped_mod: false, access_levels, crate_version: krate.version.take(), document_private, traits: krate.external_traits.replace(Default::default()), deref_trait_did, deref_mut_trait_did, owned_box_did, masked_crates: mem::take(&mut krate.masked_crates), ..Cache::default() }; // Cache where all our extern crates are located // FIXME: this part is specific to HTML so it'd be nice to remove it from the common code for &(n, ref e) in &krate.externs { let src_root = match e.src { FileName::Real(ref p) => match p.local_path().parent() { Some(p) => p.to_path_buf(), None => PathBuf::new(), }, _ => PathBuf::new(), }; let extern_url = extern_html_root_urls.get(&*e.name.as_str()).map(|u| &**u); cache .extern_locations .insert(n, (e.name, src_root, extern_location(e, extern_url, &dst))); let did = DefId { krate: n, index: CRATE_DEF_INDEX }; cache.external_paths.insert(did, (vec![e.name.to_string()], ItemType::Module)); } // Cache where all known primitives have their documentation located. // // Favor linking to as local extern as possible, so iterate all crates in // reverse topological order. for &(_, ref e) in krate.externs.iter().rev() { for &(def_id, prim) in &e.primitives { cache.primitive_locations.insert(prim, def_id); } } for &(def_id, prim) in &krate.primitives { cache.primitive_locations.insert(prim, def_id); } cache.stack.push(krate.name.to_string()); krate = cache.fold_crate(krate); for (trait_did, dids, impl_) in cache.orphan_trait_impls.drain(..) { if cache.traits.contains_key(&trait_did) { for did in dids { cache.impls.entry(did).or_default().push(impl_.clone()); } } } (krate, cache) } } impl DocFolder for Cache { fn fold_item(&mut self, item: clean::Item) -> Option { if item.def_id.is_local() { debug!("folding {} \"{:?}\", id {:?}", item.type_(), item.name, item.def_id); } // If this is a stripped module, // we don't want it or its children in the search index. let orig_stripped_mod = match *item.kind { clean::StrippedItem(box clean::ModuleItem(..)) => { mem::replace(&mut self.stripped_mod, true) } _ => self.stripped_mod, }; // If the impl is from a masked crate or references something from a // masked crate then remove it completely. if let clean::ImplItem(ref i) = *item.kind { if self.masked_crates.contains(&item.def_id.krate) || i.trait_.def_id().map_or(false, |d| self.masked_crates.contains(&d.krate)) || i.for_.def_id().map_or(false, |d| self.masked_crates.contains(&d.krate)) { return None; } } // Propagate a trait method's documentation to all implementors of the // trait. if let clean::TraitItem(ref t) = *item.kind { self.traits.entry(item.def_id).or_insert_with(|| t.clone()); } // Collect all the implementors of traits. if let clean::ImplItem(ref i) = *item.kind { if let Some(did) = i.trait_.def_id() { if i.blanket_impl.is_none() { self.implementors .entry(did) .or_default() .push(Impl { impl_item: item.clone() }); } } } // Index this method for searching later on. if let Some(ref s) = item.name { let (parent, is_inherent_impl_item) = match *item.kind { clean::StrippedItem(..) => ((None, None), false), clean::AssocConstItem(..) | clean::TypedefItem(_, true) if self.parent_is_trait_impl => { // skip associated items in trait impls ((None, None), false) } clean::AssocTypeItem(..) | clean::TyMethodItem(..) | clean::StructFieldItem(..) | clean::VariantItem(..) => ( ( Some(*self.parent_stack.last().expect("parent_stack is empty")), Some(&self.stack[..self.stack.len() - 1]), ), false, ), clean::MethodItem(..) | clean::AssocConstItem(..) => { if self.parent_stack.is_empty() { ((None, None), false) } else { let last = self.parent_stack.last().expect("parent_stack is empty 2"); let did = *last; let path = match self.paths.get(&did) { // The current stack not necessarily has correlation // for where the type was defined. On the other // hand, `paths` always has the right // information if present. Some(&( ref fqp, ItemType::Trait | ItemType::Struct | ItemType::Union | ItemType::Enum, )) => Some(&fqp[..fqp.len() - 1]), Some(..) => Some(&*self.stack), None => None, }; ((Some(*last), path), true) } } _ => ((None, Some(&*self.stack)), false), }; match parent { (parent, Some(path)) if is_inherent_impl_item || !self.stripped_mod => { debug_assert!