// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Internet Protocol (IP) addresses. //! //! This module contains functions useful for parsing, formatting, and //! manipulating IP addresses. #![allow(missing_doc)] use container::Container; use fmt; use from_str::FromStr; use iter::Iterator; use option::{Option, None, Some}; use str::StrSlice; use slice::{MutableCloneableVector, ImmutableVector, MutableVector}; pub type Port = u16; #[deriving(Eq, TotalEq, Clone, Hash)] pub enum IpAddr { Ipv4Addr(u8, u8, u8, u8), Ipv6Addr(u16, u16, u16, u16, u16, u16, u16, u16) } impl fmt::Show for IpAddr { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { match *self { Ipv4Addr(a, b, c, d) => write!(fmt.buf, "{}.{}.{}.{}", a, b, c, d), // Ipv4 Compatible address Ipv6Addr(0, 0, 0, 0, 0, 0, g, h) => { write!(fmt.buf, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8) } // Ipv4-Mapped address Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, g, h) => { write!(fmt.buf, "::FFFF:{}.{}.{}.{}", (g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8) } Ipv6Addr(a, b, c, d, e, f, g, h) => write!(fmt.buf, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}", a, b, c, d, e, f, g, h) } } } #[deriving(Eq, TotalEq, Clone, Hash)] pub struct SocketAddr { ip: IpAddr, port: Port, } impl fmt::Show for SocketAddr { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.ip { Ipv4Addr(..) => write!(f.buf, "{}:{}", self.ip, self.port), Ipv6Addr(..) => write!(f.buf, "[{}]:{}", self.ip, self.port), } } } struct Parser<'a> { // parsing as ASCII, so can use byte array s: &'a [u8], pos: uint, } impl<'a> Parser<'a> { fn new(s: &'a str) -> Parser<'a> { Parser { s: s.as_bytes(), pos: 0, } } fn is_eof(&self) -> bool { self.pos == self.s.len() } // Commit only if parser returns Some fn read_atomically(&mut self, cb: |&mut Parser| -> Option) -> Option { let pos = self.pos; let r = cb(self); if r.is_none() { self.pos = pos; } r } // Commit only if parser read till EOF fn read_till_eof(&mut self, cb: |&mut Parser| -> Option) -> Option { self.read_atomically(|p| cb(p).filtered(|_| p.is_eof())) } // Return result of first successful parser fn read_or(&mut self, parsers: &[|&mut Parser| -> Option]) -> Option { for pf in parsers.iter() { match self.read_atomically(|p: &mut Parser| (*pf)(p)) { Some(r) => return Some(r), None => {} } } None } // Apply 3 parsers sequentially fn read_seq_3( &mut self, pa: |&mut Parser| -> Option, pb: |&mut Parser| -> Option, pc: |&mut Parser| -> Option) -> Option<(A, B, C)> { self.read_atomically(|p| { let a = pa(p); let b = if a.is_some() { pb(p) } else { None }; let c = if b.is_some() { pc(p) } else { None }; match (a, b, c) { (Some(a), Some(b), Some(c)) => Some((a, b, c)), _ => None } }) } // Read next char fn read_char(&mut self) -> Option { if self.is_eof() { None } else { let r = self.s[self.pos] as char; self.pos += 1; Some(r) } } // Return char and advance iff next char is equal to requested fn read_given_char(&mut self, c: char) -> Option { self.read_atomically(|p| { p.read_char().filtered(|&next| next == c) }) } // Read digit fn read_digit(&mut self, radix: u8) -> Option { fn parse_digit(c: char, radix: u8) -> Option { let c = c as u8; // assuming radix is either 10 or 16 if c >= '0' as u8 && c <= '9' as u8 { Some(c - '0' as u8) } else if radix > 10 && c >= 'a' as u8 && c < 'a' as u8 + (radix - 10) { Some(c - 'a' as u8 + 10) } else if radix > 10 && c >= 'A' as u8 && c < 'A' as u8 + (radix - 10) { Some(c - 'A' as u8 + 10) } else { None } } self.read_atomically(|p| { p.read_char().and_then(|c| parse_digit(c, radix)) }) } fn read_number_impl(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option { let mut r = 0u32; let mut