// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use prelude::v1::*; use os::unix::prelude::*; use collections::HashMap; use env; use ffi::{OsString, OsStr, CString, CStr}; use fmt; use io::{self, Error, ErrorKind}; use libc::{self, pid_t, c_void, c_int, gid_t, uid_t}; use mem; use ptr; use sys::fd::FileDesc; use sys::fs::{File, OpenOptions}; use sys::pipe::AnonPipe; use sys::{self, c, cvt, cvt_r}; //////////////////////////////////////////////////////////////////////////////// // Command //////////////////////////////////////////////////////////////////////////////// #[derive(Clone)] pub struct Command { pub program: CString, pub args: Vec, pub env: Option>, pub cwd: Option, pub uid: Option, pub gid: Option, pub session_leader: bool, } impl Command { pub fn new(program: &OsStr) -> Command { Command { program: program.to_cstring().unwrap(), args: Vec::new(), env: None, cwd: None, uid: None, gid: None, session_leader: false, } } pub fn arg(&mut self, arg: &OsStr) { self.args.push(arg.to_cstring().unwrap()) } pub fn args<'a, I: Iterator>(&mut self, args: I) { self.args.extend(args.map(|s| s.to_cstring().unwrap())) } fn init_env_map(&mut self) { if self.env.is_none() { self.env = Some(env::vars_os().collect()); } } pub fn env(&mut self, key: &OsStr, val: &OsStr) { self.init_env_map(); self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string()); } pub fn env_remove(&mut self, key: &OsStr) { self.init_env_map(); self.env.as_mut().unwrap().remove(&key.to_os_string()); } pub fn env_clear(&mut self) { self.env = Some(HashMap::new()) } pub fn cwd(&mut self, dir: &OsStr) { self.cwd = Some(dir.to_cstring().unwrap()) } } //////////////////////////////////////////////////////////////////////////////// // Processes //////////////////////////////////////////////////////////////////////////////// /// Unix exit statuses #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum ExitStatus { /// Normal termination with an exit code. Code(i32), /// Termination by signal, with the signal number. /// /// Never generated on Windows. Signal(i32), } impl ExitStatus { pub fn success(&self) -> bool { *self == ExitStatus::Code(0) } pub fn code(&self) -> Option { match *self { ExitStatus::Code(c) => Some(c), _ => None } } } impl fmt::Display for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { ExitStatus::Code(code) => write!(f, "exit code: {}", code), ExitStatus::Signal(code) => write!(f, "signal: {}", code), } } } /// The unique id of the process (this should never be negative). pub struct Process { pid: pid_t } pub enum Stdio { Inherit, None, Raw(c_int), } pub type RawStdio = FileDesc; const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX"; impl Process { pub unsafe fn kill(&self) -> io::Result<()> { try!(cvt(libc::funcs::posix88::signal::kill(self.pid, libc::SIGKILL))); Ok(()) } pub fn spawn(cfg: &Command, in_fd: Stdio, out_fd: Stdio, err_fd: Stdio) -> io::Result { let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null()); let (envp, _a, _b) = make_envp(cfg.env.as_ref()); let (argv, _a) = make_argv(&cfg.program, &cfg.args); let (input, output) = try!(sys::pipe::anon_pipe()); let pid = unsafe { match libc::fork() { 0 => { drop(input); Process::child_after_fork(cfg, output, argv, envp, dirp, in_fd, out_fd, err_fd) } n if n < 0 => return Err(Error::last_os_error()), n => n, } }; let p = Process{ pid: pid }; drop(output); let mut bytes = [0; 8]; // loop to handle EINTR loop { match input.read(&mut bytes) { Ok(0) => return Ok(p), Ok(8) => { assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]), "Validation on the CLOEXEC pipe failed: {:?}", bytes); let errno = combine(&bytes[0.. 4]); assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); return Err(Error::from_raw_os_error(errno)) } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("the CLOEXEC pipe failed: {:?