//! Android ABI-compatibility module //! //! The ABI of Android has changed quite a bit over time, and libstd attempts to //! be both forwards and backwards compatible as much as possible. We want to //! always work with the most recent version of Android, but we also want to //! work with older versions of Android for whenever projects need to. //! //! Our current minimum supported Android version is `android-9`, e.g., Android //! with API level 9. We then in theory want to work on that and all future //! versions of Android! //! //! Some of the detection here is done at runtime via `dlopen` and //! introspection. Other times no detection is performed at all and we just //! provide a fallback implementation as some versions of Android we support //! don't have the function. //! //! You'll find more details below about why each compatibility shim is needed. #![cfg(target_os = "android")] use libc::{c_int, c_void, sighandler_t, size_t, ssize_t}; use libc::{ftruncate, pread, pwrite}; use super::{cvt, cvt_r}; use crate::io; // The `log2` and `log2f` functions apparently appeared in android-18, or at // least you can see they're not present in the android-17 header [1] and they // are present in android-18 [2]. // // [1]: https://chromium.googlesource.com/android_tools/+/20ee6d20/ndk/platforms // /android-17/arch-arm/usr/include/math.h // [2]: https://chromium.googlesource.com/android_tools/+/20ee6d20/ndk/platforms // /android-18/arch-arm/usr/include/math.h // // Note that these shims are likely less precise than directly calling `log2`, // but hopefully that should be enough for now... // // Note that mathematically, for any arbitrary `y`: // // log_2(x) = log_y(x) / log_y(2) // = log_y(x) / (1 / log_2(y)) // = log_y(x) * log_2(y) // // Hence because `ln` (log_e) is available on all Android we just choose `y = e` // and get: // // log_2(x) = ln(x) * log_2(e) #[cfg(not(test))] pub fn log2f32(f: f32) -> f32 { f.ln() * crate::f32::consts::LOG2_E } #[cfg(not(test))] pub fn log2f64(f: f64) -> f64 { f.ln() * crate::f64::consts::LOG2_E } // Back in the day [1] the `signal` function was just an inline wrapper // around `bsd_signal`, but starting in API level android-20 the `signal` // symbols was introduced [2]. Finally, in android-21 the API `bsd_signal` was // removed [3]. // // Basically this means that if we want to be binary compatible with multiple // Android releases (oldest being 9 and newest being 21) then we need to check // for both symbols and not actually link against either. // // [1]: https://chromium.googlesource.com/android_tools/+/20ee6d20/ndk/platforms // /android-18/arch-arm/usr/include/signal.h // [2]: https://chromium.googlesource.com/android_tools/+/fbd420/ndk_experimental // /platforms/android-20/arch-arm // /usr/include/signal.h // [3]: https://chromium.googlesource.com/android_tools/+/20ee6d/ndk/platforms // /android-21/arch-arm/usr/include/signal.h pub unsafe fn signal(signum: c_int, handler: sighandler_t) -> sighandler_t { weak!(fn signal(c_int, sighandler_t) -> sighandler_t); weak!(fn bsd_signal(c_int, sighandler_t) -> sighandler_t); let f = signal.get().or_else(|| bsd_signal.get()); let f = f.expect("neither `signal` nor `bsd_signal` symbols found"); f(signum, handler) } // The `ftruncate64` symbol apparently appeared in android-12, so we do some // dynamic detection to see if we can figure out whether `ftruncate64` exists. // // If it doesn't we just fall back to `ftruncate`, generating an error for // too-large values. #[cfg(target_pointer_width = "32")] pub fn ftruncate64(fd: c_int, size: u64) -> io::Result<()> { weak!(fn ftruncate64(c_int, i64) -> c_int); unsafe { match ftruncate64.get() { Some(f) => cvt_r(|| f(fd, size as i64)).map(|_| ()), None => { if size > i32::max_value() as u64 { Err(io::Error::new(io::ErrorKind::InvalidInput, "cannot truncate >2GB")) } else { cvt_r(|| ftruncate(fd, size as i32)).map(|_| ()) } } } } } #[cfg(target_pointer_width = "64")] pub fn ftruncate64(fd: c_int, size: u64) -> io::Result<()> { unsafe { cvt_r(|| ftruncate(fd, size as i64)).map(|_| ()) } } #[cfg(target_pointer_width = "32")] pub unsafe fn cvt_pread64( fd: c_int, buf: *mut c_void, count: size_t, offset: i64, ) -> io::Result { use crate::convert::TryInto; weak!(fn pread64(c_int, *mut c_void, size_t, i64) -> ssize_t); pread64.get().map(|f| cvt(f(fd, buf, count, offset))).unwrap_or_else(|| { if let Ok(o) = offset.try_into() { cvt(pread(fd, buf, count, o)) } else { Err(io::Error::new(io::ErrorKind::InvalidInput, "cannot pread >2GB")) } }) } #[cfg(target_pointer_width = "32")] pub unsafe fn cvt_pwrite64( fd: c_int, buf: *const c_void, count: size_t, offset: i64, ) -> io::Result { use crate::convert::TryInto; weak!(fn pwrite64(c_int, *const c_void, size_t, i64) -> ssize_t); pwrite64.get().map(|f| cvt(f(fd, buf, count, offset))).unwrap_or_else(|| { if let Ok(o) = offset.try_into() { cvt(pwrite(fd, buf, count, o)) } else { Err(io::Error::new(io::ErrorKind::InvalidInput, "cannot pwrite >2GB")) } }) } #[cfg(target_pointer_width = "64")] pub unsafe fn cvt_pread64( fd: c_int, buf: *mut c_void, count: size_t, offset: i64, ) -> io::Result { cvt(pread(fd, buf, count, offset)) } #[cfg(target_pointer_width = "64")] pub unsafe fn cvt_pwrite64( fd: c_int, buf: *const c_void, count: size_t, offset: i64, ) -> io::Result { cvt(pwrite(fd, buf, count, offset)) }