// ignore-tidy-filelength use self::Entry::*; use hashbrown::hash_map as base; use crate::borrow::Borrow; use crate::cell::Cell; use crate::collections::TryReserveError; use crate::fmt::{self, Debug}; #[allow(deprecated)] use crate::hash::{BuildHasher, Hash, Hasher, SipHasher13}; use crate::iter::{FromIterator, FusedIterator}; use crate::ops::Index; use crate::sys; /// A hash map implemented with quadratic probing and SIMD lookup. /// /// By default, `HashMap` uses a hashing algorithm selected to provide /// resistance against HashDoS attacks. The algorithm is randomly seeded, and a /// reasonable best-effort is made to generate this seed from a high quality, /// secure source of randomness provided by the host without blocking the /// program. Because of this, the randomness of the seed depends on the output /// quality of the system's random number generator when the seed is created. /// In particular, seeds generated when the system's entropy pool is abnormally /// low such as during system boot may be of a lower quality. /// /// The default hashing algorithm is currently SipHash 1-3, though this is /// subject to change at any point in the future. While its performance is very /// competitive for medium sized keys, other hashing algorithms will outperform /// it for small keys such as integers as well as large keys such as long /// strings, though those algorithms will typically *not* protect against /// attacks such as HashDoS. /// /// The hashing algorithm can be replaced on a per-`HashMap` basis using the /// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many /// alternative algorithms are available on crates.io, such as the [`fnv`] crate. /// /// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although /// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`. /// If you implement these yourself, it is important that the following /// property holds: /// /// ```text /// k1 == k2 -> hash(k1) == hash(k2) /// ``` /// /// In other words, if two keys are equal, their hashes must be equal. /// /// It is a logic error for a key to be modified in such a way that the key's /// hash, as determined by the [`Hash`] trait, or its equality, as determined by /// the [`Eq`] trait, changes while it is in the map. This is normally only /// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. /// /// The hash table implementation is a Rust port of Google's [SwissTable]. /// The original C++ version of SwissTable can be found [here], and this /// [CppCon talk] gives an overview of how the algorithm works. /// /// [SwissTable]: https://abseil.io/blog/20180927-swisstables /// [here]: https://github.com/abseil/abseil-cpp/blob/master/absl/container/internal/raw_hash_set.h /// [CppCon talk]: https://www.youtube.com/watch?v=ncHmEUmJZf4 /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// // Type inference lets us omit an explicit type signature (which /// // would be `HashMap` in this example). /// let mut book_reviews = HashMap::new(); /// /// // Review some books. /// book_reviews.insert( /// "Adventures of Huckleberry Finn".to_string(), /// "My favorite book.".to_string(), /// ); /// book_reviews.insert( /// "Grimms' Fairy Tales".to_string(), /// "Masterpiece.".to_string(), /// ); /// book_reviews.insert( /// "Pride and Prejudice".to_string(), /// "Very enjoyable.".to_string(), /// ); /// book_reviews.insert( /// "The Adventures of Sherlock Holmes".to_string(), /// "Eye lyked it alot.".to_string(), /// ); /// /// // Check for a specific one. /// // When collections store owned values (String), they can still be /// // queried using references (&str). /// if !book_reviews.contains_key("Les Misérables") { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove("The Adventures of Sherlock Holmes"); /// /// // Look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for &book in &to_find { /// match book_reviews.get(book) { /// Some(review) => println!("{}: {}", book, review), /// None => println!("{} is unreviewed.", book) /// } /// } /// /// // Look up the value for a key (will panic if the key is not found). /// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); /// /// // Iterate over everything. /// for (book, review) in &book_reviews { /// println!("{}: \"{}\"", book, review); /// } /// ``` /// /// `HashMap` also implements an [`Entry API`](#method.entry), which allows /// for more complex methods of getting, setting, updating and removing keys and /// their values: /// /// ``` /// use std::collections::HashMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `HashMap<&str, u8>` in this example). /// let mut player_stats = HashMap::new(); /// /// fn random_stat_buff() -> u8 { /// // could actually return some random value here - let's just return /// // some fixed value for now /// 42 /// } /// /// // insert a key only if it doesn't already exist /// player_stats.entry("health").or_insert(100); /// /// // insert a key using a function that provides a new value only if it /// // doesn't already exist /// player_stats.entry("defence").or_insert_with(random_stat_buff); /// /// // update a key, guarding against the key possibly not being set /// let stat = player_stats.entry("attack").or_insert(100); /// *stat += random_stat_buff(); /// ``` /// /// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`]. /// We must also derive [`PartialEq`]. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html /// [`RefCell`]: ../../std/cell/struct.RefCell.html /// [`Cell`]: ../../std/cell/struct.Cell.html /// [`default`]: #method.default /// [`with_hasher`]: #method.with_hasher /// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher /// [`fnv`]: https://crates.io/crates/fnv /// /// ``` /// use std::collections::HashMap; /// /// #[derive(Hash, Eq, PartialEq, Debug)] /// struct Viking { /// name: String, /// country: String, /// } /// /// impl Viking { /// /// Creates a new Viking. /// fn new(name: &str, country: &str) -> Viking { /// Viking { name: name.to_string(), country: country.to_string() } /// } /// } /// /// // Use a HashMap to store the vikings' health points. /// let mut vikings = HashMap::new(); /// /// vikings.insert(Viking::new("Einar", "Norway"), 25); /// vikings.insert(Viking::new("Olaf", "Denmark"), 24); /// vikings.insert(Viking::new("Harald", "Iceland"), 12); /// /// // Use derived implementation to print the status of the vikings. /// for (viking, health) in &vikings { /// println!("{:?} has {} hp", viking, health); /// } /// ``` /// /// A `HashMap` with fixed list of elements can be initialized from an array: /// /// ``` /// use std::collections::HashMap; /// /// let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)] /// .iter().cloned().collect(); /// // use the values stored in map /// ``` #[derive(Clone)] #[cfg_attr(not(test), rustc_diagnostic_item = "hashmap_type")] #[stable(feature = "rust1", since = "1.0.0")] pub struct HashMap { base: base::HashMap, } impl HashMap { /// Creates an empty `HashMap`. /// /// The hash map is initially created with a capacity of 0, so it will not allocate until it /// is first inserted into. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::new(); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> HashMap { Default::default() } /// Creates an empty `HashMap` with the specified capacity. /// /// The hash map will be able to hold at least `capacity` elements without /// reallocating. If `capacity` is 0, the hash map will not allocate. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> HashMap { HashMap::with_capacity_and_hasher(capacity, Default::default()) } } impl HashMap { /// Creates an empty `HashMap` which will use the given hash builder to hash /// keys. /// /// The created map has the default initial capacity. /// /// Warning: `hash_builder` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_hasher(s); /// map.insert(1, 2); /// ``` #[inline] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub fn with_hasher(hash_builder: S) -> HashMap { HashMap { base: base::HashMap::with_hasher(hash_builder) } } /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` /// to hash the keys. /// /// The hash map will be able to hold at least `capacity` elements without /// reallocating. If `capacity` is 0, the hash map will not allocate. /// /// Warning: `hash_builder` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_capacity_and_hasher(10, s); /// map.insert(1, 2); /// ``` #[inline] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap { HashMap { base: base::HashMap::with_capacity_and_hasher(capacity, hash_builder) } } /// Returns the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the `HashMap` might be able to hold /// more, but is guaranteed to be able to hold at least this many. