// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(missing_docs)] #![allow(non_camel_case_types)] #![allow(non_snake_case)] use prelude::v1::*; use ffi::{OsStr, OsString}; use io::{self, ErrorKind}; use libc; use num::Zero; use os::windows::ffi::{OsStrExt, OsStringExt}; use path::PathBuf; use time::Duration; pub mod backtrace; pub mod c; pub mod condvar; pub mod ext; pub mod fs; pub mod handle; pub mod mutex; pub mod net; pub mod os; pub mod os_str; pub mod pipe; pub mod process; pub mod rwlock; pub mod stack_overflow; pub mod sync; pub mod thread; pub mod thread_local; pub mod time; pub mod stdio; pub fn decode_error_kind(errno: i32) -> ErrorKind { match errno as libc::c_int { libc::ERROR_ACCESS_DENIED => ErrorKind::PermissionDenied, libc::ERROR_ALREADY_EXISTS => ErrorKind::AlreadyExists, libc::ERROR_BROKEN_PIPE => ErrorKind::BrokenPipe, libc::ERROR_FILE_NOT_FOUND => ErrorKind::NotFound, libc::ERROR_NO_DATA => ErrorKind::BrokenPipe, libc::ERROR_OPERATION_ABORTED => ErrorKind::TimedOut, libc::WSAEACCES => ErrorKind::PermissionDenied, libc::WSAEADDRINUSE => ErrorKind::AddrInUse, libc::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable, libc::WSAECONNABORTED => ErrorKind::ConnectionAborted, libc::WSAECONNREFUSED => ErrorKind::ConnectionRefused, libc::WSAECONNRESET => ErrorKind::ConnectionReset, libc::WSAEINVAL => ErrorKind::InvalidInput, libc::WSAENOTCONN => ErrorKind::NotConnected, libc::WSAEWOULDBLOCK => ErrorKind::WouldBlock, _ => ErrorKind::Other, } } fn to_utf16_os(s: &OsStr) -> Vec { let mut v: Vec<_> = s.encode_wide().collect(); v.push(0); v } // Many Windows APIs follow a pattern of where we hand the a buffer and then // they will report back to us how large the buffer should be or how many bytes // currently reside in the buffer. This function is an abstraction over these // functions by making them easier to call. // // The first callback, `f1`, is yielded a (pointer, len) pair which can be // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case). // The closure is expected to return what the syscall returns which will be // interpreted by this function to determine if the syscall needs to be invoked // again (with more buffer space). // // Once the syscall has completed (errors bail out early) the second closure is // yielded the data which has been read from the syscall. The return value // from this closure is then the return value of the function. fn fill_utf16_buf(mut f1: F1, f2: F2) -> io::Result where F1: FnMut(*mut u16, libc::DWORD) -> libc::DWORD, F2: FnOnce(&[u16]) -> T { // Start off with a stack buf but then spill over to the heap if we end up // needing more space. let mut stack_buf = [0u16; 512]; let mut heap_buf = Vec::new(); unsafe { let mut n = stack_buf.len(); loop { let buf = if n <= stack_buf.len() { &mut stack_buf[..] } else { let extra = n - heap_buf.len(); heap_buf.reserve(extra); heap_buf.set_len(n); &mut heap_buf[..] }; // This function is typically called on windows API functions which // will return the correct length of the string, but these functions // also return the `0` on error. In some cases, however, the // returned "correct length" may actually be 0! // // To handle this case we call `SetLastError` to reset it to 0 and // then check it again if we get the "0 error value". If the "last // error" is still 0 then we interpret it as a 0 length buffer and // not an actual error. c::SetLastError(0); let k = match f1(buf.as_mut_ptr(), n as libc::DWORD) { 0 if libc::GetLastError() == 0 => 0, 0 => return Err(io::Error::last_os_error()), n => n, } as usize; if k == n && libc::GetLastError() == libc::ERROR_INSUFFICIENT_BUFFER as libc::DWORD { n *= 2; } else if k >= n { n = k; } else { return Ok(f2(&buf[..k])) } } } } fn os2path(s: &[u16]) -> PathBuf { PathBuf::from(OsString::from_wide(s)) } pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] { match v.iter().position(|c| *c == 0) { // don't include the 0 Some(i) => &v[..i], None => v } } fn cvt(i: I) -> io::Result { if i == I::zero() { Err(io::Error::last_os_error()) } else { Ok(i) } } fn dur2timeout(dur: Duration) -> libc::DWORD { // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the // timeouts in windows APIs are typically u32 milliseconds. To translate, we // have two pieces to take care of: // // * Nanosecond precision is rounded up // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE // (never time out). dur.secs().checked_mul(1000).and_then(|ms| { ms.checked_add((dur.extra_nanos() as u64) / 1_000_000) }).and_then(|ms| { ms.checked_add(if dur.extra_nanos() % 1_000_000 > 0 {1} else {0}) }).map(|ms| { if ms > ::max_value() as u64 { libc::INFINITE } else { ms as libc::DWORD } }).unwrap_or(libc::INFINITE) } fn ms_to_filetime(ms: u64) -> libc::FILETIME { // A FILETIME is a count of 100 nanosecond intervals, so we multiply by // 10000 b/c there are 10000 intervals in 1 ms let ms = ms * 10000; libc::FILETIME { dwLowDateTime: ms as u32, dwHighDateTime: (ms >> 32) as u32, } }