}", e) }, Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("short read on the CLOEXEC pipe") } } } fn combine(arr: &[u8]) -> i32 { let a = arr[0] as u32; let b = arr[1] as u32; let c = arr[2] as u32; let d = arr[3] as u32; ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32 } } // And at this point we've reached a special time in the life of the // child. The child must now be considered hamstrung and unable to // do anything other than syscalls really. Consider the following // scenario: // // 1. Thread A of process 1 grabs the malloc() mutex // 2. Thread B of process 1 forks(), creating thread C // 3. Thread C of process 2 then attempts to malloc() // 4. The memory of process 2 is the same as the memory of // process 1, so the mutex is locked. // // This situation looks a lot like deadlock, right? It turns out // that this is what pthread_atfork() takes care of, which is // presumably implemented across platforms. The first thing that // threads to *before* forking is to do things like grab the malloc // mutex, and then after the fork they unlock it. // // Despite this information, libnative's spawn has been witnessed to // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but // all collected backtraces point at malloc/free traffic in the // child spawned process. // // For this reason, the block of code below should contain 0 // invocations of either malloc of free (or their related friends). // // As an example of not having malloc/free traffic, we don't close // this file descriptor by dropping the FileDesc (which contains an // allocation). Instead we just close it manually. This will never // have the drop glue anyway because this code never returns (the // child will either exec() or invoke libc::exit) unsafe fn child_after_fork(cfg: &Command, mut output: AnonPipe, argv: *const *const libc::c_char, envp: *const libc::c_void, dirp: *const libc::c_char, in_fd: Stdio, out_fd: Stdio, err_fd: Stdio) -> ! { fn fail(output: &mut AnonPipe) -> ! { let errno = sys::os::errno() as u32; let bytes = [ (errno >> 24) as u8, (errno >> 16) as u8, (errno >> 8) as u8, (errno >> 0) as u8, CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3] ]; // pipe I/O up to PIPE_BUF bytes should be atomic, and then we want // to be sure we *don't* run at_exit destructors as we're being torn // down regardless assert!(output.write(&bytes).is_ok()); unsafe { libc::_exit(1) } } let setup = |src: Stdio, dst: c_int| { match src { Stdio::Inherit => true, Stdio::Raw(fd) => cvt_r(|| libc::dup2(fd, dst)).is_ok(), // If a stdio file descriptor is set to be ignored, we open up // /dev/null into that file descriptor. Otherwise, the first // file descriptor opened up in the child would be numbered as // one of the stdio file descriptors, which is likely to wreak // havoc. Stdio::None => { let mut opts = OpenOptions::new(); opts.read(dst == libc::STDIN_FILENO); opts.write(dst != libc::STDIN_FILENO); let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr() as *const _); if let Ok(f) = File::open_c(devnull, &opts) { cvt_r(|| libc::dup2(f.fd().raw(), dst)).is_ok() } else { false } } } }; if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) } if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) } if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) } if let Some(u) = cfg.gid { if libc::setgid(u as libc::gid_t) != 0 { fail(&mut output); } } if let Some(u) = cfg.uid { // When dropping privileges from root, the `setgroups` call // will remove any extraneous groups. If we don't call this, // then even though our uid has dropped, we may still have // groups that enable us to do super-user things. This will // fail if we aren't root, so don't bother checking the // return value, this is just done as an optimistic // privilege dropping function. let _ = c::setgroups(0, ptr::null()); if libc::setuid(u as libc::uid_t) != 0 { fail(&mut output); } } if cfg.session_leader { // Don't check the error of setsid because it fails if we're the // process leader already. We just forked so it shouldn't return // error, but ignore it anyway. let _ = libc::setsid(); } if !dirp.is_null() && libc::chdir(dirp) == -1 { fail(&mut output); } if !envp.is_null() { *sys::os::environ() = envp as *const _; } // Reset signal handling so the child process starts in a // standardized state. libstd ignores SIGPIPE, and signal-handling // libraries often set a mask. Child processes inherit ignored // signals and the signal mask from their parent, but most // UNIX programs do not reset these things on their own, so we // need to clean things up now to avoid confusing the program // we're about to run. let mut set: c::sigset_t = mem::uninitialized(); if c::sigemptyset(&mut set) != 0 || c::pthread_sigmask(c::SIG_SETMASK, &set, ptr::null_mut()) != 0 || libc::funcs::posix01::signal::signal( libc::SIGPIPE, mem::transmute(c::SIG_DFL) ) == mem::transmute(c::SIG_ERR) { fail(&mut output); } let _ = libc::execvp(*argv, argv); fail(&mut output) } pub fn id(&self) -> u32 { self.pid as u32 } pub fn wait(&self) -> io::Result { let mut status = 0 as c_int; try!