#![unstable(feature = "ip", reason = "extra functionality has not been \ scrutinized to the level that it should \ be to be stable", issue = "27709")] use crate::cmp::Ordering; use crate::fmt; use crate::hash; use crate::sys::net::netc as c; use crate::sys_common::{AsInner, FromInner}; /// An IP address, either IPv4 or IPv6. /// /// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their /// respective documentation for more details. /// /// The size of an `IpAddr` instance may vary depending on the target operating /// system. /// /// [`Ipv4Addr`]: ../../std/net/struct.Ipv4Addr.html /// [`Ipv6Addr`]: ../../std/net/struct.Ipv6Addr.html /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)); /// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); /// /// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4)); /// assert_eq!("::1".parse(), Ok(localhost_v6)); /// /// assert_eq!(localhost_v4.is_ipv6(), false); /// assert_eq!(localhost_v4.is_ipv4(), true); /// ``` #[stable(feature = "ip_addr", since = "1.7.0")] #[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)] pub enum IpAddr { /// An IPv4 address. #[stable(feature = "ip_addr", since = "1.7.0")] V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr), /// An IPv6 address. #[stable(feature = "ip_addr", since = "1.7.0")] V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr), } /// An IPv4 address. /// /// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791]. /// They are usually represented as four octets. /// /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. /// /// The size of an `Ipv4Addr` struct may vary depending on the target operating /// system. /// /// [IETF RFC 791]: https://tools.ietf.org/html/rfc791 /// [`IpAddr`]: ../../std/net/enum.IpAddr.html /// /// # Textual representation /// /// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal /// notation, divided by `.` (this is called "dot-decimal notation"). /// /// [`FromStr`]: ../../std/str/trait.FromStr.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let localhost = Ipv4Addr::new(127, 0, 0, 1); /// assert_eq!("127.0.0.1".parse(), Ok(localhost)); /// assert_eq!(localhost.is_loopback(), true); /// ``` #[derive(Copy)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Ipv4Addr { inner: c::in_addr, } /// An IPv6 address. /// /// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291]. /// They are usually represented as eight 16-bit segments. /// /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. /// /// The size of an `Ipv6Addr` struct may vary depending on the target operating /// system. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [`IpAddr`]: ../../std/net/enum.IpAddr.html /// /// # Textual representation /// /// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent /// an IPv6 address in text, but in general, each segments is written in hexadecimal /// notation, and segments are separated by `:`. For more information, see /// [IETF RFC 5952]. /// /// [`FromStr`]: ../../std/str/trait.FromStr.html /// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952 /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); /// assert_eq!("::1".parse(), Ok(localhost)); /// assert_eq!(localhost.is_loopback(), true); /// ``` #[derive(Copy)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Ipv6Addr { inner: c::in6_addr, } #[allow(missing_docs)] #[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)] pub enum Ipv6MulticastScope { InterfaceLocal, LinkLocal, RealmLocal, AdminLocal, SiteLocal, OrganizationLocal, Global } impl IpAddr { /// Returns [`true`] for the special 'unspecified' address. /// /// See the documentation for [`Ipv4Addr::is_unspecified`][IPv4] and /// [`Ipv6Addr::is_unspecified`][IPv6] for more details. /// /// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_unspecified /// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_unspecified /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true); /// ``` #[stable(feature = "ip_shared", since = "1.12.0")] pub fn is_unspecified(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_unspecified(), IpAddr::V6(ip) => ip.is_unspecified(), } } /// Returns [`true`] if this is a loopback address. /// /// See the documentation for [`Ipv4Addr::is_loopback`][IPv4] and /// [`Ipv6Addr::is_loopback`][IPv6] for more details. /// /// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_loopback /// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_loopback /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true); /// ``` #[stable(feature = "ip_shared", since = "1.12.0")] pub fn is_loopback(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_loopback(), IpAddr::V6(ip) => ip.is_loopback(), } } /// Returns [`true`] if the address appears to be globally routable. /// /// See the documentation for [`Ipv4Addr::is_global`][IPv4] and /// [`Ipv6Addr::is_global`][IPv6] for more details. /// /// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_global /// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_global /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true); /// ``` pub fn is_global(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_global(), IpAddr::V6(ip) => ip.is_global(), } } /// Returns [`true`] if this is a multicast address. /// /// See the documentation for [`Ipv4Addr::is_multicast`][IPv4] and /// [`Ipv6Addr::is_multicast`][IPv6] for more details. /// /// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_multicast /// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_multicast /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true); /// ``` #[stable(feature = "ip_shared", since = "1.12.0")] pub fn is_multicast(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_multicast(), IpAddr::V6(ip) => ip.is_multicast(), } } /// Returns [`true`] if this address is in a range designated for documentation. /// /// See the documentation for [`Ipv4Addr::is_documentation`][IPv4] and /// [`Ipv6Addr::is_documentation`][IPv6] for more details. /// /// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_documentation /// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_documentation /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(), /// true /// ); /// ``` pub fn is_documentation(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_documentation(), IpAddr::V6(ip) => ip.is_documentation(), } } /// Returns [`true`] if this address is an [IPv4 address], and [`false`] otherwise. /// /// [`true`]: ../../std/primitive.bool.html /// [`false`]: ../../std/primitive.bool.html /// [IPv4 address]: #variant.V4 /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false); /// ``` #[stable(feature = "ipaddr_checker", since = "1.16.0")] pub fn is_ipv4(&self) -> bool { match self { IpAddr::V4(_) => true, IpAddr::V6(_) => false, } } /// Returns [`true`] if this address is an [IPv6 address], and [`false`] otherwise. /// /// [`true`]: ../../std/primitive.bool.html /// [`false`]: ../../std/primitive.bool.html /// [IPv6 address]: #variant.V6 /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true); /// ``` #[stable(feature = "ipaddr_checker", since = "1.16.0")] pub fn is_ipv6(&self) -> bool { match self { IpAddr::V4(_) => false, IpAddr::V6(_) => true, } } } impl Ipv4Addr { /// Creates a new IPv4 address from four eight-bit octets. /// /// The result will represent the IP address `a`.`b`.`c`.