about summary refs log tree commit diff
path: root/compiler/rustc_public/src/compiler_interface.rs
blob: d15438c2b800e4e404c7a939310ecf3cbcb9ded5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
//! Define the interface with the Rust compiler.
//!
//! StableMIR users should not use any of the items in this module directly.
//! These APIs have no stability guarantee.

use std::cell::Cell;

use rustc_hir::def::DefKind;
use rustc_public_bridge::context::SmirCtxt;
use rustc_public_bridge::{Bridge, SmirContainer};
use tracing::debug;

use crate::abi::{FnAbi, Layout, LayoutShape, ReprOptions};
use crate::crate_def::Attribute;
use crate::mir::alloc::{AllocId, GlobalAlloc};
use crate::mir::mono::{Instance, InstanceDef, StaticDef};
use crate::mir::{BinOp, Body, Place, UnOp};
use crate::target::{MachineInfo, MachineSize};
use crate::ty::{
    AdtDef, AdtKind, Allocation, ClosureDef, ClosureKind, CoroutineDef, Discr, FieldDef, FnDef,
    ForeignDef, ForeignItemKind, ForeignModule, ForeignModuleDef, GenericArgs, GenericPredicates,
    Generics, ImplDef, ImplTrait, IntrinsicDef, LineInfo, MirConst, PolyFnSig, RigidTy, Span,
    TraitDecl, TraitDef, Ty, TyConst, TyConstId, TyKind, UintTy, VariantDef, VariantIdx,
};
use crate::unstable::{RustcInternal, Stable, new_item_kind};
use crate::{
    AssocItems, Crate, CrateDef, CrateItem, CrateItems, CrateNum, DefId, Error, Filename,
    ImplTraitDecls, ItemKind, Symbol, TraitDecls, alloc, mir,
};

pub struct BridgeTys;

impl Bridge for BridgeTys {
    type DefId = crate::DefId;
    type AllocId = crate::mir::alloc::AllocId;
    type Span = crate::ty::Span;
    type Ty = crate::ty::Ty;
    type InstanceDef = crate::mir::mono::InstanceDef;
    type TyConstId = crate::ty::TyConstId;
    type MirConstId = crate::ty::MirConstId;
    type Layout = crate::abi::Layout;

    type Error = crate::Error;
    type CrateItem = crate::CrateItem;
    type AdtDef = crate::ty::AdtDef;
    type ForeignModuleDef = crate::ty::ForeignModuleDef;
    type ForeignDef = crate::ty::ForeignDef;
    type FnDef = crate::ty::FnDef;
    type ClosureDef = crate::ty::ClosureDef;
    type CoroutineDef = crate::ty::CoroutineDef;
    type CoroutineClosureDef = crate::ty::CoroutineClosureDef;
    type AliasDef = crate::ty::AliasDef;
    type ParamDef = crate::ty::ParamDef;
    type BrNamedDef = crate::ty::BrNamedDef;
    type TraitDef = crate::ty::TraitDef;
    type GenericDef = crate::ty::GenericDef;
    type ConstDef = crate::ty::ConstDef;
    type ImplDef = crate::ty::ImplDef;
    type RegionDef = crate::ty::RegionDef;
    type CoroutineWitnessDef = crate::ty::CoroutineWitnessDef;
    type AssocDef = crate::ty::AssocDef;
    type OpaqueDef = crate::ty::OpaqueDef;
    type Prov = crate::ty::Prov;
    type StaticDef = crate::mir::mono::StaticDef;

    type Allocation = crate::ty::Allocation;
}

/// Stable public API for querying compiler information.
///
/// All queries are delegated to [`rustc_public_bridge::context::SmirCtxt`] that provides
/// similar APIs but based on internal rustc constructs.
///
/// Do not use this directly. This is currently used in the macro expansion.
pub(crate) trait SmirInterface {
    fn entry_fn(&self) -> Option<CrateItem>;
    /// Retrieve all items of the local crate that have a MIR associated with them.
    fn all_local_items(&self) -> CrateItems;
    /// Retrieve the body of a function.
    /// This function will panic if the body is not available.
    fn mir_body(&self, item: DefId) -> mir::Body;
    /// Check whether the body of a function is available.
    fn has_body(&self, item: DefId) -> bool;
    fn foreign_modules(&self, crate_num: CrateNum) -> Vec<ForeignModuleDef>;