(cvt_r(|| unsafe { c::waitpid(self.pid, &mut status, 0) })); Ok(translate_status(status)) } pub fn try_wait(&self) -> Option { let mut status = 0 as c_int; match cvt_r(|| unsafe { c::waitpid(self.pid, &mut status, c::WNOHANG) }) { Ok(0) => None, Ok(n) if n == self.pid => Some(translate_status(status)), Ok(n) => panic!("unknown pid: {}", n), Err(e) => panic!("unknown waitpid error: {}", e), } } } fn make_argv(prog: &CString, args: &[CString]) -> (*const *const libc::c_char, Vec<*const libc::c_char>) { let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1); // Convert the CStrings into an array of pointers. Note: the // lifetime of the various CStrings involved is guaranteed to be // larger than the lifetime of our invocation of cb, but this is // technically unsafe as the callback could leak these pointers // out of our scope. ptrs.push(prog.as_ptr()); ptrs.extend(args.iter().map(|tmp| tmp.as_ptr())); // Add a terminating null pointer (required by libc). ptrs.push(ptr::null()); (ptrs.as_ptr(), ptrs) } fn make_envp(env: Option<&HashMap>) -> (*const c_void, Vec>, Vec<*const libc::c_char>) { // On posixy systems we can pass a char** for envp, which is a // null-terminated array of "k=v\0" strings. Since we must create // these strings locally, yet expose a raw pointer to them, we // create a temporary vector to own the CStrings that outlives the // call to cb. if let Some(env) = env { let mut tmps = Vec::with_capacity(env.len()); for pair in env { let mut kv = Vec::new(); kv.push_all(pair.0.as_bytes()); kv.push('=' as u8); kv.push_all(pair.1.as_bytes()); kv.push(0); // terminating null tmps.push(kv); } let mut ptrs: Vec<*const libc::c_char> = tmps.iter() .map(|tmp| tmp.as_ptr() as *const libc::c_char) .collect(); ptrs.push(ptr::null()); (ptrs.as_ptr() as *const _, tmps, ptrs) } else { (0 as *const _, Vec::new(), Vec::new()) } } fn translate_status(status: c_int) -> ExitStatus { #![allow(non_snake_case)] #[cfg(any(target_os = "linux", target_os = "android"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff } pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f } } #[cfg(any(target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "dragonfly", target_os = "bitrig", target_os = "netbsd", target_os = "openbsd"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 } pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 } } if imp::WIFEXITED(status) { ExitStatus::Code(imp::WEXITSTATUS(status)) } else { ExitStatus::Signal(imp::WTERMSIG(status)) } } #[cfg(test)] mod tests { use super::*; use prelude::v1::*; use ffi::OsStr; use mem; use ptr; use libc; use slice; use sys::{self, c, cvt, pipe}; #[cfg(not(target_os = "android"))] extern { fn sigaddset(set: *mut c::sigset_t, signum: libc::c_int) -> libc::c_int; } #[cfg(target_os = "android")] unsafe fn sigaddset(set: *mut c::sigset_t, signum: libc::c_int) -> libc::c_int { let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::()); let bit = (signum - 1) as usize; raw[bit / 8] |= 1 << (bit % 8); return 0; } // See #14232 for more information, but it appears that signal delivery to a // newly spawned process may just be raced in the OSX, so to prevent this // test from being flaky we ignore it on OSX. #[test] #[cfg_attr(target_os = "macos", ignore)] fn test_process_mask() { unsafe { // Test to make sure that a signal mask does not get inherited. let cmd = Command::new(OsStr::new("cat")); let (stdin_read, stdin_write) = sys::pipe::anon_pipe().unwrap(); let (stdout_read, stdout_write) = sys::pipe::anon_pipe().unwrap(); let mut set: c::sigset_t = mem::uninitialized(); let mut old_set: c::sigset_t = mem::uninitialized(); cvt(c::sigemptyset(&mut set)).unwrap(); cvt(sigaddset(&mut set, libc::SIGINT)).unwrap(); cvt(c::pthread_sigmask(c::SIG_SETMASK, &set, &mut old_set)).unwrap(); let cat = Process::spawn(&cmd, Stdio::Raw(stdin_read.raw()), Stdio::Raw(stdout_write.raw()), Stdio::None).unwrap(); drop(stdin_read); drop(stdout_write); cvt(c::pthread_sigmask(c::SIG_SETMASK, &old_set, ptr::null_mut())).unwrap(); cvt(libc::funcs::posix88::signal::kill(cat.id() as libc::pid_t, libc::SIGINT)).unwrap(); // We need to wait until SIGINT is definitely delivered. The // easiest way is to write something to cat, and try to read it // back: if SIGINT is unmasked, it'll get delivered when cat is // next scheduled. let _ = stdin_write.write(b"Hello"); drop(stdin_write); // Either EOF or failure (EPIPE) is okay. let mut buf = [0; 5]; if let Ok(ret) = stdout_read.read(&mut buf) { assert!(ret == 0); } cat.wait().unwrap(); } } }