`d`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(127, 0, 0, 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(bootstrap), rustc_const_stable(feature = "const_ipv4", since = "1.32.0"))] pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr { // FIXME: should just be u32::from_be_bytes([a, b, c, d]), // once that method is no longer rustc_const_unstable Ipv4Addr { inner: c::in_addr { s_addr: u32::to_be( ((a as u32) << 24) | ((b as u32) << 16) | ((c as u32) << 8) | (d as u32) ), } } } /// An IPv4 address with the address pointing to localhost: 127.0.0.1. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::LOCALHOST; /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1); /// An IPv4 address representing an unspecified address: 0.0.0.0 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::UNSPECIFIED; /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0); /// An IPv4 address representing the broadcast address: 255.255.255.255 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::BROADCAST; /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255); /// Returns the four eight-bit integers that make up this address. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(127, 0, 0, 1); /// assert_eq!(addr.octets(), [127, 0, 0, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn octets(&self) -> [u8; 4] { // This returns the order we want because s_addr is stored in big-endian. self.inner.s_addr.to_ne_bytes() } /// Returns [`true`] for the special 'unspecified' address (0.0.0.0). /// /// This property is defined in _UNIX Network Programming, Second Edition_, /// W. Richard Stevens, p. 891; see also [ip7]. /// /// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false); /// ``` #[stable(feature = "ip_shared", since = "1.12.0")] #[cfg_attr(not(bootstrap), rustc_const_stable(feature = "const_ipv4", since = "1.32.0"))] pub const fn is_unspecified(&self) -> bool { self.inner.s_addr == 0 } /// Returns [`true`] if this is a loopback address (127.0.0.0/8). /// /// This property is defined by [IETF RFC 1122]. /// /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_loopback(&self) -> bool { self.octets()[0] == 127 } /// Returns [`true`] if this is a private address. /// /// The private address ranges are defined in [IETF RFC 1918] and include: /// /// - 10.0.0.0/8 /// - 172.16.0.0/12 /// - 192.168.0.0/16 /// /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_private(&self) -> bool { match self.octets() { [10, ..] => true, [172, b, ..] if b >= 16 && b <= 31 => true, [192, 168, ..] => true, _ => false, } } /// Returns [`true`] if the address is link-local (169.254.0.0/16). /// /// This property is defined by [IETF RFC 3927]. /// /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_link_local(&self) -> bool { match self.octets() { [169, 254, ..] => true, _ => false, } } /// Returns [`true`] if the address appears to be globally routable. /// See [iana-ipv4-special-registry][ipv4-sr]. /// /// The following return false: /// /// - private addresses (see [`is_private()`](#method.is_private)) /// - the loopback address (see [`is_loopback()`](#method.is_loopback)) /// - the link-local address (see [`is_link_local()`](#method.is_link_local)) /// - the broadcast address (see [`is_broadcast()`](#method.is_broadcast)) /// - addresses used for documentation (see [`is_documentation()`](#method.is_documentation)) /// - the unspecified address (see [`is_unspecified()`](#method.is_unspecified)), and the whole /// 0.0.0.0/8 block /// - addresses reserved for future protocols (see /// [`is_ietf_protocol_assignment()`](#method.is_ietf_protocol_assignment), except /// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable /// - addresses reserved for future use (see [`is_reserved()`](#method.is_reserved) /// - addresses reserved for networking devices benchmarking (see /// [`is_benchmarking`](#method.is_benchmarking)) /// /// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv4Addr; /// /// // private addresses are not global /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); /// /// // the 0.0.0.0/8 block is not global /// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false); /// // in particular, the unspecified address is not global /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); /// /// // the loopback address is not global /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false); /// /// // link local addresses are not global /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); /// /// // the broadcast address is not global /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false); /// /// // the address space designated for documentation is not global /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); /// /// // shared addresses are not global /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); /// /// // addresses reserved for protocol assignment are not global /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false); /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false); /// /// // addresses reserved for future use are not global /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); /// /// // addresses reserved for network devices benchmarking are not global /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); /// /// // All the other addresses are global /// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true); /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true); /// ``` pub fn is_global(&self) -> bool { // check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two // globally routable addresses in the 192.0.0.0/24 range. if u32::from(*self) == 0xc0000009 || u32::from(*self) == 0xc000000a { return true; } !self.is_private() && !self.is_loopback() && !self.is_link_local() && !self.is_broadcast() && !self.is_documentation() && !self.is_shared() && !self.is_ietf_protocol_assignment() && !self.is_reserved() && !self.is_benchmarking() // Make sure the address is not in 0.0.0.0/8 && self.octets()[0] != 0 } /// Returns [`true`] if this address is part of the Shared Address Space defined in /// [IETF RFC 6598] (`100.64.0.0/10`). /// /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true); /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true); /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false); /// ``` pub fn is_shared(&self) -> bool { self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000) } /// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to /// IANA for IETF protocol assignments, as documented in [IETF RFC 6890]. /// /// Note that parts of this block are in use: /// /// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600]) /// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723]) /// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155]) /// /// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890 /// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600 /// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723 /// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true); /// assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true); /// assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true); /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true); /// assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false); /// assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false); /// ``` pub fn is_ietf_protocol_assignment(&self) -> bool { self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0 } /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0` /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`. /// /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544 /// [errata 423]: https://www.rfc-editor.org/errata/eid423 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false); /// ``` pub fn is_benchmarking(&self) -> bool { self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18 } /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112] /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the /// broadcast address `255.255.255.255`, but this implementation explicitely excludes it, since /// it is obviously not reserved for future use. /// /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112 /// [`true`]: ../../std/primitive.bool.html /// /// # Warning /// /// As IANA assigns new addresses, this method will be /// updated. This may result in non-reserved addresses being /// treated as reserved in code that relies on an outdated version /// of this method. /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); /// /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); /// // The broadcast address is not considered as reserved for future use by this implementation /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false); /// ``` pub fn is_reserved(&self) -> bool { self.octets()[0] & 240 == 240 && !self.is_broadcast() } /// Returns [`true`] if this is a multicast address (224.0.0.0/4). /// /// Multicast addresses have a most significant octet between 224 and 239, /// and is defined by [IETF RFC 5771]. /// /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_multicast(&self) -> bool { self.octets()[0] >= 224 && self.octets()[0] <= 239 } /// Returns [`true`] if this is a broadcast address (255.255.255.255). /// /// A broadcast address has all octets set to 255 as defined in [IETF RFC 919]. /// /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_broadcast(&self) -> bool { self == &Self::BROADCAST } /// Returns [`true`] if this address is in a range designated for documentation. /// /// This is defined in [IETF RFC 5737]: /// /// - 192.0.2.0/24 (TEST-NET-1) /// - 198.51.100.0/24 (TEST-NET-2) /// - 203.0.113.0/24 (TEST-NET-3) /// /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_documentation(&self) -> bool { match self.octets() { [192, 0, 2, _] => true, [198, 51, 100, _] => true, [203, 0, 113, _] => true, _ => false, } } /// Converts this address to an IPv4-compatible [IPv6 address]. /// /// a.b.c.d becomes ::a.b.c.d /// /// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!( /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(), /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767) /// ); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn to_ipv6_compatible(&self) -> Ipv6Addr { let octets = self.octets(); Ipv6Addr::from([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, octets[0], octets[1], octets[2], octets[3], ]) } /// Converts this address to an IPv4-mapped [IPv6 address]. /// /// a.b.c.d becomes ::ffff:a.b.c.d /// /// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(), /// Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn to_ipv6_mapped(&self) -> Ipv6Addr { let octets = self.octets(); Ipv6Addr::from([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, octets[0], octets[1], octets[2], octets[3], ]) } } #[stable(feature = "ip_addr", since = "1.7.0")] impl fmt::Display for IpAddr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match self { IpAddr::V4(ip) => ip.fmt(fmt), IpAddr::V6(ip) => ip.fmt(fmt), } } } #[stable(feature = "ip_from_ip", since = "1.16.0")] impl From for IpAddr { fn from(ipv4: Ipv4Addr) -> IpAddr { IpAddr::V4(ipv4) } } #[stable(feature = "ip_from_ip", since = "1.16.0")] impl From for IpAddr { fn from(ipv6: Ipv6Addr) -> IpAddr { IpAddr::V6(ipv6) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Ipv4Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { let octets = self.octets(); write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Ipv4Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self, fmt) } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Ipv4Addr { fn clone(&self) -> Ipv4Addr { *self } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for Ipv4Addr { fn eq(&self, other: &Ipv4Addr) -> bool { self.inner.s_addr == other.inner.s_addr } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for IpAddr { fn eq(&self, other: &Ipv4Addr) -> bool { match self { IpAddr::V4(v4) => v4 == other, IpAddr::V6(_) => false, } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for Ipv4Addr { fn eq(&self, other: &IpAddr) -> bool { match other { IpAddr::V4(v4) => self == v4, IpAddr::V6(_) => false, } } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Ipv4Addr {} #[stable(feature = "rust1", since = "1.0.0")] impl hash::Hash for Ipv4Addr { fn hash(&self, s: &mut H) { // `inner` is #[repr(packed)], so we need to copy `s_addr`. {self.inner.s_addr}.hash(s) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Ipv4Addr { fn partial_cmp(&self, other: &Ipv4Addr) -> Option { Some(self.cmp(other)) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for IpAddr { fn partial_cmp(&self, other: &Ipv4Addr) -> Option { match self { IpAddr::V4(v4) => v4.partial_cmp(other), IpAddr::V6(_) => Some(Ordering::Greater), } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for Ipv4Addr { fn partial_cmp(&self, other: &IpAddr) -> Option { match other { IpAddr::V4(v4) => self.partial_cmp(v4), IpAddr::V6(_) => Some(Ordering::Less), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Ipv4Addr { fn cmp(&self, other: &Ipv4Addr) -> Ordering { u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr)) } } impl AsInner for Ipv4Addr { fn as_inner(&self) -> &c::in_addr { &self.inner } } impl FromInner for Ipv4Addr { fn from_inner(addr: c::in_addr) -> Ipv4Addr { Ipv4Addr { inner: addr } } } #[stable(feature = "ip_u32", since = "1.1.0")] impl From for u32 { /// Converts an `Ipv4Addr` into a host byte order `u32`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(13, 12, 11, 10); /// assert_eq!(0x0d0c0b0au32, u32::from(addr)); /// ``` fn from(ip: Ipv4Addr) -> u32 { let ip = ip.octets(); u32::from_be_bytes(ip) } } #[stable(feature = "ip_u32", since = "1.1.0")] impl From for Ipv4Addr { /// Converts a host byte order `u32` into an `Ipv4Addr`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::from(0x0d0c0b0au32); /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); /// ``` fn from(ip: u32) -> Ipv4Addr { Ipv4Addr::from(ip.to_be_bytes()) } } #[stable(feature = "from_slice_v4", since = "1.9.0")] impl From<[u8; 4]> for Ipv4Addr { /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); /// ``` fn from(octets: [u8; 4]) -> Ipv4Addr { Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3]) } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u8; 4]> for IpAddr { /// Creates an `IpAddr::V4` from a four element byte array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr}; /// /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]); /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr); /// ``` fn from(octets: [u8; 4]) -> IpAddr { IpAddr::V4(Ipv4Addr::from(octets)) } } impl Ipv6Addr { /// Creates a new IPv6 address from eight 16-bit segments. /// /// The result will represent the IP address `a:b:c:d:e:f:g:h`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(bootstrap), rustc_const_stable(feature = "const_ipv6", since = "1.32.0"))] pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr { Ipv6Addr { inner: c::in6_addr { s6_addr: [ (a >> 8) as u8, a as u8, (b >> 8) as u8, b as u8, (c >> 8) as u8, c as u8, (d >> 8) as u8, d as u8, (e >> 8) as u8, e as u8, (f >> 8) as u8, f as u8, (g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8 ], } } } /// An IPv6 address representing localhost: `::1`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::LOCALHOST; /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); /// An IPv6 address representing the unspecified address: `::` /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::UNSPECIFIED; /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0); /// Returns the eight 16-bit segments that make up this address. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn segments(&self) -> [u16; 8] { let arr = &self.inner.s6_addr; [ u16::from_be_bytes([arr[0], arr[1]]), u16::from_be_bytes([arr[2], arr[3]]), u16::from_be_bytes([arr[4], arr[5]]), u16::from_be_bytes([arr[6], arr[7]]), u16::from_be_bytes([arr[8], arr[9]]), u16::from_be_bytes([arr[10], arr[11]]), u16::from_be_bytes([arr[12], arr[13]]), u16::from_be_bytes([arr[14], arr[15]]), ] } /// Returns [`true`] for the special 'unspecified' address (::). /// /// This property is defined in [IETF RFC 4291]. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_unspecified(&self) -> bool { self.segments() == [0, 0, 0, 0, 0, 0, 0, 0] } /// Returns [`true`] if this is a loopback address (::1). /// /// This property is defined in [IETF RFC 4291]. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_loopback(&self) -> bool { self.segments() == [0, 0, 0, 0, 0, 0, 0, 1] } /// Returns [`true`] if the address appears to be globally routable. /// /// The following return [`false`]: /// /// - the loopback address /// - link-local and unique local unicast addresses /// - interface-, link-, realm-, admin- and site-local multicast addresses /// /// [`true`]: ../../std/primitive.bool.html /// [`false`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true); /// ``` pub fn is_global(&self) -> bool { match self.multicast_scope() { Some(Ipv6MulticastScope::Global) => true, None => self.is_unicast_global(), _ => false } } /// Returns [`true`] if this is a unique local address (`fc00::/7`). /// /// This property is defined in [IETF RFC 4193]. /// /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); /// ``` pub fn is_unique_local(&self) -> bool { (self.segments()[0] & 0xfe00) == 0xfc00 } /// Returns [`true`] if the address is a unicast link-local address (`fe80::/64`). /// /// A common mis-conception is to think that "unicast link-local addresses start with /// `fe80::`", but the [IETF RFC 4291] actually defines a stricter format for these addresses: /// /// ```no_rust /// | 10 | /// | bits | 54 bits | 64 bits | /// +----------+-------------------------+----------------------------+ /// |1111111010| 0 | interface ID | /// +----------+-------------------------+----------------------------+ /// ``` /// /// This method validates the format defined in the RFC and won't recognize the following /// addresses such as `fe80:0:0:1::` or `fe81::` as unicast link-local addresses for example. /// If you need a less strict validation use [`is_unicast_link_local()`] instead. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); /// assert!(ip.is_unicast_link_local_strict()); /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); /// assert!(ip.is_unicast_link_local_strict()); /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); /// assert!(!ip.is_unicast_link_local_strict()); /// assert!(ip.is_unicast_link_local()); /// /// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); /// assert!(!ip.is_unicast_link_local_strict()); /// assert!(ip.is_unicast_link_local()); /// ``` /// /// # See also /// /// - [IETF RFC 4291 section 2.5.6] /// - [RFC 4291 errata 4406] /// - [`is_unicast_link_local()`] /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [IETF RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6 /// [`true`]: ../../std/primitive.bool.html /// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406 /// [`is_unicast_link_local()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local /// pub fn is_unicast_link_local_strict(&self) -> bool { (self.segments()[0] & 0xffff) == 0xfe80 && (self.segments()[1] & 0xffff) == 0 && (self.segments()[2] & 0xffff) == 0 && (self.segments()[3] & 0xffff) == 0 } /// Returns [`true`] if the address is a unicast link-local address (`fe80::/10`). /// /// This method returns [`true`] for addresses in the range reserved by [RFC 4291 section 2.4], /// i.e. addresses with the following format: /// /// ```no_rust /// | 10 | /// | bits | 54 bits | 64 bits | /// +----------+-------------------------+----------------------------+ /// |1111111010| arbitratry value | interface ID | /// +----------+-------------------------+----------------------------+ /// ``` /// /// As a result, this method consider addresses such as `fe80:0:0:1::` or `fe81::` to be /// unicast link-local addresses, whereas [`is_unicast_link_local_strict()`] does not. If you /// need a strict validation fully compliant with the RFC, use /// [`is_unicast_link_local_strict()`]. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); /// assert!(ip.is_unicast_link_local()); /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); /// assert!(ip.is_unicast_link_local()); /// /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); /// assert!(ip.is_unicast_link_local()); /// assert!(!ip.is_unicast_link_local_strict()); /// /// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); /// assert!(ip.is_unicast_link_local()); /// assert!(!ip.is_unicast_link_local_strict()); /// ``` /// /// # See also /// /// - [IETF RFC 4291 section 2.4] /// - [RFC 4291 errata 4406] /// /// [IETF RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4 /// [`true`]: ../../std/primitive.bool.html /// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406 /// [`is_unicast_link_local_strict()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local_strict /// pub fn is_unicast_link_local(&self) -> bool { (self.segments()[0] & 0xffc0) == 0xfe80 } /// Returns [`true`] if this is a deprecated unicast site-local address (fec0::/10). The /// unicast site-local address format is defined in [RFC 4291 section 2.5.7] as: /// /// ```no_rust /// | 10 | /// | bits | 54 bits | 64 bits | /// +----------+-------------------------+----------------------------+ /// |1111111011| subnet ID | interface ID | /// +----------+-------------------------+----------------------------+ /// ``` /// /// [`true`]: ../../std/primitive.bool.html /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!