use crate::os::unix::prelude::*; use crate::collections::BTreeMap; use crate::ffi::{CStr, CString, OsStr, OsString}; use crate::fmt; use crate::io; use crate::ptr; use crate::sys::fd::FileDesc; use crate::sys::fs::{File, OpenOptions}; use crate::sys::pipe::{self, AnonPipe}; use crate::sys_common::process::CommandEnv; use libc::{c_char, c_int, gid_t, uid_t, EXIT_FAILURE, EXIT_SUCCESS}; //////////////////////////////////////////////////////////////////////////////// // Command //////////////////////////////////////////////////////////////////////////////// pub struct Command { // Currently we try hard to ensure that the call to `.exec()` doesn't // actually allocate any memory. While many platforms try to ensure that // memory allocation works after a fork in a multithreaded process, it's // been observed to be buggy and somewhat unreliable, so we do our best to // just not do it at all! // // Along those lines, the `argv` and `envp` raw pointers here are exactly // what's gonna get passed to `execvp`. The `argv` array starts with the // `program` and ends with a NULL, and the `envp` pointer, if present, is // also null-terminated. // // Right now we don't support removing arguments, so there's no much fancy // support there, but we support adding and removing environment variables, // so a side table is used to track where in the `envp` array each key is // located. Whenever we add a key we update it in place if it's already // present, and whenever we remove a key we update the locations of all // other keys. program: CString, args: Vec, argv: Argv, env: CommandEnv, cwd: Option, uid: Option, gid: Option, saw_nul: bool, closures: Vec io::Result<()> + Send + Sync>>, stdin: Option, stdout: Option, stderr: Option, } // Create a new type for argv, so that we can make it `Send` struct Argv(Vec<*const c_char>); // It is safe to make Argv Send, because it contains pointers to memory owned by `Command.args` unsafe impl Send for Argv {} // passed back to std::process with the pipes connected to the child, if any // were requested pub struct StdioPipes { pub stdin: Option, pub stdout: Option, pub stderr: Option, } // passed to do_exec() with configuration of what the child stdio should look // like pub struct ChildPipes { pub stdin: ChildStdio, pub stdout: ChildStdio, pub stderr: ChildStdio, } pub enum ChildStdio { Inherit, Explicit(c_int), Owned(FileDesc), } pub enum Stdio { Inherit, Null, MakePipe, Fd(FileDesc), } impl Command { pub fn new(program: &OsStr) -> Command { let mut saw_nul = false; let program = os2c(program, &mut saw_nul); Command { argv: Argv(vec![program.as_ptr(), ptr::null()]), args: vec![program.clone()], program, env: Default::default(), cwd: None, uid: None, gid: None, saw_nul, closures: Vec::new(), stdin: None, stdout: None, stderr: None, } } pub fn set_arg_0(&mut self, arg: &OsStr) { // Set a new arg0 let arg = os2c(arg, &mut self.saw_nul); debug_assert!(self.argv.0.len() > 1); self.argv.0[0] = arg.as_ptr(); self.args[0] = arg; } pub fn arg(&mut self, arg: &OsStr) { // Overwrite the trailing NULL pointer in `argv` and then add a new null // pointer. let arg = os2c(arg, &mut self.saw_nul); self.argv.0[self.args.len()] = arg.as_ptr(); self.argv.0.push(ptr::null()); // Also make sure we keep track of the owned value to schedule a // destructor for this memory. self.args.push(arg); } pub fn cwd(&mut self, dir: &OsStr) { self.cwd = Some(os2c(dir, &mut self.saw_nul)); } pub fn uid(&mut self, id: uid_t) { self.uid = Some(id); } pub fn gid(&mut self, id: gid_t) { self.gid = Some(id); } pub fn saw_nul(&self) -> bool { self.saw_nul } pub fn get_argv(&self) -> &Vec<*const c_char> { &self.argv.0 } pub fn get_program(&self) -> &CStr { &*self.program } #[allow(dead_code)] pub fn get_cwd(&self) -> &Option { &self.cwd } #[allow(dead_code)] pub fn get_uid(&self) -> Option { self.uid } #[allow(dead_code)] pub fn get_gid(&self) -> Option { self.gid } pub fn get_closures(&mut self) -> &mut Vec io::Result<()> + Send + Sync>> { &mut self.closures } pub unsafe fn pre_exec(&mut self, _f: Box io::Result<()> + Send + Sync>) { // Fork() is not supported in vxWorks so no way to run the closure in the new procecss. unimplemented!