    /// Retrieve all functions defined in this crate.
    fn crate_functions(&self, crate_num: CrateNum) -> Vec<FnDef>;

    /// Retrieve all static items defined in this crate.
    fn crate_statics(&self, crate_num: CrateNum) -> Vec<StaticDef>;
    fn foreign_module(&self, mod_def: ForeignModuleDef) -> ForeignModule;
    fn foreign_items(&self, mod_def: ForeignModuleDef) -> Vec<ForeignDef>;
    fn all_trait_decls(&self) -> TraitDecls;
    fn trait_decls(&self, crate_num: CrateNum) -> TraitDecls;
    fn trait_decl(&self, trait_def: &TraitDef) -> TraitDecl;
    fn all_trait_impls(&self) -> ImplTraitDecls;
    fn trait_impls(&self, crate_num: CrateNum) -> ImplTraitDecls;
    fn trait_impl(&self, trait_impl: &ImplDef) -> ImplTrait;
    fn generics_of(&self, def_id: DefId) -> Generics;
    fn predicates_of(&self, def_id: DefId) -> GenericPredicates;
    fn explicit_predicates_of(&self, def_id: DefId) -> GenericPredicates;

    /// Get information about the local crate.
    fn local_crate(&self) -> Crate;
    /// Retrieve a list of all external crates.
    fn external_crates(&self) -> Vec<Crate>;

    /// Find a crate with the given name.
    fn find_crates(&self, name: &str) -> Vec<Crate>;

    /// Returns the name of given `DefId`
    fn def_name(&self, def_id: DefId, trimmed: bool) -> Symbol;

    /// Return registered tool attributes with the given attribute name.
    ///
    /// FIXME(jdonszelmann): may panic on non-tool attributes. After more attribute work, non-tool
    /// attributes will simply return an empty list.
    ///
    /// Single segmented name like `#[clippy]` is specified as `&["clippy".to_string()]`.
    /// Multi-segmented name like `#[rustfmt::skip]` is specified as `&["rustfmt".to_string(), "skip".to_string()]`.
    fn tool_attrs(&self, def_id: DefId, attr: &[Symbol]) -> Vec<Attribute>;

    /// Get all tool attributes of a definition.
    fn all_tool_attrs(&self, def_id: DefId) -> Vec<Attribute>;

    /// Returns printable, human readable form of `Span`
    fn span_to_string(&self, span: Span) -> String;

    /// Return filename from given `Span`, for diagnostic purposes
    fn get_filename(&self, span: &Span) -> Filename;

    /// Return lines corresponding to this `Span`
    fn get_lines(&self, span: &Span) -> LineInfo;

    /// Returns the `kind` of given `DefId`
    fn item_kind(&self, item: CrateItem) -> ItemKind;

    /// Returns whether this is a foreign item.
    fn is_foreign_item(&self, item: DefId) -> bool;

    /// Returns the kind of a given foreign item.
    fn foreign_item_kind(&self, def: ForeignDef) -> ForeignItemKind;

    /// Returns the kind of a given algebraic data type
    fn adt_kind(&self, def: AdtDef) -> AdtKind;

    /// Returns if the ADT is a box.
    fn adt_is_box(&self, def: AdtDef) -> bool;

    /// Returns whether this ADT is simd.
    fn adt_is_simd(&self, def: AdtDef) -> bool;

    /// Returns whether this definition is a C string.
    fn adt_is_cstr(&self, def: AdtDef) -> bool;

    /// Returns the representation options for this ADT.
    fn adt_repr(&self, def: AdtDef) -> ReprOptions;

    /// Retrieve the function signature for the given generic arguments.
    fn fn_sig(&self, def: FnDef, args: &GenericArgs) -> PolyFnSig;

    /// Retrieve the intrinsic definition if the item corresponds one.
    fn intrinsic(&self, item: DefId) -> Option<IntrinsicDef>;

    /// Retrieve the plain function name of an intrinsic.
    fn intrinsic_name(&self, def: IntrinsicDef) -> Symbol;