(!item.is_stripped()); // A crate has a module at its root, containing all items, // which should not be indexed. The crate-item itself is // inserted later on when serializing the search-index. if item.def_id.index != CRATE_DEF_INDEX { self.search_index.push(IndexItem { ty: item.type_(), name: s.to_string(), path: path.join("::"), desc: item .doc_value() .map_or_else(String::new, |x| short_markdown_summary(&x.as_str())), parent, parent_idx: None, search_type: get_index_search_type(&item), }); for alias in item.attrs.get_doc_aliases() { self.aliases .entry(alias.to_lowercase()) .or_insert(Vec::new()) .push(self.search_index.len() - 1); } } } (Some(parent), None) if is_inherent_impl_item => { // We have a parent, but we don't know where they're // defined yet. Wait for later to index this item. self.orphan_impl_items.push((parent, item.clone())); } _ => {} } } // Keep track of the fully qualified path for this item. let pushed = match item.name { Some(n) if !n.is_empty() => { self.stack.push(n.to_string()); true } _ => false, }; match *item.kind { clean::StructItem(..) | clean::EnumItem(..) | clean::TypedefItem(..) | clean::TraitItem(..) | clean::FunctionItem(..) | clean::ModuleItem(..) | clean::ForeignFunctionItem(..) | clean::ForeignStaticItem(..) | clean::ConstantItem(..) | clean::StaticItem(..) | clean::UnionItem(..) | clean::ForeignTypeItem | clean::MacroItem(..) | clean::ProcMacroItem(..) | clean::VariantItem(..) if !self.stripped_mod => { // Re-exported items mean that the same id can show up twice // in the rustdoc ast that we're looking at. We know, // however, that a re-exported item doesn't show up in the // `public_items` map, so we can skip inserting into the // paths map if there was already an entry present and we're // not a public item. if !self.paths.contains_key(&item.def_id) || self.access_levels.is_public(item.def_id) { self.paths.insert(item.def_id, (self.stack.clone(), item.type_())); } } clean::PrimitiveItem(..) => { self.paths.insert(item.def_id, (self.stack.clone(), item.type_())); } _ => {} } // Maintain the parent stack let orig_parent_is_trait_impl = self.parent_is_trait_impl; let parent_pushed = match *item.kind { clean::TraitItem(..) | clean::EnumItem(..) | clean::ForeignTypeItem | clean::StructItem(..) | clean::UnionItem(..) | clean::VariantItem(..) => { self.parent_stack.push(item.def_id); self.parent_is_trait_impl = false; true } clean::ImplItem(ref i) => { self.parent_is_trait_impl = i.trait_.is_some(); match i.for_ { clean::ResolvedPath { did, .. } => { self.parent_stack.push(did); true } ref t => { let prim_did = t .primitive_type() .and_then(|t| self.primitive_locations.get(&t).cloned()); match prim_did { Some(did) => { self.parent_stack.push(did); true } None => false, } } } } _ => false, }; // Once we've recursively found all the generics, hoard off all the // implementations elsewhere. let item = self.fold_item_recur(item); let ret = if let clean::Item { kind: box clean::ImplItem(ref i), .. } = item { // Figure out the id of this impl. This may map to a // primitive rather than always to a struct/enum. // Note: matching twice to restrict the lifetime of the `i` borrow. let mut dids = FxHashSet::default(); match i.for_ { clean::ResolvedPath { did, .. } | clean::BorrowedRef { type_: box clean::ResolvedPath { did, .. }, .. } => { dids.insert(did); } ref t => { let did = t.primitive_type().and_then(|t| self.primitive_locations.get(&t).cloned()); if let Some(did) = did { dids.insert(did); } } } if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) { for bound in generics { if let Some(did) = bound.def_id() { dids.insert(did); } } } let impl_item = Impl { impl_item: item }; if impl_item.trait_did().map_or(true, |d| self.traits.contains_key(&d)) { for did in dids { self.impls.entry(did).or_insert(vec![]).push(impl_item.clone()); } } else { let trait_did = impl_item.trait_did().expect("no trait did"); self.orphan_trait_impls.push((trait_did, dids, impl_item)); } None } else { Some(item) }; if pushed { self.stack.pop().expect("stack already empty"); } if parent_pushed { self.parent_stack.pop().expect("parent stack already empty"); } self.stripped_mod = orig_stripped_mod; self.parent_is_trait_impl = orig_parent_is_trait_impl; ret } } crate fn cache() -> Arc { CACHE_KEY.with(|c| c.borrow().clone()) }