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let map: HashMap = HashMap::with_capacity(100); /// assert!(map.capacity() >= 100); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.base.capacity() } /// An iterator visiting all keys in arbitrary order. /// The iterator element type is `&'a K`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for key in map.keys() { /// println!("{}", key); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn keys(&self) -> Keys<'_, K, V> { Keys { inner: self.iter() } } /// An iterator visiting all values in arbitrary order. /// The iterator element type is `&'a V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for val in map.values() { /// println!("{}", val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn values(&self) -> Values<'_, K, V> { Values { inner: self.iter() } } /// An iterator visiting all values mutably in arbitrary order. /// The iterator element type is `&'a mut V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for val in map.values_mut() { /// *val = *val + 10; /// } /// /// for val in map.values() { /// println!("{}", val); /// } /// ``` #[stable(feature = "map_values_mut", since = "1.10.0")] pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { ValuesMut { inner: self.iter_mut() } } /// An iterator visiting all key-value pairs in arbitrary order. /// The iterator element type is `(&'a K, &'a V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.iter() } } /// An iterator visiting all key-value pairs in arbitrary order, /// with mutable references to the values. /// The iterator element type is `(&'a K, &'a mut V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Update all values /// for (_, val) in map.iter_mut() { /// *val *= 2; /// } /// /// for (key, val) in &map { /// println!("key: {} val: {}", key, val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { IterMut { base: self.base.iter_mut() } } /// Returns the number of elements in the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, "a"); /// assert_eq!(a.len(), 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.base.len() } /// Returns `true` if the map contains no elements. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.base.is_empty() } /// Clears the map, returning all key-value pairs as an iterator. Keeps the /// allocated memory for reuse. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.insert(2, "b"); /// /// for (k, v) in a.drain().take(1) { /// assert!(k == 1 || k == 2); /// assert!(v == "a" || v == "b"); /// } /// /// assert!(a.is_empty()); /// ``` #[inline] #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self) -> Drain<'_, K, V> { Drain { base: self.base.drain() } } /// Clears the map, removing all key-value pairs. Keeps the allocated memory /// for reuse. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.clear(); /// assert!(a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn clear(&mut self) { self.base.clear(); } /// Returns a reference to the map's [`BuildHasher`]. /// /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let hasher = RandomState::new(); /// let map: HashMap = HashMap::with_hasher(hasher); /// let hasher: &RandomState = map.hasher(); /// ``` #[inline] #[stable(feature = "hashmap_public_hasher", since = "1.9.0")] pub fn hasher(&self) -> &S { self.base.hasher() } } impl HashMap where K: Eq + Hash, S: BuildHasher, { /// Reserves capacity for at least `additional` more elements to be inserted /// in the `HashMap`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Panics /// /// Panics if the new allocation size overflows [`usize`]. /// /// [`usize`]: ../../std/primitive.usize.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::new(); /// map.reserve(10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.base.reserve(additional) } /// Tries to reserve capacity for at least `additional` more elements to be inserted /// in the given `HashMap`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Errors /// /// If the capacity overflows, or the allocator reports a failure, then an error /// is returned. /// /// # Examples /// /// ``` /// #![feature(try_reserve)] /// use std::collections::HashMap; /// let mut map: HashMap<&str, isize> = HashMap::new(); /// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?"); /// ``` #[inline] #[unstable(feature = "try_reserve", reason = "new API", issue = "48043")] pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.base.try_reserve(additional).map_err(map_collection_alloc_err) } /// Shrinks the capacity of the map as much as possible. It will drop /// down as much as possible while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::with_capacity(100); /// map.insert(1, 2); /// map.insert(3, 4); /// assert!(map.capacity() >= 100); /// map.shrink_to_fit(); /// assert!(map.capacity() >= 2); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.base.shrink_to_fit(); } /// Shrinks the capacity of the map with a lower limit. It will drop /// down no lower than the supplied limit while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// Panics if the current capacity is smaller than the supplied /// minimum capacity. /// /// # Examples /// /// ``` /// #![feature(shrink_to)] /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::with_capacity(100); /// map.insert(1, 2); /// map.insert(3, 4); /// assert!(map.capacity() >= 100); /// map.shrink_to(10); /// assert!(map.capacity() >= 10); /// map.shrink_to(0); /// assert!(map.capacity() >= 2); /// ``` #[inline] #[unstable(feature = "shrink_to", reason = "new API", issue = "56431")] pub fn shrink_to(&mut self, min_capacity: usize) { assert!(self.capacity() >= min_capacity, "Tried to shrink to a larger capacity"); self.base.shrink_to(min_capacity); } /// Gets the given key's corresponding entry in the map for in-place manipulation. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut letters = HashMap::new(); /// /// for ch in "a short treatise on fungi".chars() { /// let counter = letters.entry(ch).or_insert(0); /// *counter += 1; /// } /// /// assert_eq!(letters[&'s'], 2); /// assert_eq!(letters[&'t'], 3); /// assert_eq!(letters[&'u'], 1); /// assert_eq!(letters.get(&'y'), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { map_entry(self.base.rustc_entry(key)) } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get(&1), Some(&"a")); /// assert_eq!(map.get(&2), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get(&self, k: &Q) -> Option<&V> where K: Borrow, Q: Hash + Eq, { self.base.get(k) } /// Returns the key-value pair corresponding to the supplied key. /// /// The supplied key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); /// assert_eq!(map.get_key_value(&2), None); /// ``` #[stable(feature = "map_get_key_value", since = "1.40.0")] #[inline] pub fn get_key_value(&self, k: &Q) -> Option<(&K, &V)> where K: Borrow, Q: Hash + Eq, { self.base.get_key_value(k) } /// Returns `true` if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn contains_key(&self, k: &Q) -> bool where K: Borrow, Q: Hash + Eq, { self.base.contains_key(k) } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// if let Some(x) = map.get_mut(&1) { /// *x = "b"; /// } /// assert_eq!(map[&1], "b"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get_mut(&mut self, k: &Q) -> Option<&mut V> where K: Borrow, Q: Hash + Eq, { self.base.get_mut(k) } /// Inserts a key-value pair into the map. /// /// If the map did not have this key present, [`None`] is returned. /// /// If the map did have this key present, the value is updated, and the old /// value is returned. The key is not updated, though; this matters for /// types that can be `==` without being identical. See the [module-level /// documentation] for more. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [module-level documentation]: index.html#insert-and-complex-keys /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// assert_eq!(map.insert(37, "a"), None); /// assert_eq!(map.is_empty(), false); /// /// map.insert(37, "b"); /// assert_eq!(map.insert(37, "c"), Some("b")); /// assert_eq!(map[&37], "c"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn insert(&mut self, k: K, v: V) -> Option { self.base.insert(k, v) } /// Removes a key from the map, returning the value at the key if the key /// was previously in the map. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove(&1), Some("a")); /// assert_eq!