    /// Retrieve the closure signature for the given generic arguments.
    fn closure_sig(&self, args: &GenericArgs) -> PolyFnSig;

    /// The number of variants in this ADT.
    fn adt_variants_len(&self, def: AdtDef) -> usize;

    /// Discriminant for a given variant index of AdtDef.
    fn adt_discr_for_variant(&self, adt: AdtDef, variant: VariantIdx) -> Discr;

    /// Discriminant for a given variand index and args of a coroutine.
    fn coroutine_discr_for_variant(
        &self,
        coroutine: CoroutineDef,
        args: &GenericArgs,
        variant: VariantIdx,
    ) -> Discr;

    /// The name of a variant.
    fn variant_name(&self, def: VariantDef) -> Symbol;
    fn variant_fields(&self, def: VariantDef) -> Vec<FieldDef>;

    /// Evaluate constant as a target usize.
    fn eval_target_usize(&self, cnst: &MirConst) -> Result<u64, Error>;
    fn eval_target_usize_ty(&self, cnst: &TyConst) -> Result<u64, Error>;

    /// Create a new zero-sized constant.
    fn try_new_const_zst(&self, ty: Ty) -> Result<MirConst, Error>;

    /// Create a new constant that represents the given string value.
    fn new_const_str(&self, value: &str) -> MirConst;

    /// Create a new constant that represents the given boolean value.
    fn new_const_bool(&self, value: bool) -> MirConst;

    /// Create a new constant that represents the given value.
    fn try_new_const_uint(&self, value: u128, uint_ty: UintTy) -> Result<MirConst, Error>;
    fn try_new_ty_const_uint(&self, value: u128, uint_ty: UintTy) -> Result<TyConst, Error>;

    /// Create a new type from the given kind.
    fn new_rigid_ty(&self, kind: RigidTy) -> Ty;

    /// Create a new box type, `Box<T>`, for the given inner type `T`.
    fn new_box_ty(&self, ty: Ty) -> Ty;

    /// Returns the type of given crate item.
    fn def_ty(&self, item: DefId) -> Ty;

    /// Returns the type of given definition instantiated with the given arguments.
    fn def_ty_with_args(&self, item: DefId, args: &GenericArgs) -> Ty;

    /// Returns literal value of a const as a string.
    fn mir_const_pretty(&self, cnst: &MirConst) -> String;

    /// `Span` of an item
    fn span_of_an_item(&self, def_id: DefId) -> Span;

    fn ty_const_pretty(&self, ct: TyConstId) -> String;

    /// Obtain the representation of a type.
    fn ty_pretty(&self, ty: Ty) -> String;

    /// Obtain the kind of a type.
    fn ty_kind(&self, ty: Ty) -> TyKind;

    // Get the discriminant Ty for this Ty if there's one.
    fn rigid_ty_discriminant_ty(&self, ty: &RigidTy) -> Ty;

    /// Get the body of an Instance which is already monomorphized.
    fn instance_body(&self, instance: InstanceDef) -> Option<Body>;

    /// Get the instance type with generic instantiations applied and lifetimes erased.
    fn instance_ty(&self, instance: InstanceDef) -> Ty;

    /// Get the instantiation types.
    fn instance_args(&self, def: InstanceDef) -> GenericArgs;

    /// Get the instance.
    fn instance_def_id(&self, instance: InstanceDef) -> DefId;

    /// Get the instance mangled name.
    fn instance_mangled_name(&self, instance: InstanceDef) -> Symbol;

    /// Check if this is an empty DropGlue shim.
    fn is_empty_drop_shim(&self, def: InstanceDef) -> bool;

    /// Convert a non-generic crate item into an instance.
    /// This function will panic if the item is generic.
    fn mono_instance(&self, def_id: DefId) -> Instance;

    /// Item requires monomorphization.
    fn requires_monomorphization(&self, def_id: DefId) -> bool;

    /// Resolve an instance from the given function definition and generic arguments.
    fn resolve_instance(&self, def: FnDef, args: &GenericArgs) -> Option<Instance>;

    /// Resolve an instance for drop_in_place for the given type.
    fn resolve_drop_in_place(&self, ty: Ty) -> Instance;

