// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(missing_docs, bad_style)] use ptr; use ffi::{OsStr, OsString}; use io::{self, ErrorKind}; use os::windows::ffi::{OsStrExt, OsStringExt}; use path::PathBuf; use time::Duration; #[macro_use] pub mod compat; pub mod args; pub mod backtrace; pub mod c; pub mod condvar; pub mod dynamic_lib; pub mod env; pub mod ext; pub mod fs; pub mod handle; pub mod memchr; pub mod mutex; pub mod net; pub mod os; pub mod os_str; pub mod path; pub mod pipe; pub mod process; pub mod rand; pub mod rwlock; pub mod stack_overflow; pub mod thread; pub mod thread_local; pub mod time; pub mod stdio; #[cfg(not(test))] pub fn init() { ::alloc::oom::set_oom_handler(oom_handler); // See comment in sys/unix/mod.rs fn oom_handler() -> ! { use intrinsics; use ptr; let msg = "fatal runtime error: out of memory\n"; unsafe { // WriteFile silently fails if it is passed an invalid handle, so // there is no need to check the result of GetStdHandle. c::WriteFile(c::GetStdHandle(c::STD_ERROR_HANDLE), msg.as_ptr() as c::LPVOID, msg.len() as c::DWORD, ptr::null_mut(), ptr::null_mut()); intrinsics::abort(); } } } pub fn decode_error_kind(errno: i32) -> ErrorKind { match errno as c::DWORD { c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied, c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists, c::ERROR_FILE_EXISTS => return ErrorKind::AlreadyExists, c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe, c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound, c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound, c::ERROR_NO_DATA => return ErrorKind::BrokenPipe, c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut, _ => {} } match errno { c::WSAEACCES => ErrorKind::PermissionDenied, c::WSAEADDRINUSE => ErrorKind::AddrInUse, c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable, c::WSAECONNABORTED => ErrorKind::ConnectionAborted, c::WSAECONNREFUSED => ErrorKind::ConnectionRefused, c::WSAECONNRESET => ErrorKind::ConnectionReset, c::WSAEINVAL => ErrorKind::InvalidInput, c::WSAENOTCONN => ErrorKind::NotConnected, c::WSAEWOULDBLOCK => ErrorKind::WouldBlock, c::WSAETIMEDOUT => ErrorKind::TimedOut, _ => ErrorKind::Other, } } pub fn to_u16s>(s: S) -> io::Result> { fn inner(s: &OsStr) -> io::Result> { let mut maybe_result: Vec = s.encode_wide().collect(); if maybe_result.iter().any(|&u| u == 0) { return Err(io::Error::new(io::ErrorKind::InvalidInput, "strings passed to WinAPI cannot contain NULs")); } maybe_result.push(0); Ok(maybe_result) } inner(s.as_ref()) } // Many Windows APIs follow a pattern of where we hand a buffer and then they // will report back to us how large the buffer should be or how many bytes // currently reside in the buffer. This function is an abstraction over these // functions by making them easier to call. // // The first callback, `f1`, is yielded a (pointer, len) pair which can be // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case). // The closure is expected to return what the syscall returns which will be // interpreted by this function to determine if the syscall needs to be invoked // again (with more buffer space). // // Once the syscall has completed (errors bail out early) the second closure is // yielded the data which has been read from the syscall. The return value // from this closure is then the return value of the function. fn fill_utf16_buf(mut f1: F1, f2: F2) -> io::Result where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD, F2: FnOnce(&[u16]) -> T { // Start off with a stack buf but then spill over to the heap if we end up // needing more space. let mut stack_buf = [0u16; 512]; let mut heap_buf = Vec::new(); unsafe { let mut n = stack_buf.len(); loop { let buf = if n <= stack_buf.len() { &mut stack_buf[..] } else { let extra = n - heap_buf.len(); heap_buf.reserve(extra); heap_buf.set_len(n); &mut heap_buf[..] }; // This function is typically called on windows API functions which // will return the correct length of the string, but these functions // also return the `0` on error. In some cases, however, the // returned "correct length" may actually be 0! // // To handle this case we call `SetLastError` to reset it to 0 and // then check it again if we get the "0 error value". If the "last // error" is still 0 then we interpret it as a 0 length buffer and // not an actual error. c::SetLastError(0); let k = match f1(buf.as_mut_ptr(), n as c::DWORD) { 0 if c::GetLastError() == 0 => 0, 0 => return Err(io::Error::last_os_error()), n => n, } as usize; if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER { n *= 2; } else if k >= n { n = k; } else { return Ok(f2(&buf[..k])) } } } } fn os2path(s: &[u16]) -> PathBuf { PathBuf::from(OsString::from_wide(s)) } #[allow(dead_code)] // Only used in backtrace::gnu::get_executable_filename() fn wide_char_to_multi_byte(code_page: u32, flags: u32, s: &[u16], no_default_char: bool) -> io::Result> { unsafe { let mut size = c::WideCharToMultiByte(code_page, flags, s.as_ptr(), s.len() as i32, ptr::null_mut(), 0, ptr::null(), ptr::null_mut()); if size == 0 { return Err(io::Error::last_os_error()); } let mut buf = Vec::with_capacity(size as usize); buf.set_len(size as usize); let mut used_default_char = c::FALSE; size = c::WideCharToMultiByte(code_page, flags, s.as_ptr(), s.len() as i32, buf.as_mut_ptr(), buf.len() as i32, ptr::null(), if no_default_char { &mut used_default_char } else { ptr::null_mut() }); if size == 0 { return Err(io::Error::last_os_error()); } if no_default_char && used_default_char == c::TRUE { return Err(io::Error::new(io::ErrorKind::InvalidData, "string cannot be converted to requested code page")); } buf.set_len(size as usize); Ok(buf) } } pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] { match v.iter().position(|c| *c == 0) { // don't include the 0 Some(i) => &v[..i], None => v } } pub trait IsZero { fn is_zero(&self) -> bool; } macro_rules! impl_is_zero { ($($t:ident)*) => ($(impl IsZero for $t { fn is_zero(&self) -> bool { *self == 0 } })*) } impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize } pub fn cvt(i: I) -> io::Result { if i.is_zero() { Err(io::Error::last_os_error()) } else { Ok(i) } } pub fn dur2timeout(dur: Duration) -> c::DWORD { // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the // timeouts in windows APIs are typically u32 milliseconds. To translate, we // have two pieces to take care of: // // * Nanosecond precision is rounded up // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE // (never time out). dur.as_secs().checked_mul(1000).and_then(|ms| { ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000) }).and_then(|ms| { ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0}) }).map(|ms| { if ms > ::max_value() as u64 { c::INFINITE } else { ms as c::DWORD } }).unwrap_or(c::INFINITE) } // On Windows, use the processor-specific __fastfail mechanism. In Windows 8 // and later, this will terminate the process immediately without running any // in-process exception handlers. In earlier versions of Windows, this // sequence of instructions will be treated as an access violation, // terminating the process but without necessarily bypassing all exception // handlers. // // https://msdn.microsoft.com/en-us/library/dn774154.aspx #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] pub unsafe fn abort_internal() -> ! { asm!("int $$0x29" :: "{ecx}"(7) ::: volatile); // 7 is FAST_FAIL_FATAL_APP_EXIT ::intrinsics::unreachable(); }