(map.remove(&1), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn remove(&mut self, k: &Q) -> Option where K: Borrow, Q: Hash + Eq, { self.base.remove(k) } /// Removes a key from the map, returning the stored key and value if the /// key was previously in the map. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// [`Eq`]: ../../std/cmp/trait.Eq.html /// [`Hash`]: ../../std/hash/trait.Hash.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// # fn main() { /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); /// assert_eq!(map.remove(&1), None); /// # } /// ``` #[stable(feature = "hash_map_remove_entry", since = "1.27.0")] #[inline] pub fn remove_entry(&mut self, k: &Q) -> Option<(K, V)> where K: Borrow, Q: Hash + Eq, { self.base.remove_entry(k) } /// Retains only the elements specified by the predicate. /// /// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = (0..8).map(|x|(x, x*10)).collect(); /// map.retain(|&k, _| k % 2 == 0); /// assert_eq!(map.len(), 4); /// ``` #[stable(feature = "retain_hash_collection", since = "1.18.0")] #[inline] pub fn retain(&mut self, f: F) where F: FnMut(&K, &mut V) -> bool, { self.base.retain(f) } } impl HashMap where S: BuildHasher, { /// Creates a raw entry builder for the HashMap. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. After this, insertions into a vacant entry /// still require an owned key to be provided. /// /// Raw entries are useful for such exotic situations as: /// /// * Hash memoization /// * Deferring the creation of an owned key until it is known to be required /// * Using a search key that doesn't work with the Borrow trait /// * Using custom comparison logic without newtype wrappers /// /// Because raw entries provide much more low-level control, it's much easier /// to put the HashMap into an inconsistent state which, while memory-safe, /// will cause the map to produce seemingly random results. Higher-level and /// more foolproof APIs like `entry` should be preferred when possible. /// /// In particular, the hash used to initialized the raw entry must still be /// consistent with the hash of the key that is ultimately stored in the entry. /// This is because implementations of HashMap may need to recompute hashes /// when resizing, at which point only the keys are available. /// /// Raw entries give mutable access to the keys. This must not be used /// to modify how the key would compare or hash, as the map will not re-evaluate /// where the key should go, meaning the keys may become "lost" if their /// location does not reflect their state. For instance, if you change a key /// so that the map now contains keys which compare equal, search may start /// acting erratically, with two keys randomly masking each other. Implementations /// are free to assume this doesn't happen (within the limits of memory-safety). #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> { RawEntryBuilderMut { map: self } } /// Creates a raw immutable entry builder for the HashMap. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. /// /// This is useful for /// * Hash memoization /// * Using a search key that doesn't work with the Borrow trait /// * Using custom comparison logic without newtype wrappers /// /// Unless you are in such a situation, higher-level and more foolproof APIs like /// `get` should be preferred. /// /// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> { RawEntryBuilder { map: self } } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for HashMap where K: Eq + Hash, V: PartialEq, S: BuildHasher, { fn eq(&self, other: &HashMap) -> bool { if self.len() != other.len() { return false; } self.iter().all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for HashMap where K: Eq + Hash, V: Eq, S: BuildHasher, { } #[stable(feature = "rust1", since = "1.0.0")] impl Debug for HashMap where K: Debug, V: Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for HashMap where S: Default, { /// Creates an empty `HashMap`, with the `Default` value for the hasher. #[inline] fn default() -> HashMap { HashMap::with_hasher(Default::default()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Index<&Q> for HashMap where K: Eq + Hash + Borrow, Q: Eq + Hash, S: BuildHasher, { type Output = V; /// Returns a reference to the value corresponding to the supplied key. /// /// # Panics /// /// Panics if the key is not present in the `HashMap`. #[inline] fn index(&self, key: &Q) -> &V { self.get(key).expect("no entry found for key") } } /// An iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`iter`] method on [`HashMap`]. See its /// documentation for more. /// /// [`iter`]: struct.HashMap.html#method.iter /// [`HashMap`]: struct.HashMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, K: 'a, V: 'a> { base: base::Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Iter<'_, K, V> { #[inline] fn clone(&self) -> Self { Iter { base: self.base.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Iter<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A mutable iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its /// documentation for more. /// /// [`iter_mut`]: struct.HashMap.html#method.iter_mut /// [`HashMap`]: struct.HashMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct IterMut<'a, K: 'a, V: 'a> { base: base::IterMut<'a, K, V>, } impl<'a, K, V> IterMut<'a, K, V> { /// Returns a iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// An owning iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`into_iter`] method on [`HashMap`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`into_iter`]: struct.HashMap.html#method.into_iter /// [`HashMap`]: struct.HashMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { base: base::IntoIter, } impl IntoIter { /// Returns a iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// An iterator over the keys of a `HashMap`. /// /// This `struct` is created by the [`keys`] method on [`HashMap`]. See its /// documentation for more. /// /// [`keys`]: struct.HashMap.html#method.keys /// [`HashMap`]: struct.HashMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Keys<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Keys<'_, K, V> { #[inline] fn clone(&self) -> Self { Keys { inner: self.inner.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Keys<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// An iterator over the values of a `HashMap`. /// /// This `struct` is created by the [`values`] method on [`HashMap`]. See its /// documentation for more. /// /// [`values`]: struct.HashMap.html#method.values /// [`HashMap`]: struct.HashMap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Values<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Values<'_, K, V> { #[inline] fn clone(&self) -> Self { Values { inner: self.inner.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Values<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A draining iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`drain`] method on [`HashMap`]. See its /// documentation for more. /// /// [`drain`]: struct.HashMap.html#method.drain /// [`HashMap`]: struct.HashMap.html #[stable(feature = "drain", since = "1.6.0")] pub struct Drain<'a, K: 'a, V: 'a> { base: base::Drain<'a, K, V>, } impl<'a, K, V> Drain<'a, K, V> { /// Returns a iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// A mutable iterator over the values of a `HashMap`. /// /// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its /// documentation for more. /// /// [`values_mut`]: struct.HashMap.html#method.values_mut /// [`HashMap`]: struct.HashMap.html #[stable(feature = "map_values_mut", since = "1.10.0")] pub struct ValuesMut<'a, K: 'a, V: 'a> { inner: IterMut<'a, K, V>, } /// A builder for computing where in a HashMap a key-value pair would be stored. /// /// See the [`HashMap::raw_entry_mut`] docs for usage examples. /// /// [`HashMap::raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawEntryBuilderMut<'a, K: 'a, V: 'a, S: 'a> { map: &'a mut HashMap, } /// A view into a single entry in a map, which may either be vacant or occupied. /// /// This is a lower-level version of [`Entry`]. /// /// This `enum` is constructed through the [`raw_entry_mut`] method on [`HashMap`], /// then calling one of the methods of that [`RawEntryBuilderMut`]. /// /// [`HashMap`]: struct.HashMap.html /// [`Entry`]: enum.Entry.html /// [`raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut /// [`RawEntryBuilderMut`]: struct.RawEntryBuilderMut.html #[unstable(feature = "hash_raw_entry", issue = "56167")] pub enum RawEntryMut<'a, K: 'a, V: 'a, S: 'a> { /// An occupied entry. Occupied(RawOccupiedEntryMut<'a, K, V>), /// A vacant entry. Vacant(RawVacantEntryMut<'a, K, V, S>), } /// A view into an occupied entry in a `HashMap`. /// It is part of the [`RawEntryMut`] enum. /// /// [`RawEntryMut`]: enum.RawEntryMut.html #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawOccupiedEntryMut<'a, K: 'a, V: 'a> { base: base::RawOccupiedEntryMut<'a, K, V>, } /// A view into a vacant entry in a `HashMap`. /// It is part of the [`RawEntryMut`] enum. /// /// [`RawEntryMut`]: enum.RawEntryMut.html #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawVacantEntryMut<'a, K: 'a, V: 'a, S: 'a> { base: base::RawVacantEntryMut<'a, K, V, S>, } /// A builder for computing where in a HashMap a key-value pair would be stored. /// /// See the [`HashMap::raw_entry`] docs for usage examples. /// /// [`HashMap::raw_entry`]: struct.HashMap.html#method.raw_entry #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawEntryBuilder<'a, K: 'a, V: 'a, S: 'a> { map: &'a HashMap, } impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S> where S: BuildHasher, { /// Creates a `RawEntryMut` from the given key. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key(self, k: &Q) -> RawEntryMut<'a, K, V, S> where K: Borrow, Q: Hash + Eq, { map_raw_entry(self.map.base.raw_entry_mut().from_key(k)) } /// Creates a `RawEntryMut` from the given key and its hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key_hashed_nocheck(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S> where K: Borrow, Q: Eq, { map_raw_entry(self.map.base.raw_entry_mut().from_key_hashed_nocheck(hash, k)) } /// Creates a `RawEntryMut` from the given hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_hash(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S> where for<'b> F: FnMut(&'b K) -> bool, { map_raw_entry(self.map.base.raw_entry_mut().from_hash(hash, is_match)) } } impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S> where S: BuildHasher, { /// Access an entry by key. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key(self, k: &Q) -> Option<(&'a K, &'a V)> where K: Borrow, Q: Hash + Eq, { self.map.base.raw_entry().from_key(k) } /// Access an entry by a key and its hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key_hashed_nocheck(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)> where K: Borrow, Q: Hash + Eq, { self.map.base.raw_entry().from_key_hashed_nocheck(hash, k) } /// Access an entry by hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_hash(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> where F: FnMut(&K) -> bool, { self.map.base.raw_entry().from_hash(hash, is_match) } } impl<'a, K, V, S> RawEntryMut<'a, K, V, S> { /// Ensures a value is in the entry by inserting the default if empty, and returns /// mutable references to the key and value in the entry. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3); /// assert_eq!(map["poneyland"], 3); /// /// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2; /// assert_eq!(map["poneyland"], 6); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { match self { RawEntryMut::Occupied(entry) => entry.into_key_value(), RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val), } } /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns mutable references to the key and value in the entry. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// /// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| { /// ("poneyland", "hoho".to_string()) /// }); /// /// assert_eq!(map["poneyland"], "hoho".to_string()); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn or_insert_with(self, default: F) -> (&'a mut K, &'a mut V) where F: FnOnce() -> (K, V), K: Hash, S: BuildHasher, { match self { RawEntryMut::Occupied(entry) => entry.into_key_value(), RawEntryMut::Vacant(entry) => { let (k, v) = default(); entry.insert(k, v) } } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.raw_entry_mut() /// .from_key("poneyland") /// .and_modify(|_k, v| { *v += 1 }) /// .or_insert("poneyland", 42); /// assert_eq!(map["poneyland"], 42); /// /// map.raw_entry_mut() /// .from_key("poneyland") /// .and_modify(|_k, v| { *v += 1 }) /// .or_insert("poneyland", 0); /// assert_eq!(map["poneyland"], 43); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn and_modify(self, f: F) -> Self where F: FnOnce(&mut K, &mut V), { match self { RawEntryMut::Occupied(mut entry) => { { let (k, v) = entry.get_key_value_mut(); f(k, v); } RawEntryMut::Occupied(entry) } RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry), } } } impl<'a, K, V> RawOccupiedEntryMut<'a, K, V> { /// Gets a reference to the key in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn key(&self) -> &K { self.base.key() } /// Gets a mutable reference to the key in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn key_mut(&mut self) -> &mut K { self.base.key_mut() } /// Converts the entry into a mutable reference to the key in the entry /// with a lifetime bound to the map itself. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_key(self) -> &'a mut K { self.base.into_key() } /// Gets a reference to the value in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get(&self) -> &V { self.base.get() } /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the map itself. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_mut(self) -> &'a mut V { self.base.into_mut() } /// Gets a mutable reference to the value in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_mut(&mut self) -> &mut V { self.base.get_mut() } /// Gets a reference to the key and value in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_key_value(&mut self) -> (&K, &V) { self.base.get_key_value() } /// Gets a mutable reference to the key and value in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { self.base.get_key_value_mut() } /// Converts the OccupiedEntry into a mutable reference to the key and value in the entry /// with a lifetime bound to the map itself. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_key_value(self) -> (&'a mut K, &'a mut V) { self.base.into_key_value() } /// Sets the value of the entry, and returns the entry's old value. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert(&mut self, value: V) -> V { self.base.insert(value) } /// Sets the value of the entry, and returns the entry's old value. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert_key(&mut self, key: K) -> K { self.base.insert_key(key) } /// Takes the value out of the entry, and returns it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn remove(self) -> V { self.base.remove() } /// Take the ownership of the key and value from the map. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn remove_entry(self) -> (K, V) { self.base.remove_entry() } } impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> { /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.base.insert(key, value) } /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.base.insert_hashed_nocheck(hash, key, value) } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryBuilderMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilder").finish() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(), RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(), } } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawOccupiedEntryMut<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawOccupiedEntryMut") .field("key", self.key()) .field("value", self.get()) .finish() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawVacantEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawVacantEntryMut").finish() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryBuilder<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilder").finish() } } /// A view into a single entry in a map, which may either be vacant or occupied. /// /// This `enum` is constructed from the [`entry`] method on [`HashMap`]. /// /// [`HashMap`]: struct.HashMap.html /// [`entry`]: struct.HashMap.html#method.entry #[stable(feature = "rust1", since = "1.0.0")] pub enum Entry<'a, K: 'a, V: 'a> { /// An occupied entry. #[stable(feature = "rust1", since = "1.0.0")] Occupied(#[stable(feature = "rust1", since = "1.0.0")] OccupiedEntry<'a, K, V>), /// A vacant entry. #[stable(feature = "rust1", since = "1.0.0")] Vacant(#[stable(feature = "rust1", since = "1.0.0")] VacantEntry<'a, K, V>), } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for Entry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), } } } /// A view into an occupied entry in a `HashMap`. /// It is part of the [`Entry`] enum. /// /// [`Entry`]: enum.Entry.html #[stable(feature = "rust1", since = "1.0.0")] pub struct OccupiedEntry<'a, K: 'a, V: 'a> { base: base::RustcOccupiedEntry<'a, K, V>, } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for OccupiedEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OccupiedEntry").field("key", self.key()).field("value", self.get()).finish() } } /// A view into a vacant entry in a `HashMap`. /// It is part of the [`Entry`] enum. /// /// [`Entry`]: enum.Entry.html #[stable(feature = "rust1", since = "1.0.0")] pub struct VacantEntry<'a, K: 'a, V: 'a> { base: base::RustcVacantEntry<'a, K, V>, } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for VacantEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("VacantEntry").field(self.key()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a HashMap { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; #[inline] fn into_iter(self) -> Iter<'a, K, V> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a mut HashMap { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; #[inline] fn into_iter(self) -> IterMut<'a, K, V> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for HashMap { type Item = (K, V); type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each key-value /// pair out of the map in arbitrary order. The map cannot be used after /// calling this. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Not possible with .iter() /// let vec: Vec<(&str, i32)> = map.into_iter().collect(); /// ``` #[inline] fn into_iter(self) -> IntoIter { IntoIter { base: self.base.into_iter() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Iter<'a, K, V> { type Item = (&'a K, &'a V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Iter<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Iter<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for IterMut<'a, K, V> { type Item = (&'a K, &'a mut V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IterMut<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IterMut<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for IterMut<'_, K, V> where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IntoIter {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Keys<'a, K, V> { type Item = &'a K; #[inline] fn next(&mut self) -> Option<&'a K> { self.inner.next().map(|(k, _)| k) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Keys<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Keys<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Values<'a, K, V> { type Item = &'a V; #[inline] fn next(&mut self) -> Option<&'a V> { self.inner.next().map(|(_, v)| v) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Values<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Values<'_, K, V> {} #[stable(feature = "map_values_mut", since = "1.10.0")] impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { type Item = &'a mut V; #[inline] fn next(&mut self) -> Option<&'a mut V> { self.inner.next().map(|(_, v)| v) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "map_values_mut", since = "1.10.0")] impl ExactSizeIterator for ValuesMut<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for ValuesMut<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for ValuesMut<'_, K, V> where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.inner.iter()).finish() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, K, V> Iterator for Drain<'a, K, V> { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl ExactSizeIterator for Drain<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Drain<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Drain<'_, K, V> where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl<'a, K, V> Entry<'a, K, V> { #[stable(feature = "rust1", since = "1.0.0")] /// Ensures a value is in the entry by inserting the default if empty, and returns /// a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.entry("poneyland").or_insert(3); /// assert_eq!(map["poneyland"], 3); /// /// *map.entry("poneyland").or_insert(10) *= 2; /// assert_eq!(map["poneyland"], 6); /// ``` #[inline] pub fn or_insert(self, default: V) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default), } } #[stable(feature = "rust1", since = "1.0.0")] /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// let s = "hoho".to_string(); /// /// map.entry("poneyland").or_insert_with(|| s); /// /// assert_eq!(map["poneyland"], "hoho".to_string()); /// ``` #[inline] pub fn or_insert_with V>(self, default: F) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default()), } } #[unstable(feature = "or_insert_with_key", issue = "71024")] /// Ensures a value is in the entry by inserting, if empty, the result of the default function, /// which takes the key as its argument, and returns a mutable reference to the value in the /// entry. /// /// # Examples /// /// ``` /// #![feature(or_insert_with_key)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, usize> = HashMap::new(); /// /// map.entry("poneyland").or_insert_with_key(|key| key.chars().count()); /// /// assert_eq!(map["poneyland"], 9); /// ``` #[inline] pub fn or_insert_with_key V>(self, default: F) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => { let value = default(entry.key()); entry.insert(value) } } } /// Returns a reference to this entry's key. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { match *self { Occupied(ref entry) => entry.key(), Vacant(ref entry) => entry.key(), } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 42); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 43); /// ``` #[inline] #[stable(feature = "entry_and_modify", since = "1.26.0")] pub fn and_modify(self, f: F) -> Self where F: FnOnce(&mut V), { match self { Occupied(mut entry) => { f(entry.get_mut()); Occupied(entry) } Vacant(entry) => Vacant(entry), } } /// Sets the value of the entry, and returns an OccupiedEntry. /// /// # Examples /// /// ``` /// #![feature(entry_insert)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// let entry = map.entry("poneyland").insert("hoho".to_string()); /// /// assert_eq!(entry.key(), &"poneyland"); /// ``` #[inline] #[unstable(feature = "entry_insert", issue = "65225")] pub fn insert(self, value: V) -> OccupiedEntry<'a, K, V> { match self { Occupied(mut entry) => { entry.insert(value); entry } Vacant(entry) => entry.insert_entry(value), } } } impl<'a, K, V: Default> Entry<'a, K, V> { #[stable(feature = "entry_or_default", since = "1.28.0")] /// Ensures a value is in the entry by inserting the default value if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// # fn main() { /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, Option> = HashMap::new(); /// map.entry("poneyland").or_default(); /// /// assert_eq!(map["poneyland"], None); /// # } /// ``` #[inline] pub fn or_default(self) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(Default::default()), } } } impl<'a, K, V> OccupiedEntry<'a, K, V> { /// Gets a reference to the key in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { self.base.key() } /// Take the ownership of the key and value from the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// // We delete the entry from the map. /// o.remove_entry(); /// } /// /// assert_eq!(map.contains_key("poneyland"), false); /// ``` #[inline] #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn remove_entry(self) -> (K, V) { self.base.remove_entry() } /// Gets a reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.get(), &12); /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn get(&self) -> &V { self.base.get() } /// Gets a mutable reference to the value in the entry. /// /// If you need a reference to the `OccupiedEntry` which may outlive the /// destruction of the `Entry` value, see [`into_mut`]. /// /// [`into_mut`]: #method.into_mut /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// *o.get_mut() += 10; /// assert_eq!(*o.get(), 22); /// /// // We can use the same Entry multiple times. /// *o.get_mut() += 2; /// } /// /// assert_eq!(map["poneyland"], 24); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self) -> &mut V { self.base.get_mut() } /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the map itself. /// /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. /// /// [`get_mut`]: #method.get_mut /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(o) = map.entry("poneyland") { /// *o.into_mut() += 10; /// } /// /// assert_eq!(map["poneyland"], 22); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn into_mut(self) -> &'a mut V { self.base.into_mut() } /// Sets the value of the entry, and returns the entry's old value. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// assert_eq!