    /// Resolve instance for a function pointer.
    fn resolve_for_fn_ptr(&self, def: FnDef, args: &GenericArgs) -> Option<Instance>;

    /// Resolve instance for a closure with the requested type.
    fn resolve_closure(
        &self,
        def: ClosureDef,
        args: &GenericArgs,
        kind: ClosureKind,
    ) -> Option<Instance>;

    /// Evaluate a static's initializer.
    fn eval_static_initializer(&self, def: StaticDef) -> Result<Allocation, Error>;

    /// Try to evaluate an instance into a constant.
    fn eval_instance(&self, def: InstanceDef, const_ty: Ty) -> Result<Allocation, Error>;

    /// Retrieve global allocation for the given allocation ID.
    fn global_alloc(&self, id: AllocId) -> GlobalAlloc;

    /// Retrieve the id for the virtual table.
    fn vtable_allocation(&self, global_alloc: &GlobalAlloc) -> Option<AllocId>;
    fn krate(&self, def_id: DefId) -> Crate;
    fn instance_name(&self, def: InstanceDef, trimmed: bool) -> Symbol;

    /// Return information about the target machine.
    fn target_info(&self) -> MachineInfo;

    /// Get an instance ABI.
    fn instance_abi(&self, def: InstanceDef) -> Result<FnAbi, Error>;

    /// Get the ABI of a function pointer.
    fn fn_ptr_abi(&self, fn_ptr: PolyFnSig) -> Result<FnAbi, Error>;

    /// Get the layout of a type.
    fn ty_layout(&self, ty: Ty) -> Result<Layout, Error>;

    /// Get the layout shape.
    fn layout_shape(&self, id: Layout) -> LayoutShape;

    /// Get a debug string representation of a place.
    fn place_pretty(&self, place: &Place) -> String;

    /// Get the resulting type of binary operation.
    fn binop_ty(&self, bin_op: BinOp, rhs: Ty, lhs: Ty) -> Ty;

    /// Get the resulting type of unary operation.
    fn unop_ty(&self, un_op: UnOp, arg: Ty) -> Ty;

    /// Get all associated items of a definition.
    fn associated_items(&self, def_id: DefId) -> AssocItems;
}

impl<'tcx> SmirInterface for SmirContainer<'tcx, BridgeTys> {
    fn entry_fn(&self) -> Option<CrateItem> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = cx.entry_fn();
        Some(tables.crate_item(did?))
    }

    /// Retrieve all items of the local crate that have a MIR associated with them.
    fn all_local_items(&self) -> CrateItems {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.all_local_items().iter().map(|did| tables.crate_item(*did)).collect()
    }

    /// Retrieve the body of a function.
    /// This function will panic if the body is not available.
    fn mir_body(&self, item: DefId) -> mir::Body {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[item];
        cx.mir_body(did).stable(&mut *tables, cx)
    }

    /// Check whether the body of a function is available.
    fn has_body(&self, item: DefId) -> bool {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def = item.internal(&mut *tables, cx.tcx);
        cx.has_body(def)
    }

    fn foreign_modules(&self, crate_num: CrateNum) -> Vec<ForeignModuleDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.foreign_modules(crate_num.internal(&mut *tables, cx.tcx))
            .iter()
            .map(|did| tables.foreign_module_def(*did))
            .collect()
    }

    /// Retrieve all functions defined in this crate.
    fn crate_functions(&self, crate_num: CrateNum) -> Vec<FnDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let krate = crate_num.internal(&mut *tables, cx.tcx);
        cx.crate_functions(krate).iter().map(|did| tables.fn_def(*did)).collect()
    }