( /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(), /// false /// ); /// assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true); /// ``` /// /// # Warning /// /// As per [RFC 3879], the whole `FEC0::/10` prefix is /// deprecated. New software must not support site-local /// addresses. /// /// [RFC 3879]: https://tools.ietf.org/html/rfc3879 pub fn is_unicast_site_local(&self) -> bool { (self.segments()[0] & 0xffc0) == 0xfec0 } /// Returns [`true`] if this is an address reserved for documentation /// (2001:db8::/32). /// /// This property is defined in [IETF RFC 3849]. /// /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); /// ``` pub fn is_documentation(&self) -> bool { (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8) } /// Returns [`true`] if the address is a globally routable unicast address. /// /// The following return false: /// /// - the loopback address /// - the link-local addresses /// - unique local addresses /// - the unspecified address /// - the address range reserved for documentation /// /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7] /// /// ```no_rust /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer /// be supported in new implementations (i.e., new implementations must treat this prefix as /// Global Unicast). /// ``` /// /// [`true`]: ../../std/primitive.bool.html /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); /// ``` pub fn is_unicast_global(&self) -> bool { !self.is_multicast() && !self.is_loopback() && !self.is_unicast_link_local() && !self.is_unique_local() && !self.is_unspecified() && !self.is_documentation() } /// Returns the address's multicast scope if the address is multicast. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{Ipv6Addr, Ipv6MulticastScope}; /// /// assert_eq!( /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), /// Some(Ipv6MulticastScope::Global) /// ); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); /// ``` pub fn multicast_scope(&self) -> Option { if self.is_multicast() { match self.segments()[0] & 0x000f { 1 => Some(Ipv6MulticastScope::InterfaceLocal), 2 => Some(Ipv6MulticastScope::LinkLocal), 3 => Some(Ipv6MulticastScope::RealmLocal), 4 => Some(Ipv6MulticastScope::AdminLocal), 5 => Some(Ipv6MulticastScope::SiteLocal), 8 => Some(Ipv6MulticastScope::OrganizationLocal), 14 => Some(Ipv6MulticastScope::Global), _ => None } } else { None } } /// Returns [`true`] if this is a multicast address (ff00::/8). /// /// This property is defined by [IETF RFC 4291]. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [`true`]: ../../std/primitive.bool.html /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false); /// ``` #[stable(since = "1.7.0", feature = "ip_17")] pub fn is_multicast(&self) -> bool { (self.segments()[0] & 0xff00) == 0xff00 } /// Converts this address to an [IPv4 address]. Returns [`None`] if this address is /// neither IPv4-compatible or IPv4-mapped. /// /// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d /// /// [IPv4 address]: ../../std/net/struct.Ipv4Addr.html /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), /// Some(Ipv4Addr::new(192, 10, 2, 255))); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), /// Some(Ipv4Addr::new(0, 0, 0, 1))); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn to_ipv4(&self) -> Option { match self.segments() { [0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => { Some(Ipv4Addr::new((g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8)) }, _ => None } } /// Returns the sixteen eight-bit integers the IPv6 address consists of. /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), /// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); /// ``` #[stable(feature = "ipv6_to_octets", since = "1.12.0")] #[cfg_attr(not(bootstrap), rustc_const_stable(feature = "const_ipv6", since = "1.32.0"))] pub const fn octets(&self) -> [u8; 16] { self.inner.s6_addr } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Ipv6Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match self.segments() { // We need special cases for :: and ::1, otherwise they're formatted // as ::0.0.0.[01] [0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"), [0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"), // Ipv4 Compatible address [0, 0, 0, 0, 0, 0, g, h] => { write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8) } // Ipv4-Mapped address [0, 0, 0, 0, 0, 0xffff, g, h] => { write!(fmt, "::ffff:{}.{}.{}.{}", (g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8) }, _ => { fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) { let mut longest_span_len = 0; let mut longest_span_at = 0; let mut cur_span_len = 0; let mut cur_span_at = 0; for i in 0..8 { if segments[i] == 0 { if cur_span_len == 0 { cur_span_at = i; } cur_span_len += 1; if cur_span_len > longest_span_len { longest_span_len = cur_span_len; longest_span_at = cur_span_at; } } else { cur_span_len = 0; cur_span_at = 0; } } (longest_span_at, longest_span_len) } let (zeros_at, zeros_len) = find_zero_slice(&self.segments()); if zeros_len > 1 { fn fmt_subslice(segments: &[u16], fmt: &mut fmt::Formatter<'_>) -> fmt::Result { if !segments.is_empty() { write!(fmt, "{:x}", segments[0])?; for &seg in &segments[1..] { write!(fmt, ":{:x}", seg)?; } } Ok(()) } fmt_subslice(&self.segments()[..zeros_at], fmt)?; fmt.write_str("::")?; fmt_subslice(&self.segments()[zeros_at + zeros_len..], fmt) } else { let &[a, b, c, d, e, f, g, h] = &self.segments(); write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}", a, b, c, d, e, f, g, h) } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Ipv6Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self, fmt) } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Ipv6Addr { fn clone(&self) -> Ipv6Addr { *self } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for Ipv6Addr { fn eq(&self, other: &Ipv6Addr) -> bool { self.inner.s6_addr == other.inner.s6_addr } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for Ipv6Addr { fn eq(&self, other: &IpAddr) -> bool { match other { IpAddr::V4(_) => false, IpAddr::V6(v6) => self == v6, } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for IpAddr { fn eq(&self, other: &Ipv6Addr) -> bool { match self { IpAddr::V4(_) => false, IpAddr::V6(v6) => v6 == other, } } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Ipv6Addr {} #[stable(feature = "rust1", since = "1.0.0")] impl hash::Hash for Ipv6Addr { fn hash(&self, s: &mut H) { self.inner.s6_addr.hash(s) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Ipv6Addr { fn partial_cmp(&self, other: &Ipv6Addr) -> Option { Some(self.cmp(other)) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for IpAddr { fn partial_cmp(&self, other: &Ipv6Addr) -> Option { match self { IpAddr::V4(_) => Some(Ordering::Less), IpAddr::V6(v6) => v6.partial_cmp(other), } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for Ipv6Addr { fn partial_cmp(&self, other: &IpAddr) -> Option { match other { IpAddr::V4(_) => Some(Ordering::Greater), IpAddr::V6(v6) => self.partial_cmp(v6), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Ipv6Addr { fn cmp(&self, other: &Ipv6Addr) -> Ordering { self.segments().cmp(&other.segments()) } } impl AsInner for Ipv6Addr { fn as_inner(&self) -> &c::in6_addr { &self.inner } } impl FromInner for Ipv6Addr { fn from_inner(addr: c::in6_addr) -> Ipv6Addr { Ipv6Addr { inner: addr } } } #[stable(feature = "i128", since = "1.26.0")] impl From for u128 { /// Convert an `Ipv6Addr` into a host byte order `u128`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::new( /// 0x1020, 0x3040, 0x5060, 0x7080, /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, /// ); /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr)); /// ``` fn from(ip: Ipv6Addr) -> u128 { let ip = ip.octets(); u128::from_be_bytes(ip) } } #[stable(feature = "i128", since = "1.26.0")] impl From for Ipv6Addr { /// Convert a host byte order `u128` into an `Ipv6Addr`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128); /// assert_eq!