(o.insert(15), 12); /// } /// /// assert_eq!(map["poneyland"], 15); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, value: V) -> V { self.base.insert(value) } /// Takes the value out of the entry, and returns it. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.remove(), 12); /// } /// /// assert_eq!(map.contains_key("poneyland"), false); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(self) -> V { self.base.remove() } /// Replaces the entry, returning the old key and value. The new key in the hash map will be /// the key used to create this entry. /// /// # Examples /// /// ``` /// #![feature(map_entry_replace)] /// use std::collections::hash_map::{Entry, HashMap}; /// use std::rc::Rc; /// /// let mut map: HashMap, u32> = HashMap::new(); /// map.insert(Rc::new("Stringthing".to_string()), 15); /// /// let my_key = Rc::new("Stringthing".to_string()); /// /// if let Entry::Occupied(entry) = map.entry(my_key) { /// // Also replace the key with a handle to our other key. /// let (old_key, old_value): (Rc, u32) = entry.replace_entry(16); /// } /// /// ``` #[inline] #[unstable(feature = "map_entry_replace", issue = "44286")] pub fn replace_entry(self, value: V) -> (K, V) { self.base.replace_entry(value) } /// Replaces the key in the hash map with the key used to create this entry. /// /// # Examples /// /// ``` /// #![feature(map_entry_replace)] /// use std::collections::hash_map::{Entry, HashMap}; /// use std::rc::Rc; /// /// let mut map: HashMap, u32> = HashMap::new(); /// let mut known_strings: Vec> = Vec::new(); /// /// // Initialise known strings, run program, etc. /// /// reclaim_memory(&mut map, &known_strings); /// /// fn reclaim_memory(map: &mut HashMap, u32>, known_strings: &[Rc] ) { /// for s in known_strings { /// if let Entry::Occupied(entry) = map.entry(s.clone()) { /// // Replaces the entry's key with our version of it in `known_strings`. /// entry.replace_key(); /// } /// } /// } /// ``` #[inline] #[unstable(feature = "map_entry_replace", issue = "44286")] pub fn replace_key(self) -> K { self.base.replace_key() } } impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> { /// Gets a reference to the key that would be used when inserting a value /// through the `VacantEntry`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { self.base.key() } /// Take ownership of the key. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(v) = map.entry("poneyland") { /// v.into_key(); /// } /// ``` #[inline] #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn into_key(self) -> K { self.base.into_key() } /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(o) = map.entry("poneyland") { /// o.insert(37); /// } /// assert_eq!(map["poneyland"], 37); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(self, value: V) -> &'a mut V { self.base.insert(value) } /// Sets the value of the entry with the VacantEntry's key, /// and returns an OccupiedEntry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(o) = map.entry("poneyland") { /// o.insert(37); /// } /// assert_eq!(map["poneyland"], 37); /// ``` #[inline] fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> { let base = self.base.insert_entry(value); OccupiedEntry { base } } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator<(K, V)> for HashMap where K: Eq + Hash, S: BuildHasher + Default, { fn from_iter>(iter: T) -> HashMap { let mut map = HashMap::with_hasher(Default::default()); map.extend(iter); map } } /// Inserts all new key-values from the iterator and replaces values with existing /// keys with new values returned from the iterator. #[stable(feature = "rust1", since = "1.0.0")] impl Extend<(K, V)> for HashMap where K: Eq + Hash, S: BuildHasher, { #[inline] fn extend>(&mut self, iter: T) { self.base.extend(iter) } } #[stable(feature = "hash_extend_copy", since = "1.4.0")] impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap where K: Eq + Hash + Copy, V: Copy, S: BuildHasher, { #[inline] fn extend>(&mut self, iter: T) { self.base.extend(iter) } } /// `RandomState` is the default state for [`HashMap`] types. /// /// A particular instance `RandomState` will create the same instances of /// [`Hasher`], but the hashers created by two different `RandomState` /// instances are unlikely to produce the same result for the same values. /// /// [`HashMap`]: struct.HashMap.html /// [`Hasher`]: ../../hash/trait.Hasher.html /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_hasher(s); /// map.insert(1, 2); /// ``` #[derive(Clone)] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub struct RandomState { k0: u64, k1: u64, } impl RandomState { /// Constructs a new `RandomState` that is initialized with random keys. /// /// # Examples /// /// ``` /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// ``` #[inline] #[allow(deprecated)] // rand #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub fn new() -> RandomState { // Historically this function did not cache keys from the OS and instead // simply always called `rand::thread_rng().gen()` twice. In #31356 it // was discovered, however, that because we re-seed the thread-local RNG // from the OS periodically that this can cause excessive slowdown when // many hash maps are created on a thread. To solve this performance // trap we cache the first set of randomly generated keys per-thread. // // Later in #36481 it was discovered that exposing a deterministic // iteration order allows a form of DOS attack. To counter that we // increment one of the seeds on every RandomState creation, giving // every corresponding HashMap a different iteration order. thread_local!(static KEYS: Cell<(u64, u64)> = { Cell::new(sys::hashmap_random_keys()) }); KEYS.with(|keys| { let (k0, k1) = keys.get(); keys.set((k0.wrapping_add(1), k1)); RandomState { k0, k1 } }) } } #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] impl BuildHasher for RandomState { type Hasher = DefaultHasher; #[inline] #[allow(deprecated)] fn build_hasher(&self) -> DefaultHasher { DefaultHasher(SipHasher13::new_with_keys(self.k0, self.k1)) } } /// The default [`Hasher`] used by [`RandomState`]. /// /// The internal algorithm is not specified, and so it and its hashes should /// not be relied upon over releases. /// /// [`RandomState`]: struct.RandomState.html /// [`Hasher`]: ../../hash/trait.Hasher.html #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[allow(deprecated)] #[derive(Clone, Debug)] pub struct DefaultHasher(SipHasher13); impl DefaultHasher { /// Creates a new `DefaultHasher`. /// /// This hasher is not guaranteed to be the same as all other /// `DefaultHasher` instances, but is the same as all other `DefaultHasher` /// instances created through `new` or `default`. #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[allow(deprecated)] pub fn new() -> DefaultHasher { DefaultHasher(SipHasher13::new_with_keys(0, 0)) } } #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] impl Default for DefaultHasher { // FIXME: here should link `new` to [DefaultHasher::new], but it occurs intra-doc link // resolution failure when re-exporting libstd items. When #56922 fixed, // link `new` to [DefaultHasher::new] again. /// Creates a new `DefaultHasher` using `new`. /// See its documentation for more. fn default() -> DefaultHasher { DefaultHasher::new() } } #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] impl Hasher for DefaultHasher { #[inline] fn write(&mut self, msg: &[u8]) { self.0.write(msg) } #[inline] fn finish(&self) -> u64 { self.0.finish() } } #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] impl Default for RandomState { /// Constructs a new `RandomState`. #[inline] fn default() -> RandomState { RandomState::new() } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for RandomState { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad("RandomState { .. }") } } #[inline] fn map_entry<'a, K: 'a, V: 'a>(raw: base::RustcEntry<'a, K, V>) -> Entry<'a, K, V> { match raw { base::RustcEntry::Occupied(base) => Entry::Occupied(OccupiedEntry { base }), base::RustcEntry::Vacant(base) => Entry::Vacant(VacantEntry { base }), } } #[inline] fn map_collection_alloc_err(err: hashbrown::CollectionAllocErr) -> TryReserveError { match err { hashbrown::CollectionAllocErr::CapacityOverflow => TryReserveError::CapacityOverflow, hashbrown::CollectionAllocErr::AllocErr { layout } => { TryReserveError::AllocError { layout, non_exhaustive: () } } } } #[inline] fn map_raw_entry<'a, K: 'a, V: 'a, S: 'a>( raw: base::RawEntryMut<'a, K, V, S>, ) -> RawEntryMut<'a, K, V, S> { match raw { base::RawEntryMut::Occupied(base) => RawEntryMut::Occupied(RawOccupiedEntryMut { base }), base::RawEntryMut::Vacant(base) => RawEntryMut::Vacant(RawVacantEntryMut { base }), } } #[allow(dead_code)] fn assert_covariance() { fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> { v } fn map_val<'new>(v: HashMap) -> HashMap { v } fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> { v } fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> { v } fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> { v } fn into_iter_val<'new>(v: IntoIter) -> IntoIter { v } fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> { v } fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> { v } fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> { v } fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> { v } fn drain<'new>( d: Drain<'static, &'static str, &'static str>, ) -> Drain<'new, &'new str, &'new str> { d } } #[cfg(test)] mod test_map { use super::Entry::{Occupied, Vacant}; use super::HashMap; use super::RandomState; use crate::cell::RefCell; use rand::{thread_rng, Rng}; use realstd::collections::TryReserveError::*; // https://github.com/rust-lang/rust/issues/62301 fn _assert_hashmap_is_unwind_safe() { fn assert_unwind_safe() {} assert_unwind_safe::>>(); } #[test] fn test_zero_capacities() { type HM = HashMap; let m = HM::new(); assert_eq!(m.capacity(), 0); let m = HM::default(); assert_eq!(m.capacity(), 0); let m = HM::with_hasher(RandomState::new()); assert_eq!(m.capacity(), 0); let m = HM::with_capacity(0); assert_eq!(m.capacity(), 0); let m = HM::with_capacity_and_hasher(0, RandomState::new()); assert_eq!(m.capacity(), 0); let mut m = HM::new(); m.insert(1, 1); m.insert(2, 2); m.remove(&1); m.remove(&2); m.shrink_to_fit(); assert_eq!(m.capacity(), 0); let mut m = HM::new(); m.reserve(0); assert_eq!(m.capacity(), 0); } #[test] fn test_create_capacity_zero() { let mut m = HashMap::with_capacity(0); assert!(m.insert(1, 1).is_none()); assert!(m.contains_key(&1)); assert!(!m.contains_key(&0)); } #[test] fn test_insert() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.insert(1, 2).is_none()); assert_eq!(m.len(), 1); assert!(m.insert(2, 4).is_none()); assert_eq!(m.len(), 2); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&2).unwrap(), 4); } #[test] fn test_clone() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.insert(1, 2).is_none()); assert_eq!(m.len(), 1); assert!(m.insert(2, 4).is_none()); assert_eq!(m.len(), 2); let m2 = m.clone(); assert_eq!(*m2.get(&1).unwrap(), 2); assert_eq!(*m2.get(&2).unwrap(), 4); assert_eq!(m2.len(), 2); } thread_local! { static DROP_VECTOR: RefCell> = RefCell::new(Vec::new()) } #[derive(Hash, PartialEq, Eq)] struct Droppable { k: usize, } impl Droppable { fn new(k: usize) -> Droppable { DROP_VECTOR.with(|slot| { slot.borrow_mut()[k] += 1; }); Droppable { k } } } impl Drop for Droppable { fn drop(&mut self) { DROP_VECTOR.with(|slot| { slot.borrow_mut()[self.k] -= 1; }); } } impl Clone for Droppable { fn clone(&self) -> Droppable { Droppable::new(self.k) } } #[test] fn test_drops() { DROP_VECTOR.with(|slot| { *slot.borrow_mut() = vec![0; 200]; }); { let mut m = HashMap::new(); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); for i in 0..100 { let d1 = Droppable::new(i); let d2 = Droppable::new(i + 100); m.insert(d1, d2); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); for i in 0..50 { let k = Droppable::new(i); let v = m.remove(&k); assert!(v.is_some()); DROP_VECTOR.with(|v| { assert_eq!(v.borrow()[i], 1); assert_eq!(v.borrow()[i + 100], 1); }); } DROP_VECTOR.with(|v| { for i in 0..50 { assert_eq!(v.borrow()[i], 0); assert_eq!(v.borrow()[i + 100], 0); } for i in 50..100 { assert_eq!(v.borrow()[i], 1); assert_eq!(v.borrow()[i + 100], 1); } }); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); } #[test] fn test_into_iter_drops() { DROP_VECTOR.with(|v| { *v.borrow_mut() = vec![0; 200]; }); let hm = { let mut hm = HashMap::new(); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); for i in 0..100 { let d1 = Droppable::new(i); let d2 = Droppable::new(i + 100); hm.insert(d1, d2); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); hm }; // By the way, ensure that cloning doesn't screw up the dropping. drop(hm.clone()); { let mut half = hm.into_iter().take(50); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); for _ in half.by_ref() {} DROP_VECTOR.with(|v| { let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count(); let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count(); assert_eq!(nk, 50); assert_eq!(nv, 50); }); }; DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); } #[test] fn test_empty_remove() { let mut m: HashMap = HashMap::new(); assert_eq!(m.remove(&0), None); } #[test] fn test_empty_entry() { let mut m: HashMap = HashMap::new(); match m.entry(0) { Occupied(_) => panic!(), Vacant(_) => {} } assert!(*m.entry(0).or_insert(true)); assert_eq!(m.len(), 1); } #[test] fn test_empty_iter() { let mut m: HashMap = HashMap::new(); assert_eq!(m.drain().next(), None); assert_eq!(m.keys().next(), None); assert_eq!(m.values().next(), None); assert_eq!(m.values_mut().next(), None); assert_eq!(m.iter().next(), None); assert_eq!(m.iter_mut().next(), None); assert_eq!(m.len(), 0); assert!(m.is_empty()); assert_eq!(m.into_iter().next(), None); } #[test] fn test_lots_of_insertions() { let mut m = HashMap::new(); // Try this a few times to make sure we never screw up the hashmap's // internal state. for _ in 0..10 { assert!(m.is_empty()); for i in 1..1001 { assert!(m.insert(i, i).is_none()); for j in 1..=i { let r = m.get(&j); assert_eq!(r, Some(&j)); } for j in i + 1..1001 { let r = m.get(&j); assert_eq!(r, None); } } for i in 1001..2001 { assert!(!m.contains_key(&i)); } // remove forwards for i in 1..1001 { assert!(m.remove(&i).is_some()); for j in 1..=i { assert!(!m.contains_key(&j)); } for j in i + 1..1001 { assert!(m.contains_key(&j)); } } for i in 1..1001 { assert!(!m.contains_key(&i)); } for i in 1..1001 { assert!(m.insert(i, i).is_none()); } // remove backwards for i in (1..1001).rev() { assert!(m.remove(&i).is_some()); for j in i..1001 { assert!(!m.contains_key(&j)); } for j in 1..i { assert!(m.contains_key(&j)); } } } } #[test] fn test_find_mut() { let mut m = HashMap::new(); assert!(m.insert(1, 12).is_none()); assert!(m.insert(2, 8).is_none()); assert!(m.insert(5, 14).is_none()); let new = 100; match m.get_mut(&5) { None => panic!(), Some(x) => *x = new, } assert_eq!(m.get(&5), Some(&new)); } #[test] fn test_insert_overwrite() { let mut m = HashMap::new(); assert!(m.insert(1, 2).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert!(!m.insert(1, 3).is_none()); assert_eq!(*m.get(&1).unwrap(), 3); } #[test] fn test_insert_conflicts() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert!(m.insert(5, 3).is_none()); assert!(m.insert(9, 4).is_none()); assert_eq!(*m.get(&9).unwrap(), 4); assert_eq!(*m.get(&5).unwrap(), 3); assert_eq!(*m.get(&1).unwrap(), 2); } #[test] fn test_conflict_remove() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert!(m.insert(5, 3).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&5).unwrap(), 3); assert!(m.insert(9, 4).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&5).unwrap(), 3); assert_eq!(*m.get(&9).unwrap(), 4); assert!(m.remove(&1).is_some()); assert_eq!(*m.get(&9).unwrap(), 4); assert_eq!(*m.get(&5).unwrap(), 3); } #[test] fn test_is_empty() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert!(!m.is_empty()); assert!(m.remove(&1).is_some()); assert!(m.is_empty()); } #[test] fn test_remove() { let mut m = HashMap::new(); m.insert(1, 2); assert_eq!(m.remove(&1), Some(2)); assert_eq!(m.remove(&1), None); } #[test] fn test_remove_entry() { let mut m = HashMap::new(); m.insert(1, 2); assert_eq!(m.remove_entry(&1), Some((1, 2))); assert_eq!(m.remove(&1), None); } #[test] fn test_iterate() { let mut m = HashMap::with_capacity(4); for i in 0..32 { assert!(m.insert(i, i * 2).is_none()); } assert_eq!(m.len(), 32); let mut observed: u32 = 0; for (k, v) in &m { assert_eq!(*v, *k * 2); observed |= 1 << *k; } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_keys() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: HashMap<_, _> = vec.into_iter().collect(); let keys: Vec<_> = map.keys().cloned().collect(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn test_values() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: HashMap<_, _> = vec.into_iter().collect(); let values: Vec<_> = map.values().cloned().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn test_values_mut() { let vec = vec![(1, 1), (2, 2), (3, 3)]; let mut map: HashMap<_, _> = vec.into_iter().collect(); for value in map.values_mut() { *value = (*value) * 2 } let values: Vec<_> = map.values().cloned().