    /// Retrieve all static items defined in this crate.
    fn crate_statics(&self, crate_num: CrateNum) -> Vec<StaticDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let krate = crate_num.internal(&mut *tables, cx.tcx);
        cx.crate_statics(krate).iter().map(|did| tables.static_def(*did)).collect()
    }

    fn foreign_module(&self, mod_def: ForeignModuleDef) -> ForeignModule {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[mod_def.def_id()];
        cx.foreign_module(did).stable(&mut *tables, cx)
    }

    fn foreign_items(&self, mod_def: ForeignModuleDef) -> Vec<ForeignDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[mod_def.def_id()];
        cx.foreign_items(did).iter().map(|did| tables.foreign_def(*did)).collect()
    }

    fn all_trait_decls(&self) -> TraitDecls {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.all_trait_decls().map(|did| tables.trait_def(did)).collect()
    }

    fn trait_decls(&self, crate_num: CrateNum) -> TraitDecls {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let krate = crate_num.internal(&mut *tables, cx.tcx);
        cx.trait_decls(krate).iter().map(|did| tables.trait_def(*did)).collect()
    }

    fn trait_decl(&self, trait_def: &TraitDef) -> TraitDecl {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[trait_def.0];
        cx.trait_decl(did).stable(&mut *tables, cx)
    }

    fn all_trait_impls(&self) -> ImplTraitDecls {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.all_trait_impls().iter().map(|did| tables.impl_def(*did)).collect()
    }

    fn trait_impls(&self, crate_num: CrateNum) -> ImplTraitDecls {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let krate = crate_num.internal(&mut *tables, cx.tcx);
        cx.trait_impls(krate).iter().map(|did| tables.impl_def(*did)).collect()
    }

    fn trait_impl(&self, trait_impl: &ImplDef) -> ImplTrait {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[trait_impl.0];
        cx.trait_impl(did).stable(&mut *tables, cx)
    }

    fn generics_of(&self, def_id: DefId) -> Generics {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.generics_of(did).stable(&mut *tables, cx)
    }

    fn predicates_of(&self, def_id: DefId) -> GenericPredicates {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        let (parent, kinds) = cx.predicates_of(did);
        crate::ty::GenericPredicates {
            parent: parent.map(|did| tables.trait_def(did)),
            predicates: kinds
                .iter()
                .map(|(kind, span)| (kind.stable(&mut *tables, cx), span.stable(&mut *tables, cx)))
                .collect(),
        }
    }

    fn explicit_predicates_of(&self, def_id: DefId) -> GenericPredicates {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        let (parent, kinds) = cx.explicit_predicates_of(did);
        crate::ty::GenericPredicates {
            parent: parent.map(|did| tables.trait_def(did)),
            predicates: kinds
                .iter()
                .map(|(kind, span)| (kind.stable(&mut *tables, cx), span.stable(&mut *tables, cx)))
                .collect(),
        }
    }

    /// Get information about the local crate.
    fn local_crate(&self) -> Crate {
        let cx = &*self.cx.borrow();
        smir_crate(cx, cx.local_crate_num())
    }

    /// Retrieve a list of all external crates.
    fn external_crates(&self) -> Vec<Crate> {
        let cx = &*self.cx.borrow();
        cx.external_crates().iter().map(|crate_num| smir_crate(cx, *crate_num)).collect()
    }

    /// Find a crate with the given name.
    fn find_crates(&self, name: &str) -> Vec<Crate> {
        let cx = &*self.cx.borrow();
        cx.find_crates(name).iter().map(|crate_num| smir_crate(cx, *crate_num)).collect()
    }

    /// Returns the name of given `DefId`.
    fn def_name(&self, def_id: DefId, trimmed: bool) -> Symbol {
        let tables = self.tables.borrow();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.def_name(did, trimmed)
    }

    /// Return registered tool attributes with the given attribute name.
    ///
    /// FIXME(jdonszelmann): may panic on non-tool attributes. After more attribute work, non-tool
    /// attributes will simply return an empty list.
    ///
    /// Single segmented name like `#[clippy]` is specified as `&["clippy".to_string()]`.
    /// Multi-segmented name like `#[rustfmt::skip]` is specified as `&["rustfmt".to_string(), "skip".to_string()]`.
    fn tool_attrs(&self, def_id: DefId, attr: &[Symbol]) -> Vec<Attribute> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.tool_attrs(did, attr)
            .into_iter()
            .map(|(attr_str, span)| Attribute::new(attr_str, span.stable(&mut *tables, cx)))
            .collect()
    }

    /// Get all tool attributes of a definition.
    fn all_tool_attrs(&self, def_id: DefId) -> Vec<Attribute> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.all_tool_attrs(did)
            .into_iter()
            .map(|(attr_str, span)| Attribute::new(attr_str, span.stable(&mut *tables, cx)))
            .collect()
    }