( /// Ipv6Addr::new( /// 0x1020, 0x3040, 0x5060, 0x7080, /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, /// ), /// addr); /// ``` fn from(ip: u128) -> Ipv6Addr { Ipv6Addr::from(ip.to_be_bytes()) } } #[stable(feature = "ipv6_from_octets", since = "1.9.0")] impl From<[u8; 16]> for Ipv6Addr { fn from(octets: [u8; 16]) -> Ipv6Addr { let inner = c::in6_addr { s6_addr: octets }; Ipv6Addr::from_inner(inner) } } #[stable(feature = "ipv6_from_segments", since = "1.16.0")] impl From<[u16; 8]> for Ipv6Addr { fn from(segments: [u16; 8]) -> Ipv6Addr { let [a, b, c, d, e, f, g, h] = segments; Ipv6Addr::new(a, b, c, d, e, f, g, h) } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u8; 16]> for IpAddr { /// Creates an `IpAddr::V6` from a sixteen element byte array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv6Addr}; /// /// let addr = IpAddr::from([ /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, /// ]); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new( /// 0x1918, 0x1716, /// 0x1514, 0x1312, /// 0x1110, 0x0f0e, /// 0x0d0c, 0x0b0a /// )), /// addr /// ); /// ``` fn from(octets: [u8; 16]) -> IpAddr { IpAddr::V6(Ipv6Addr::from(octets)) } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u16; 8]> for IpAddr { /// Creates an `IpAddr::V6` from an eight element 16-bit array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv6Addr}; /// /// let addr = IpAddr::from([ /// 525u16, 524u16, 523u16, 522u16, /// 521u16, 520u16, 519u16, 518u16, /// ]); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new( /// 0x20d, 0x20c, /// 0x20b, 0x20a, /// 0x209, 0x208, /// 0x207, 0x206 /// )), /// addr /// ); /// ``` fn from(segments: [u16; 8]) -> IpAddr { IpAddr::V6(Ipv6Addr::from(segments)) } } // Tests for this module #[cfg(all(test, not(target_os = "emscripten")))] mod tests { use crate::net::*; use crate::net::test::{tsa, sa6, sa4}; use crate::str::FromStr; #[test] fn test_from_str_ipv4() { assert_eq!(Ok(Ipv4Addr::new(127, 0, 0, 1)), "127.0.0.1".parse()); assert_eq!(Ok(Ipv4Addr::new(255, 255, 255, 255)), "255.255.255.255".parse()); assert_eq!(Ok(Ipv4Addr::new(0, 0, 0, 0)), "0.0.0.0".parse()); // out of range let none: Option = "256.0.0.1".parse().ok(); assert_eq!(None, none); // too short let none: Option = "255.0.0".parse().ok(); assert_eq!(None, none); // too long let none: Option = "255.0.0.1.2".parse().ok(); assert_eq!(None, none); // no number between dots let none: Option = "255.0..1".parse().ok(); assert_eq!(None, none); } #[test] fn test_from_str_ipv6() { assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "0:0:0:0:0:0:0:0".parse()); assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "0:0:0:0:0:0:0:1".parse()); assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "::1".parse()); assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "::".parse()); assert_eq!(Ok(Ipv6Addr::new(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)), "2a02:6b8::11:11".parse()); // too long group let none: Option = "::00000".parse().ok(); assert_eq!(None, none); // too short let none: Option = "1:2:3:4:5:6:7".parse().ok(); assert_eq!(None, none); // too long let none: Option = "1:2:3:4:5:6:7:8:9".parse().ok(); assert_eq!(None, none); // triple colon let none: Option = "1:2:::6:7:8".parse().ok(); assert_eq!(None, none); // two double colons let none: Option = "1:2::6::8".parse().ok(); assert_eq!(None, none); // `::` indicating zero groups of zeros let none: Option = "1:2:3:4::5:6:7:8".parse().ok(); assert_eq!(None, none); } #[test] fn test_from_str_ipv4_in_ipv6() { assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 545)), "::192.0.2.33".parse()); assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)), "::FFFF:192.0.2.33".parse()); assert_eq!(Ok(Ipv6Addr::new(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)), "64:ff9b::192.0.2.33".parse()); assert_eq!(Ok(Ipv6Addr::new(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)), "2001:db8:122:c000:2:2100:192.0.2.33".parse()); // colon after v4 let none: Option = "::127.0.0.1:".parse().ok(); assert_eq!(None, none); // not enough groups let none: Option = "1.2.3.4.5:127.0.0.1".parse().ok(); assert_eq!(None, none); // too many groups let none: Option = "1.2.3.4.5:6:7:127.0.0.1".parse().ok(); assert_eq!(None, none); } #[test] fn test_from_str_socket_addr() { assert_eq!(Ok(sa4(Ipv4Addr::new(77, 88, 21, 11), 80)), "77.88.21.11:80".parse()); assert_eq!(Ok(SocketAddrV4::new(Ipv4Addr::new(77, 88, 21, 11), 80)), "77.88.21.11:80".parse()); assert_eq!(Ok(sa6(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53)), "[2a02:6b8:0:1::1]:53".parse()); assert_eq!(Ok(SocketAddrV6::new(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53, 0, 0)), "[2a02:6b8:0:1::1]:53".parse()); assert_eq!(Ok(sa6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22)), "[::127.0.0.1]:22".parse()); assert_eq!(Ok(SocketAddrV6::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22, 0, 0)), "[::127.0.0.1]:22".parse()); // without port let none: Option = "127.0.0.1".parse().ok(); assert_eq!(None, none); // without port let none: Option = "127.0.0.1:".parse().ok(); assert_eq!(None, none); // wrong brackets around v4 let none: Option = "[127.0.0.1]:22".parse().ok(); assert_eq!(None, none); // port out of range let none: Option = "127.0.0.1:123456".parse().ok(); assert_eq!(None, none); } #[test] fn ipv6_addr_to_string() { // ipv4-mapped address let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280); assert_eq!(a1.to_string(), "::ffff:192.0.2.128"); // ipv4-compatible address let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x280); assert_eq!(a1.to_string(), "::192.0.2.128"); // v6 address with no zero segments assert_eq!(Ipv6Addr::new(8, 9, 10, 11, 12, 13, 14, 15).to_string(), "8:9:a:b:c:d:e:f"); // reduce a single run of zeros assert_eq!("ae::ffff:102:304", Ipv6Addr::new(0xae, 0, 0, 0, 0, 0xffff, 0x0102, 0x0304).to_string()); // don't reduce just a single zero segment assert_eq!("1:2:3:4:5:6:0:8", Ipv6Addr::new(1, 2, 3, 4, 5, 6, 0, 8).to_string()); // 'any' address assert_eq!("::", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).to_string()); // loopback address assert_eq!("::1", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_string()); // ends in zeros assert_eq!("1::", Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0).to_string()); // two runs of zeros, second one is longer assert_eq!("1:0:0:4::8", Ipv6Addr::new(1, 0, 0, 4, 0, 0, 0, 8).to_string()); // two runs of zeros, equal length assert_eq!("1::4:5:0:0:8", Ipv6Addr::new(1, 0, 0, 4, 5, 0, 0, 8).to_string()); } #[test] fn ipv4_to_ipv6() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678), Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_mapped()); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678), Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_compatible()); } #[test] fn ipv6_to_ipv4() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678).to_ipv4(), Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78))); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678).to_ipv4(), Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78))); assert_eq!(Ipv6Addr::new(0, 0, 1, 0, 0, 0, 0x1234, 0x5678).to_ipv4(), None); } #[test] fn ip_properties() { macro_rules! ip { ($s:expr) => { IpAddr::from_str($s).unwrap() } } macro_rules! check { ($s:expr) => { check!($s, 0); }; ($s:expr, $mask:expr) => {{ let unspec: u8 = 1 << 0; let loopback: u8 = 1 << 1; let global: u8 = 1 << 2; let multicast: u8 = 1 << 3; let doc: u8 = 1 << 4; if ($mask & unspec) == unspec { assert!