(); } pub fn stdin(&mut self, stdin: Stdio) { self.stdin = Some(stdin); } pub fn stdout(&mut self, stdout: Stdio) { self.stdout = Some(stdout); } pub fn stderr(&mut self, stderr: Stdio) { self.stderr = Some(stderr); } pub fn env_mut(&mut self) -> &mut CommandEnv { &mut self.env } pub fn capture_env(&mut self) -> Option { let maybe_env = self.env.capture_if_changed(); maybe_env.map(|env| construct_envp(env, &mut self.saw_nul)) } #[allow(dead_code)] pub fn env_saw_path(&self) -> bool { self.env.have_changed_path() } pub fn setup_io( &self, default: Stdio, needs_stdin: bool, ) -> io::Result<(StdioPipes, ChildPipes)> { let null = Stdio::Null; let default_stdin = if needs_stdin { &default } else { &null }; let stdin = self.stdin.as_ref().unwrap_or(default_stdin); let stdout = self.stdout.as_ref().unwrap_or(&default); let stderr = self.stderr.as_ref().unwrap_or(&default); let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?; let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?; let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?; let ours = StdioPipes { stdin: our_stdin, stdout: our_stdout, stderr: our_stderr }; let theirs = ChildPipes { stdin: their_stdin, stdout: their_stdout, stderr: their_stderr }; Ok((ours, theirs)) } } fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString { CString::new(s.as_bytes()).unwrap_or_else(|_e| { *saw_nul = true; CString::new("").unwrap() }) } // Helper type to manage ownership of the strings within a C-style array. pub struct CStringArray { items: Vec, ptrs: Vec<*const c_char>, } impl CStringArray { pub fn with_capacity(capacity: usize) -> Self { let mut result = CStringArray { items: Vec::with_capacity(capacity), ptrs: Vec::with_capacity(capacity + 1), }; result.ptrs.push(ptr::null()); result } pub fn push(&mut self, item: CString) { let l = self.ptrs.len(); self.ptrs[l - 1] = item.as_ptr(); self.ptrs.push(ptr::null()); self.items.push(item); } pub fn as_ptr(&self) -> *const *const c_char { self.ptrs.as_ptr() } } fn construct_envp(env: BTreeMap, saw_nul: &mut bool) -> CStringArray { let mut result = CStringArray::with_capacity(env.len()); for (k, v) in env { let mut k: OsString = k.into(); // Reserve additional space for '=' and null terminator k.reserve_exact(v.len() + 2); k.push("="); k.push(&v); // Add the new entry into the array if let Ok(item) = CString::new(k.into_vec()) { result.push(item); } else { *saw_nul = true; } } result } impl Stdio { pub fn to_child_stdio(&self, readable: bool) -> io::Result<(ChildStdio, Option)> { match *self { Stdio::Inherit => Ok((ChildStdio::Inherit, None)), // Make sure that the source descriptors are not an stdio // descriptor, otherwise the order which we set the child's // descriptors may blow away a descriptor which we are hoping to // save. For example, suppose we want the child's stderr to be the // parent's stdout, and the child's stdout to be the parent's // stderr. No matter which we dup first, the second will get // overwritten prematurely. Stdio::Fd(ref fd) => { if fd.raw() >= 0 && fd.raw() <= libc::STDERR_FILENO { Ok((ChildStdio::Owned(fd.duplicate()?), None)) } else { Ok((ChildStdio::Explicit(fd.raw()), None)) } } Stdio::MakePipe => { let (reader, writer) = pipe::anon_pipe()?; let (ours, theirs) = if readable { (writer, reader) } else { (reader, writer) }; Ok((ChildStdio::Owned(theirs.into_fd()), Some(ours))) } Stdio::Null => { let mut opts = OpenOptions::new(); opts.read(readable); opts.write(!readable); let path = unsafe { CStr::from_ptr("/null\0".as_ptr() as *const _) }; let fd = File::open_c(&path, &opts)?; Ok((ChildStdio::Owned(fd.into_fd()), None)) } } } } impl From for Stdio { fn from(pipe: AnonPipe) -> Stdio { Stdio::Fd(pipe.into_fd()) } } impl From for Stdio { fn from(file: File) -> Stdio { Stdio::Fd(file.into_fd()) } } impl ChildStdio { pub fn fd(&self) -> Option { match *self { ChildStdio::Inherit => None, ChildStdio::Explicit(fd) => Some(fd), ChildStdio::Owned(ref fd) => Some(fd.raw()), } } } impl fmt::Debug for Command { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.program != self.args[0] { write!(f, "[{:?}] ", self.program)?; } write!(f, "{:?}", self.args[0])?; for arg in &self.args[1..] { write!(f, " {:?}", arg)?; } Ok(()) } } /// Unix exit statuses #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub struct ExitStatus(c_int); impl ExitStatus { pub fn new(status: c_int) -> ExitStatus { ExitStatus(status) } fn exited(&self) -> bool { /*unsafe*/ { libc::WIFEXITED(self.0) } } pub fn success(&self) -> bool { self.code() == Some(0) } pub fn code(&self) -> Option { if self.exited() { Some(/*unsafe*/ { libc::WEXITSTATUS(self.0) }) } else { None } } pub fn signal(&self) -> Option { if !self.exited() { Some(/*unsafe*/ { libc::WTERMSIG(self.0) }) } else { None } } } impl From for ExitStatus { fn from(a: c_int) -> ExitStatus { ExitStatus(a) } } impl fmt::Display for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(code) = self.code() { write!(f, "exit code: {}", code) } else { let signal = self.signal().unwrap(); write!(f, "signal: {}", signal) } } } #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub struct ExitCode(u8); impl ExitCode { pub const SUCCESS: ExitCode = ExitCode(EXIT_SUCCESS as _); pub const FAILURE: ExitCode = ExitCode(EXIT_FAILURE as _); #[inline] pub fn as_i32(&self) -> i32 { self.0 as i32 } }