    /// Returns printable, human readable form of `Span`.
    fn span_to_string(&self, span: Span) -> String {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let sp = tables.spans[span];
        cx.span_to_string(sp)
    }

    /// Return filename from given `Span`, for diagnostic purposes.
    fn get_filename(&self, span: &Span) -> Filename {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let sp = tables.spans[*span];
        cx.get_filename(sp)
    }

    /// Return lines corresponding to this `Span`.
    fn get_lines(&self, span: &Span) -> LineInfo {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let sp = tables.spans[*span];
        let lines = cx.get_lines(sp);
        LineInfo::from(lines)
    }

    /// Returns the `kind` of given `DefId`.
    fn item_kind(&self, item: CrateItem) -> ItemKind {
        let tables = self.tables.borrow();
        let cx = &*self.cx.borrow();
        let did = tables[item.0];
        new_item_kind(cx.def_kind(did))
    }

    /// Returns whether this is a foreign item.
    fn is_foreign_item(&self, item: DefId) -> bool {
        let tables = self.tables.borrow();
        let cx = &*self.cx.borrow();
        let did = tables[item];
        cx.is_foreign_item(did)
    }

    /// Returns the kind of a given foreign item.
    fn foreign_item_kind(&self, def: ForeignDef) -> ForeignItemKind {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = tables[def.def_id()];
        let def_kind = cx.foreign_item_kind(def_id);
        match def_kind {
            DefKind::Fn => ForeignItemKind::Fn(tables.fn_def(def_id)),
            DefKind::Static { .. } => ForeignItemKind::Static(tables.static_def(def_id)),
            DefKind::ForeignTy => {
                use rustc_public_bridge::context::SmirTy;
                ForeignItemKind::Type(tables.intern_ty(cx.new_foreign(def_id)))
            }
            def_kind => unreachable!("Unexpected kind for a foreign item: {:?}", def_kind),
        }
    }

    /// Returns the kind of a given algebraic data type.
    fn adt_kind(&self, def: AdtDef) -> AdtKind {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_kind(def.internal(&mut *tables, cx.tcx)).stable(&mut *tables, cx)
    }

    /// Returns if the ADT is a box.
    fn adt_is_box(&self, def: AdtDef) -> bool {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_is_box(def.internal(&mut *tables, cx.tcx))
    }

    /// Returns whether this ADT is simd.
    fn adt_is_simd(&self, def: AdtDef) -> bool {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_is_simd(def.internal(&mut *tables, cx.tcx))
    }

    /// Returns whether this definition is a C string.
    fn adt_is_cstr(&self, def: AdtDef) -> bool {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_is_cstr(def.0.internal(&mut *tables, cx.tcx))
    }

    /// Returns the representation options for this ADT
    fn adt_repr(&self, def: AdtDef) -> ReprOptions {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_repr(def.internal(&mut *tables, cx.tcx)).stable(&mut *tables, cx)
    }

    /// Retrieve the function signature for the given generic arguments.
    fn fn_sig(&self, def: FnDef, args: &GenericArgs) -> PolyFnSig {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);
        let args_ref = args.internal(&mut *tables, cx.tcx);
        cx.fn_sig(def_id, args_ref).stable(&mut *tables, cx)
    }

    /// Retrieve the intrinsic definition if the item corresponds one.
    fn intrinsic(&self, item: DefId) -> Option<IntrinsicDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = item.internal(&mut *tables, cx.tcx);
        cx.intrinsic(def_id).map(|_| IntrinsicDef(item))
    }

    /// Retrieve the plain function name of an intrinsic.
    fn intrinsic_name(&self, def: IntrinsicDef) -> Symbol {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);
        cx.intrinsic_name(def_id)
    }

    /// Retrieve the closure signature for the given generic arguments.
    fn closure_sig(&self, args: &GenericArgs) -> PolyFnSig {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let args_ref = args.internal(&mut *tables, cx.tcx);
        cx.closure_sig(args_ref).stable(&mut *tables, cx)
    }

    /// The number of variants in this ADT.
    fn adt_variants_len(&self, def: AdtDef) -> usize {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_variants_len(def.internal(&mut *tables, cx.tcx))
    }