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&2)); assert!(values.contains(&4)); assert!(values.contains(&6)); } #[test] fn test_find() { let mut m = HashMap::new(); assert!(m.get(&1).is_none()); m.insert(1, 2); match m.get(&1) { None => panic!(), Some(v) => assert_eq!(*v, 2), } } #[test] fn test_eq() { let mut m1 = HashMap::new(); m1.insert(1, 2); m1.insert(2, 3); m1.insert(3, 4); let mut m2 = HashMap::new(); m2.insert(1, 2); m2.insert(2, 3); assert!(m1 != m2); m2.insert(3, 4); assert_eq!(m1, m2); } #[test] fn test_show() { let mut map = HashMap::new(); let empty: HashMap = HashMap::new(); map.insert(1, 2); map.insert(3, 4); let map_str = format!("{:?}", map); assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}"); assert_eq!(format!("{:?}", empty), "{}"); } #[test] fn test_reserve_shrink_to_fit() { let mut m = HashMap::new(); m.insert(0, 0); m.remove(&0); assert!(m.capacity() >= m.len()); for i in 0..128 { m.insert(i, i); } m.reserve(256); let usable_cap = m.capacity(); for i in 128..(128 + 256) { m.insert(i, i); assert_eq!(m.capacity(), usable_cap); } for i in 100..(128 + 256) { assert_eq!(m.remove(&i), Some(i)); } m.shrink_to_fit(); assert_eq!(m.len(), 100); assert!(!m.is_empty()); assert!(m.capacity() >= m.len()); for i in 0..100 { assert_eq!(m.remove(&i), Some(i)); } m.shrink_to_fit(); m.insert(0, 0); assert_eq!(m.len(), 1); assert!(m.capacity() >= m.len()); assert_eq!(m.remove(&0), Some(0)); } #[test] fn test_from_iter() { let xs = [(1, 1), (2, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); for &(k, v) in &xs { assert_eq!(map.get(&k), Some(&v)); } assert_eq!(map.iter().len(), xs.len() - 1); } #[test] fn test_size_hint() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_iter_len() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.len(), 3); } #[test] fn test_mut_size_hint() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter_mut(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_iter_mut_len() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter_mut(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.len(), 3); } #[test] fn test_index() { let mut map = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); assert_eq!(map[&2], 1); } #[test] #[should_panic] fn test_index_nonexistent() { let mut map = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); map[&4]; } #[test] fn test_entry() { let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); // Existing key (insert) match map.entry(1) { Vacant(_) => unreachable!(), Occupied(mut view) => { assert_eq!(view.get(), &10); assert_eq!(view.insert(100), 10); } } assert_eq!(map.get(&1).unwrap(), &100); assert_eq!(map.len(), 6); // Existing key (update) match map.entry(2) { Vacant(_) => unreachable!(), Occupied(mut view) => { let v = view.get_mut(); let new_v = (*v) * 10; *v = new_v; } } assert_eq!(map.get(&2).unwrap(), &200); assert_eq!(map.len(), 6); // Existing key (take) match map.entry(3) { Vacant(_) => unreachable!(), Occupied(view) => { assert_eq!(view.remove(), 30); } } assert_eq!(map.get(&3), None); assert_eq!(map.len(), 5); // Inexistent key (insert) match map.entry(10) { Occupied(_) => unreachable!(), Vacant(view) => { assert_eq!(*view.insert(1000), 1000); } } assert_eq!(map.get(&10).unwrap(), &1000); assert_eq!(map.len(), 6); } #[test] fn test_entry_take_doesnt_corrupt() { #![allow(deprecated)] //rand // Test for #19292 fn check(m: &HashMap) { for k in m.keys() { assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); } } let mut m = HashMap::new(); let mut rng = thread_rng(); // Populate the map with some items. for _ in 0..50 { let x = rng.gen_range(-10, 10); m.insert(x, ()); } for _ in 0..1000 { let x = rng.gen_range(-10, 10); match m.entry(x) { Vacant(_) => {} Occupied(e) => { e.remove(); } } check(&m); } } #[test] fn test_extend_ref() { let mut a = HashMap::new(); a.insert(1, "one"); let mut b = HashMap::new(); b.insert(2, "two"); b.insert(3, "three"); a.extend(&b); assert_eq!(a.len(), 3); assert_eq!(a[&1], "one"); assert_eq!(a[&2], "two"); assert_eq!(a[&3], "three"); } #[test] fn test_capacity_not_less_than_len() { let mut a = HashMap::new(); let mut item = 0; for _ in 0..116 { a.insert(item, 0); item += 1; } assert!(a.capacity() > a.len()); let free = a.capacity() - a.len(); for _ in 0..free { a.insert(item, 0); item += 1; } assert_eq!(a.len(), a.capacity()); // Insert at capacity should cause allocation. a.insert(item, 0); assert!(a.capacity() > a.len()); } #[test] fn test_occupied_entry_key() { let mut a = HashMap::new(); let key = "hello there"; let value = "value goes here"; assert!(a.is_empty()); a.insert(key.clone(), value.clone()); assert_eq!(a.len(), 1); assert_eq!(a[key], value); match a.entry(key.clone()) { Vacant(_) => panic!(), Occupied(e) => assert_eq!(key, *e.key()), } assert_eq!(a.len(), 1); assert_eq!(a[key], value); } #[test] fn test_vacant_entry_key() { let mut a = HashMap::new(); let key = "hello there"; let value = "value goes here"; assert!(a.is_empty()); match a.entry(key.clone()) { Occupied(_) => panic!(), Vacant(e) => { assert_eq!(key, *e.key()); e.insert(value.clone()); } } assert_eq!(a.len(), 1); assert_eq!(a[key], value); } #[test] fn test_retain() { let mut map: HashMap = (0..100).map(|x| (x, x * 10)).collect(); map.retain(|&k, _| k % 2 == 0); assert_eq!(map.len(), 50); assert_eq!(map[&2], 20); assert_eq!(map[&4], 40); assert_eq!(map[&6], 60); } #[test] fn test_try_reserve() { let mut empty_bytes: HashMap = HashMap::new(); const MAX_USIZE: usize = usize::MAX; if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) { } else { panic!("usize::MAX should trigger an overflow!"); } if let Err(AllocError { .. }) = empty_bytes.try_reserve(MAX_USIZE / 8) { } else { panic!("usize::MAX / 8 should trigger an OOM!") } } #[test] fn test_raw_entry() { use super::RawEntryMut::{Occupied, Vacant}; let xs = [(1i32, 10i32), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); let compute_hash = |map: &HashMap, k: i32| -> u64 { use core::hash::{BuildHasher, Hash, Hasher}; let mut hasher = map.hasher().build_hasher(); k.hash(&mut hasher); hasher.finish() }; // Existing key (insert) match map.raw_entry_mut().from_key(&1) { Vacant(_) => unreachable!(), Occupied(mut view) => { assert_eq!(view.get(), &10); assert_eq!(view.insert(100), 10); } } let hash1 = compute_hash(&map, 1); assert_eq!(map.raw_entry().from_key(&1).unwrap(), (&1, &100)); assert_eq!(map.raw_entry().from_hash(hash1, |k| *k == 1).unwrap(), (&1, &100)); assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash1, &1).unwrap(), (&1, &100)); assert_eq!(map.len(), 6); // Existing key (update) match map.raw_entry_mut().from_key(&2) { Vacant(_) => unreachable!(), Occupied(mut view) => { let v = view.get_mut(); let new_v = (*v) * 10; *v = new_v; } } let hash2 = compute_hash(&map, 2); assert_eq!(map.raw_entry().from_key(&2).unwrap(), (&2, &200)); assert_eq!(map.raw_entry().from_hash(hash2, |k| *k == 2).unwrap(), (&2, &200)); assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash2, &2).unwrap(), (&2, &200)); assert_eq!(map.len(), 6); // Existing key (take) let hash3 = compute_hash(&map, 3); match map.raw_entry_mut().from_key_hashed_nocheck(hash3, &3) { Vacant(_) => unreachable!(), Occupied(view) => { assert_eq!(view.remove_entry(), (3, 30)); } } assert_eq!(map.raw_entry().from_key(&3), None); assert_eq!(map.raw_entry().from_hash(hash3, |k| *k == 3), None); assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash3, &3), None); assert_eq!(map.len(), 5); // Nonexistent key (insert) match map.raw_entry_mut().from_key(&10) { Occupied(_) => unreachable!(), Vacant(view) => { assert_eq!(view.insert(10, 1000), (&mut 10, &mut 1000)); } } assert_eq!(map.raw_entry().from_key(&10).unwrap(), (&10, &1000)); assert_eq!(map.len(), 6); // Ensure all lookup methods produce equivalent results. for k in 0..12 { let hash = compute_hash(&map, k); let v = map.get(&k).cloned(); let kv = v.as_ref().map(|v| (&k, v)); assert_eq!(map.raw_entry().from_key(&k), kv); assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); match map.raw_entry_mut().from_key(&k) { Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), Vacant(_) => assert_eq!(v, None), } match map.raw_entry_mut().from_key_hashed_nocheck(hash, &k) { Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), Vacant(_) => assert_eq!(v, None), } match map.raw_entry_mut().from_hash(hash, |q| *q == k) { Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), Vacant(_) => assert_eq!(v, None), } } } }