(ip!($s).is_unspecified()); } else { assert!(!ip!($s).is_unspecified()); } if ($mask & loopback) == loopback { assert!(ip!($s).is_loopback()); } else { assert!(!ip!($s).is_loopback()); } if ($mask & global) == global { assert!(ip!($s).is_global()); } else { assert!(!ip!($s).is_global()); } if ($mask & multicast) == multicast { assert!(ip!($s).is_multicast()); } else { assert!(!ip!($s).is_multicast()); } if ($mask & doc) == doc { assert!(ip!($s).is_documentation()); } else { assert!(!ip!($s).is_documentation()); } }} } let unspec: u8 = 1 << 0; let loopback: u8 = 1 << 1; let global: u8 = 1 << 2; let multicast: u8 = 1 << 3; let doc: u8 = 1 << 4; check!("0.0.0.0", unspec); check!("0.0.0.1"); check!("0.1.0.0"); check!("10.9.8.7"); check!("127.1.2.3", loopback); check!("172.31.254.253"); check!("169.254.253.242"); check!("192.0.2.183", doc); check!("192.1.2.183", global); check!("192.168.254.253"); check!("198.51.100.0", doc); check!("203.0.113.0", doc); check!("203.2.113.0", global); check!("224.0.0.0", global|multicast); check!("239.255.255.255", global|multicast); check!("255.255.255.255"); // make sure benchmarking addresses are not global check!("198.18.0.0"); check!("198.18.54.2"); check!("198.19.255.255"); // make sure addresses reserved for protocol assignment are not global check!("192.0.0.0"); check!("192.0.0.255"); check!("192.0.0.100"); // make sure reserved addresses are not global check!("240.0.0.0"); check!("251.54.1.76"); check!("254.255.255.255"); // make sure shared addresses are not global check!("100.64.0.0"); check!("100.127.255.255"); check!("100.100.100.0"); check!("::", unspec); check!("::1", loopback); check!("::0.0.0.2", global); check!("1::", global); check!("fc00::"); check!("fdff:ffff::"); check!("fe80:ffff::"); check!("febf:ffff::"); check!("fec0::", global); check!("ff01::", multicast); check!("ff02::", multicast); check!("ff03::", multicast); check!("ff04::", multicast); check!("ff05::", multicast); check!("ff08::", multicast); check!("ff0e::", global|multicast); check!("2001:db8:85a3::8a2e:370:7334", doc); check!("102:304:506:708:90a:b0c:d0e:f10", global); } #[test] fn ipv4_properties() { macro_rules! ip { ($s:expr) => { Ipv4Addr::from_str($s).unwrap() } } macro_rules! check { ($s:expr) => { check!($s, 0); }; ($s:expr, $mask:expr) => {{ let unspec: u16 = 1 << 0; let loopback: u16 = 1 << 1; let private: u16 = 1 << 2; let link_local: u16 = 1 << 3; let global: u16 = 1 << 4; let multicast: u16 = 1 << 5; let broadcast: u16 = 1 << 6; let documentation: u16 = 1 << 7; let benchmarking: u16 = 1 << 8; let ietf_protocol_assignment: u16 = 1 << 9; let reserved: u16 = 1 << 10; let shared: u16 = 1 << 11; if ($mask & unspec) == unspec { assert!(ip!($s).is_unspecified()); } else { assert!(!ip!($s).is_unspecified()); } if ($mask & loopback) == loopback { assert!(ip!($s).is_loopback()); } else { assert!(!ip!($s).is_loopback()); } if ($mask & private) == private { assert!(ip!($s).is_private()); } else { assert!(!ip!($s).is_private()); } if ($mask & link_local) == link_local { assert!(ip!($s).is_link_local()); } else { assert!(!ip!($s).is_link_local()); } if ($mask & global) == global { assert!(ip!($s).is_global()); } else { assert!(!ip!($s).is_global()); } if ($mask & multicast) == multicast { assert!(ip!($s).is_multicast()); } else { assert!(!ip!($s).is_multicast()); } if ($mask & broadcast) == broadcast { assert!(ip!($s).is_broadcast()); } else { assert!(!ip!($s).is_broadcast()); } if ($mask & documentation) == documentation { assert!(ip!($s).is_documentation()); } else { assert!(!ip!($s).is_documentation()); } if ($mask & benchmarking) == benchmarking { assert!(ip!($s).is_benchmarking()); } else { assert!(!ip!($s).is_benchmarking()); } if ($mask & ietf_protocol_assignment) == ietf_protocol_assignment { assert!(ip!($s).is_ietf_protocol_assignment()); } else { assert!(!ip!($s).is_ietf_protocol_assignment()); } if ($mask & reserved) == reserved { assert!(ip!($s).is_reserved()); } else { assert!(!ip!($s).is_reserved()); } if ($mask & shared) == shared { assert!(ip!($s).is_shared()); } else { assert!(!ip!($s).is_shared()); } }} } let unspec: u16 = 1 << 0; let loopback: u16 = 1 << 1; let private: u16 = 1 << 2; let link_local: u16 = 1 << 3; let global: u16 = 1 << 4; let multicast: u16 = 1 << 5; let broadcast: u16 = 1 << 6; let documentation: u16 = 1 << 7; let benchmarking: u16 = 1 << 8; let ietf_protocol_assignment: u16 = 1 << 9; let reserved: u16 = 1 << 10; let shared: u16 = 1 << 11; check!("0.0.0.0", unspec); check!("0.0.0.1"); check!("0.1.0.0"); check!("10.9.8.7", private); check!("127.1.2.3", loopback); check!("172.31.254.253", private); check!("169.254.253.242", link_local); check!("192.0.2.183", documentation); check!("192.1.2.183", global); check!("192.168.254.253", private); check!("198.51.100.0", documentation); check!("203.0.113.0", documentation); check!("203.2.113.0", global); check!("224.0.0.0", global|multicast); check!("239.255.255.255", global|multicast); check!("255.255.255.255", broadcast); check!("198.18.0.0", benchmarking); check!("198.18.54.2", benchmarking); check!("198.19.255.255", benchmarking); check!("192.0.0.0", ietf_protocol_assignment); check!("192.0.0.255", ietf_protocol_assignment); check!("192.0.0.100", ietf_protocol_assignment); check!("240.0.0.0", reserved); check!("251.54.1.76", reserved); check!("254.255.255.255", reserved); check!("100.64.0.0", shared); check!("100.127.255.255", shared); check!("100.100.100.0", shared); } #[test] fn ipv6_properties() { macro_rules! ip { ($s:expr) => { Ipv6Addr::from_str($s).unwrap() } } macro_rules! check { ($s:expr, &[$($octet:expr),*], $mask:expr) => { assert_eq!($s, ip!($s).to_string()); let octets = &[$($octet),*]; assert_eq!(&ip!($s).octets(), octets); assert_eq!(Ipv6Addr::from(*octets), ip!($s)); let unspecified: u16 = 1 << 0; let loopback: u16 = 1 << 1; let unique_local: u16 = 1 << 2; let global: u16 = 1 << 3; let unicast_link_local: u16 = 1 << 4; let unicast_link_local_strict: u16 = 1 << 5; let unicast_site_local: u16 = 1 << 6; let unicast_global: u16 = 1 << 7; let documentation: u16 = 1 << 8; let multicast_interface_local: u16 = 1 << 9; let multicast_link_local: u16 = 1 << 10; let multicast_realm_local: u16 = 1 << 11; let multicast_admin_local: u16 = 1 << 12; let multicast_site_local: u16 = 1 << 13; let multicast_organization_local: u16 = 1 << 14; let multicast_global: u16 = 1 << 15; let multicast: u16 = multicast_interface_local | multicast_admin_local | multicast_global | multicast_link_local | multicast_realm_local | multicast_site_local | multicast_organization_local; if ($mask & unspecified) == unspecified { assert!(ip!($s).is_unspecified()); } else { assert!(!ip!($s).is_unspecified()); } if ($mask & loopback) == loopback { assert!(ip!($s).is_loopback()); } else { assert!(!ip!($s).is_loopback()); } if ($mask & unique_local) == unique_local { assert!(ip!($s).is_unique_local()); } else { assert!(!ip!($s).is_unique_local()); } if ($mask & global) == global { assert!(ip!($s).is_global()); } else { assert!(!ip!($s).is_global()); } if ($mask & unicast_link_local) == unicast_link_local { assert!(ip!($s).is_unicast_link_local()); } else { assert!(!ip!($s).is_unicast_link_local()); } if ($mask & unicast_link_local_strict) == unicast_link_local_strict { assert!(ip!($s).is_unicast_link_local_strict()); } else { assert!(!ip!($s).is_unicast_link_local_strict()); } if ($mask & unicast_site_local) == unicast_site_local { assert!