    /// Discriminant for a given variant index of AdtDef.
    fn adt_discr_for_variant(&self, adt: AdtDef, variant: VariantIdx) -> Discr {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.adt_discr_for_variant(
            adt.internal(&mut *tables, cx.tcx),
            variant.internal(&mut *tables, cx.tcx),
        )
        .stable(&mut *tables, cx)
    }

    /// Discriminant for a given variand index and args of a coroutine.
    fn coroutine_discr_for_variant(
        &self,
        coroutine: CoroutineDef,
        args: &GenericArgs,
        variant: VariantIdx,
    ) -> Discr {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let tcx = cx.tcx;
        let def = coroutine.def_id().internal(&mut *tables, tcx);
        let args_ref = args.internal(&mut *tables, tcx);
        cx.coroutine_discr_for_variant(def, args_ref, variant.internal(&mut *tables, tcx))
            .stable(&mut *tables, cx)
    }

    /// The name of a variant.
    fn variant_name(&self, def: VariantDef) -> Symbol {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.variant_name(def.internal(&mut *tables, cx.tcx))
    }

    fn variant_fields(&self, def: VariantDef) -> Vec<FieldDef> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        def.internal(&mut *tables, cx.tcx)
            .fields
            .iter()
            .map(|f| f.stable(&mut *tables, cx))
            .collect()
    }

    /// Evaluate constant as a target usize.
    fn eval_target_usize(&self, mir_const: &MirConst) -> Result<u64, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let cnst = mir_const.internal(&mut *tables, cx.tcx);
        cx.eval_target_usize(cnst)
    }

    fn eval_target_usize_ty(&self, ty_const: &TyConst) -> Result<u64, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let cnst = ty_const.internal(&mut *tables, cx.tcx);
        cx.eval_target_usize_ty(cnst)
    }

    /// Create a new zero-sized constant.
    fn try_new_const_zst(&self, ty: Ty) -> Result<MirConst, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let ty_internal = ty.internal(&mut *tables, cx.tcx);
        cx.try_new_const_zst(ty_internal).map(|cnst| cnst.stable(&mut *tables, cx))
    }

    /// Create a new constant that represents the given string value.
    fn new_const_str(&self, value: &str) -> MirConst {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.new_const_str(value).stable(&mut *tables, cx)
    }

    /// Create a new constant that represents the given boolean value.
    fn new_const_bool(&self, value: bool) -> MirConst {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.new_const_bool(value).stable(&mut *tables, cx)
    }

    /// Create a new constant that represents the given value.
    fn try_new_const_uint(&self, value: u128, uint_ty: UintTy) -> Result<MirConst, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let ty = cx.ty_new_uint(uint_ty.internal(&mut *tables, cx.tcx));
        cx.try_new_const_uint(value, ty).map(|cnst| cnst.stable(&mut *tables, cx))
    }

    fn try_new_ty_const_uint(&self, value: u128, uint_ty: UintTy) -> Result<TyConst, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let ty = cx.ty_new_uint(uint_ty.internal(&mut *tables, cx.tcx));
        cx.try_new_ty_const_uint(value, ty).map(|cnst| cnst.stable(&mut *tables, cx))
    }

    /// Create a new type from the given kind.
    fn new_rigid_ty(&self, kind: RigidTy) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let internal_kind = kind.internal(&mut *tables, cx.tcx);
        cx.new_rigid_ty(internal_kind).stable(&mut *tables, cx)
    }

    /// Create a new box type, `Box<T>`, for the given inner type `T`.
    fn new_box_ty(&self, ty: Ty) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let inner = ty.internal(&mut *tables, cx.tcx);
        cx.new_box_ty(inner).stable(&mut *tables, cx)
    }

    /// Returns the type of given crate item.
    fn def_ty(&self, item: DefId) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let inner = item.internal(&mut *tables, cx.tcx);
        cx.def_ty(inner).stable(&mut *tables, cx)
    }

    /// Returns the type of given definition instantiated with the given arguments.
    fn def_ty_with_args(&self, item: DefId, args: &GenericArgs) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let inner = item.internal(&mut *tables, cx.tcx);
        let args_ref = args.internal(&mut *tables, cx.tcx);
        cx.def_ty_with_args(inner, args_ref).stable(&mut *tables, cx)
    }