digit_count = 0; loop { match self.read_digit(radix) { Some(d) => { r = r * (radix as u32) + (d as u32); digit_count += 1; if digit_count > max_digits || r >= upto { return None } } None => { if digit_count == 0 { return None } else { return Some(r) } } }; } } // Read number, failing if max_digits of number value exceeded fn read_number(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option { self.read_atomically(|p| p.read_number_impl(radix, max_digits, upto)) } fn read_ipv4_addr_impl(&mut self) -> Option { let mut bs = [0u8, ..4]; let mut i = 0; while i < 4 { if i != 0 && self.read_given_char('.').is_none() { return None; } let octet = self.read_number(10, 3, 0x100).map(|n| n as u8); match octet { Some(d) => bs[i] = d, None => return None, }; i += 1; } Some(Ipv4Addr(bs[0], bs[1], bs[2], bs[3])) } // Read IPv4 address fn read_ipv4_addr(&mut self) -> Option { self.read_atomically(|p| p.read_ipv4_addr_impl()) } fn read_ipv6_addr_impl(&mut self) -> Option { fn ipv6_addr_from_head_tail(head: &[u16], tail: &[u16]) -> IpAddr { assert!(head.len() + tail.len() <= 8); let mut gs = [0u16, ..8]; gs.copy_from(head); gs.mut_slice(8 - tail.len(), 8).copy_from(tail); Ipv6Addr(gs[0], gs[1], gs[2], gs[3], gs[4], gs[5], gs[6], gs[7]) } fn read_groups(p: &mut Parser, groups: &mut [u16, ..8], limit: uint) -> (uint, bool) { let mut i = 0; while i < limit { if i < limit - 1 { let ipv4 = p.read_atomically(|p| { if i == 0 || p.read_given_char(':').is_some() { p.read_ipv4_addr() } else { None } }); match ipv4 { Some(Ipv4Addr(a, b, c, d)) => { groups[i + 0] = (a as u16 << 8) | (b as u16); groups[i + 1] = (c as u16 << 8) | (d as u16); return (i + 2, true); } _ => {} } } let group = p.read_atomically(|p| { if i == 0 || p.read_given_char(':').is_some() { p.read_number(16, 4, 0x10000).map(|n| n as u16) } else { None } }); match group { Some(g) => groups[i] = g, None => return (i, false) } i += 1; } (i, false) } let mut head = [0u16, ..8]; let (head_size, head_ipv4) = read_groups(self, &mut head, 8); if head_size == 8 { return Some(Ipv6Addr( head[0], head[1], head[2], head[3], head[4], head[5], head[6], head[7])) } // IPv4 part is not allowed before `::` if head_ipv4 { return None } // read `::` if previous code parsed less than 8 groups if !self.read_given_char(':').is_some() || !self.read_given_char(':').is_some() { return None; } let mut tail = [0u16, ..8]; let (tail_size, _) = read_groups(self, &mut tail, 8 - head_size); Some(ipv6_addr_from_head_tail(head.slice(0, head_size), tail.slice(0, tail_size))) } fn read_ipv6_addr(&mut self) -> Option { self.read_atomically(|p| p.read_ipv6_addr_impl()) } fn read_ip_addr(&mut self) -> Option { let ipv4_addr = |p: &mut Parser| p.read_ipv4_addr(); let ipv6_addr = |p: &mut Parser| p.read_ipv6_addr(); self.read_or([ipv4_addr, ipv6_addr]) } fn read_socket_addr(&mut self) -> Option { let ip_addr = |p: &mut Parser| { let ipv4_p = |p: &mut Parser| p.read_ip_addr(); let ipv6_p = |p: &mut Parser| { let open_br = |p: &mut Parser| p.read_given_char('['); let ip_addr = |p: &mut Parser| p.read_ipv6_addr(); let clos_br = |p: &mut Parser| p.read_given_char(']'); p.read_seq_3::(open_br, ip_addr, clos_br) .map(|t| match t { (_, ip, _) => ip }) }; p.read_or([ipv4_p, ipv6_p]) }; let colon = |p: &mut Parser| p.read_given_char(':'); let port = |p: &mut Parser| p.read_number(10, 5, 0x10000).map(|n| n as u16); // host, colon, port self.read_seq_3::(ip_addr, colon, port) .map(|t| match t { (ip, _, port) => SocketAddr { ip: ip, port: port } }) } } impl FromStr for IpAddr { fn from_str(s: &str) -> Option { Parser::new(s).read_till_eof(|p| p.read_ip_addr()) } } impl FromStr for SocketAddr { fn from_str(s: &str) -> Option { Parser::new(s).read_till_eof(|p| p.read_socket_addr()) } } #[cfg(test)] mod test { use prelude::*; use super::*; use from_str::FromStr; #[test] fn test_from_str_ipv4() { assert_eq!