(ip!($s).is_unicast_site_local()); } else { assert!(!ip!($s).is_unicast_site_local()); } if ($mask & unicast_global) == unicast_global { assert!(ip!($s).is_unicast_global()); } else { assert!(!ip!($s).is_unicast_global()); } if ($mask & documentation) == documentation { assert!(ip!($s).is_documentation()); } else { assert!(!ip!($s).is_documentation()); } if ($mask & multicast) != 0 { assert!(ip!($s).multicast_scope().is_some()); assert!(ip!($s).is_multicast()); } else { assert!(ip!($s).multicast_scope().is_none()); assert!(!ip!($s).is_multicast()); } if ($mask & multicast_interface_local) == multicast_interface_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::InterfaceLocal); } if ($mask & multicast_link_local) == multicast_link_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::LinkLocal); } if ($mask & multicast_realm_local) == multicast_realm_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::RealmLocal); } if ($mask & multicast_admin_local) == multicast_admin_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::AdminLocal); } if ($mask & multicast_site_local) == multicast_site_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::SiteLocal); } if ($mask & multicast_organization_local) == multicast_organization_local { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::OrganizationLocal); } if ($mask & multicast_global) == multicast_global { assert_eq!(ip!($s).multicast_scope().unwrap(), Ipv6MulticastScope::Global); } } } let unspecified: u16 = 1 << 0; let loopback: u16 = 1 << 1; let unique_local: u16 = 1 << 2; let global: u16 = 1 << 3; let unicast_link_local: u16 = 1 << 4; let unicast_link_local_strict: u16 = 1 << 5; let unicast_site_local: u16 = 1 << 6; let unicast_global: u16 = 1 << 7; let documentation: u16 = 1 << 8; let multicast_interface_local: u16 = 1 << 9; let multicast_link_local: u16 = 1 << 10; let multicast_realm_local: u16 = 1 << 11; let multicast_admin_local: u16 = 1 << 12; let multicast_site_local: u16 = 1 << 13; let multicast_organization_local: u16 = 1 << 14; let multicast_global: u16 = 1 << 15; check!("::", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unspecified); check!("::1", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], loopback); check!("::0.0.0.2", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], global | unicast_global); check!("1::", &[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], global | unicast_global); check!("fc00::", &[0xfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unique_local); check!("fdff:ffff::", &[0xfd, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unique_local); check!("fe80:ffff::", &[0xfe, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unicast_link_local); check!("fe80::", &[0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unicast_link_local|unicast_link_local_strict); check!("febf:ffff::", &[0xfe, 0xbf, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unicast_link_local); check!("febf::", &[0xfe, 0xbf, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unicast_link_local); check!("febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff", &[0xfe, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff], unicast_link_local); check!("fe80::ffff:ffff:ffff:ffff", &[0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff], unicast_link_local|unicast_link_local_strict); check!("fe80:0:0:1::", &[0xfe, 0x80, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], unicast_link_local); check!("fec0::", &[0xfe, 0xc0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unicast_site_local|unicast_global|global); check!("ff01::", &[0xff, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_interface_local); check!("ff02::", &[0xff, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_link_local); check!("ff03::", &[0xff, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_realm_local); check!("ff04::", &[0xff, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_admin_local); check!("ff05::", &[0xff, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_site_local); check!("ff08::", &[0xff, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_organization_local); check!("ff0e::", &[0xff, 0xe, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], multicast_global | global); check!("2001:db8:85a3::8a2e:370:7334", &[0x20, 1, 0xd, 0xb8, 0x85, 0xa3, 0, 0, 0, 0, 0x8a, 0x2e, 3, 0x70, 0x73, 0x34], documentation); check!("102:304:506:708:90a:b0c:d0e:f10", &[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], global| unicast_global); } #[test] fn to_socket_addr_socketaddr() { let a = sa4(Ipv4Addr::new(77, 88, 21, 11), 12345); assert_eq!(Ok(vec![a]), tsa(a)); } #[test] fn test_ipv4_to_int() { let a = Ipv4Addr::new(0x11, 0x22, 0x33, 0x44); assert_eq!(u32::from(a), 0x11223344); } #[test] fn test_int_to_ipv4() { let a = Ipv4Addr::new(0x11, 0x22, 0x33, 0x44); assert_eq!(Ipv4Addr::from(0x11223344), a); } #[test] fn test_ipv6_to_int() { let a = Ipv6Addr::new(0x1122, 0x3344, 0x5566, 0x7788, 0x99aa, 0xbbcc, 0xddee, 0xff11); assert_eq!(u128::from(a), 0x112233445566778899aabbccddeeff11u128); } #[test] fn test_int_to_ipv6() { let a = Ipv6Addr::new(0x1122, 0x3344, 0x5566, 0x7788, 0x99aa, 0xbbcc, 0xddee, 0xff11); assert_eq!(Ipv6Addr::from(0x112233445566778899aabbccddeeff11u128), a); } #[test] fn ipv4_from_constructors() { assert_eq!(Ipv4Addr::LOCALHOST, Ipv4Addr::new(127, 0, 0, 1)); assert!(Ipv4Addr::LOCALHOST.is_loopback()); assert_eq!(Ipv4Addr::UNSPECIFIED, Ipv4Addr::new(0, 0, 0, 0)); assert!(Ipv4Addr::UNSPECIFIED.is_unspecified()); assert_eq!(Ipv4Addr::BROADCAST, Ipv4Addr::new(255, 255, 255, 255)); assert!(Ipv4Addr::BROADCAST.is_broadcast()); } #[test] fn ipv6_from_contructors() { assert_eq!(Ipv6Addr::LOCALHOST, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); assert!(Ipv6Addr::LOCALHOST.is_loopback()); assert_eq!(Ipv6Addr::UNSPECIFIED, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); assert!(Ipv6Addr::UNSPECIFIED.is_unspecified()); } #[test] fn ipv4_from_octets() { assert_eq!(Ipv4Addr::from([127, 0, 0, 1]), Ipv4Addr::new(127, 0, 0, 1)) } #[test] fn ipv6_from_segments() { let from_u16s = Ipv6Addr::from([0x0011, 0x2233, 0x4455, 0x6677, 0x8899, 0xaabb, 0xccdd, 0xeeff]); let new = Ipv6Addr::new(0x0011, 0x2233, 0x4455, 0x6677, 0x8899, 0xaabb, 0xccdd, 0xeeff); assert_eq!(new, from_u16s); } #[test] fn ipv6_from_octets() { let from_u16s = Ipv6Addr::from([0x0011, 0x2233, 0x4455, 0x6677, 0x8899, 0xaabb, 0xccdd, 0xeeff]); let from_u8s = Ipv6Addr::from([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]); assert_eq!(from_u16s, from_u8s); } #[test] fn cmp() { let v41 = Ipv4Addr::new(100, 64, 3, 3); let v42 = Ipv4Addr::new(192, 0, 2, 2); let v61 = "2001:db8:f00::1002".parse::().unwrap(); let v62 = "2001:db8:f00::2001".parse::().unwrap(); assert!(v41 < v42); assert!(v61 < v62); assert_eq!(v41, IpAddr::V4(v41)); assert_eq!(v61, IpAddr::V6(v61)); assert!(v41 != IpAddr::V4(v42)); assert!(v61 != IpAddr::V6(v62)); assert!(v41 < IpAddr::V4(v42)); assert!(v61 < IpAddr::V6(v62)); assert!(IpAddr::V4(v41) < v42); assert!(IpAddr::V6(v61) < v62); assert!(v41 < IpAddr::V6(v61)); assert!(IpAddr::V4(v41) < v61); } #[test] fn is_v4() { let ip = IpAddr::V4(Ipv4Addr::new(100, 64, 3, 3)); assert!(ip.is_ipv4()); assert!(!ip.is_ipv6()); } #[test] fn is_v6() { let ip = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678)); assert!(!ip.is_ipv4()); assert!(ip.is_ipv6()); } }