(Some(Ipv4Addr(127, 0, 0, 1)), FromStr::from_str("127.0.0.1")); assert_eq!(Some(Ipv4Addr(255, 255, 255, 255)), FromStr::from_str("255.255.255.255")); assert_eq!(Some(Ipv4Addr(0, 0, 0, 0)), FromStr::from_str("0.0.0.0")); // out of range let none: Option = FromStr::from_str("256.0.0.1"); assert_eq!(None, none); // too short let none: Option = FromStr::from_str("255.0.0"); assert_eq!(None, none); // too long let none: Option = FromStr::from_str("255.0.0.1.2"); assert_eq!(None, none); // no number between dots let none: Option = FromStr::from_str("255.0..1"); assert_eq!(None, none); } #[test] fn test_from_str_ipv6() { assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), FromStr::from_str("0:0:0:0:0:0:0:0")); assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), FromStr::from_str("0:0:0:0:0:0:0:1")); assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), FromStr::from_str("::1")); assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), FromStr::from_str("::")); assert_eq!(Some(Ipv6Addr(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)), FromStr::from_str("2a02:6b8::11:11")); // too long group let none: Option = FromStr::from_str("::00000"); assert_eq!(None, none); // too short let none: Option = FromStr::from_str("1:2:3:4:5:6:7"); assert_eq!(None, none); // too long let none: Option = FromStr::from_str("1:2:3:4:5:6:7:8:9"); assert_eq!(None, none); // triple colon let none: Option = FromStr::from_str("1:2:::6:7:8"); assert_eq!(None, none); // two double colons let none: Option = FromStr::from_str("1:2::6::8"); assert_eq!(None, none); } #[test] fn test_from_str_ipv4_in_ipv6() { assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0, 49152, 545)), FromStr::from_str("::192.0.2.33")); assert_eq!(Some(Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)), FromStr::from_str("::FFFF:192.0.2.33")); assert_eq!(Some(Ipv6Addr(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)), FromStr::from_str("64:ff9b::192.0.2.33")); assert_eq!(Some(Ipv6Addr(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)), FromStr::from_str("2001:db8:122:c000:2:2100:192.0.2.33")); // colon after v4 let none: Option = FromStr::from_str("::127.0.0.1:"); assert_eq!(None, none); // not enought groups let none: Option = FromStr::from_str("1.2.3.4.5:127.0.0.1"); assert_eq!(None, none); // too many groups let none: Option = FromStr::from_str("1.2.3.4.5:6:7:127.0.0.1"); assert_eq!(None, none); } #[test] fn test_from_str_socket_addr() { assert_eq!(Some(SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 80 }), FromStr::from_str("77.88.21.11:80")); assert_eq!(Some(SocketAddr { ip: Ipv6Addr(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), port: 53 }), FromStr::from_str("[2a02:6b8:0:1::1]:53")); assert_eq!(Some(SocketAddr { ip: Ipv6Addr(0, 0, 0, 0, 0, 0, 0x7F00, 1), port: 22 }), FromStr::from_str("[::127.0.0.1]:22")); // without port let none: Option = FromStr::from_str("127.0.0.1"); assert_eq!(None, none); // without port let none: Option = FromStr::from_str("127.0.0.1:"); assert_eq!(None, none); // wrong brackets around v4 let none: Option = FromStr::from_str("[127.0.0.1]:22"); assert_eq!(None, none); // port out of range let none: Option = FromStr::from_str("127.0.0.1:123456"); assert_eq!(None, none); } #[test] fn ipv6_addr_to_str() { let a1 = Ipv6Addr(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280); assert!(a1.to_str() == ~"::ffff:192.0.2.128" || a1.to_str() == ~"::FFFF:192.0.2.128"); assert_eq!(Ipv6Addr(8, 9, 10, 11, 12, 13, 14, 15).to_str(), ~"8:9:a:b:c:d:e:f"); } }