    /// Returns literal value of a const as a string.
    fn mir_const_pretty(&self, cnst: &MirConst) -> String {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cnst.internal(&mut *tables, cx.tcx).to_string()
    }

    /// `Span` of an item.
    fn span_of_an_item(&self, def_id: DefId) -> Span {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.span_of_an_item(did).stable(&mut *tables, cx)
    }

    fn ty_const_pretty(&self, ct: TyConstId) -> String {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.ty_const_pretty(tables.ty_consts[ct])
    }

    /// Obtain the representation of a type.
    fn ty_pretty(&self, ty: Ty) -> String {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.ty_pretty(tables.types[ty])
    }

    /// Obtain the kind of a type.
    fn ty_kind(&self, ty: Ty) -> TyKind {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        cx.ty_kind(tables.types[ty]).stable(&mut *tables, cx)
    }

    /// Get the discriminant Ty for this Ty if there's one.
    fn rigid_ty_discriminant_ty(&self, ty: &RigidTy) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let internal_kind = ty.internal(&mut *tables, cx.tcx);
        cx.rigid_ty_discriminant_ty(internal_kind).stable(&mut *tables, cx)
    }

    /// Get the body of an Instance which is already monomorphized.
    fn instance_body(&self, instance: InstanceDef) -> Option<Body> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[instance];
        cx.instance_body(instance).map(|body| body.stable(&mut *tables, cx))
    }

    /// Get the instance type with generic instantiations applied and lifetimes erased.
    fn instance_ty(&self, instance: InstanceDef) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[instance];
        cx.instance_ty(instance).stable(&mut *tables, cx)
    }

    /// Get the instantiation types.
    fn instance_args(&self, def: InstanceDef) -> GenericArgs {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[def];
        cx.instance_args(instance).stable(&mut *tables, cx)
    }

    /// Get the instance.
    fn instance_def_id(&self, instance: InstanceDef) -> DefId {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[instance];
        cx.instance_def_id(instance, &mut *tables)
    }

    /// Get the instance mangled name.
    fn instance_mangled_name(&self, instance: InstanceDef) -> Symbol {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[instance];
        cx.instance_mangled_name(instance)
    }

    /// Check if this is an empty DropGlue shim.
    fn is_empty_drop_shim(&self, def: InstanceDef) -> bool {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[def];
        cx.is_empty_drop_shim(instance)
    }

    /// Convert a non-generic crate item into an instance.
    /// This function will panic if the item is generic.
    fn mono_instance(&self, def_id: DefId) -> Instance {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.mono_instance(did).stable(&mut *tables, cx)
    }

    /// Item requires monomorphization.
    fn requires_monomorphization(&self, def_id: DefId) -> bool {
        let tables = self.tables.borrow();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.requires_monomorphization(did)
    }

    /// Resolve an instance from the given function definition and generic arguments.
    fn resolve_instance(&self, def: FnDef, args: &GenericArgs) -> Option<Instance> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);
        let args_ref = args.internal(&mut *tables, cx.tcx);
        cx.resolve_instance(def_id, args_ref).map(|inst| inst.stable(&mut *tables, cx))
    }

    /// Resolve an instance for drop_in_place for the given type.
    fn resolve_drop_in_place(&self, ty: Ty) -> Instance {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let internal_ty = ty.internal(&mut *tables, cx.tcx);

        cx.resolve_drop_in_place(internal_ty).stable(&mut *tables, cx)
    }

    /// Resolve instance for a function pointer.
    fn resolve_for_fn_ptr(&self, def: FnDef, args: &GenericArgs) -> Option<Instance> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);
        let args_ref = args.internal(&mut *tables, cx.tcx);
        cx.resolve_for_fn_ptr(def_id, args_ref).stable(&mut *tables, cx)
    }

    /// Resolve instance for a closure with the requested type.
    fn resolve_closure(
        &self,
        def: ClosureDef,
        args: &GenericArgs,
        kind: ClosureKind,
    ) -> Option<Instance> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);
        let args_ref = args.internal(&mut *tables, cx.tcx);
        let closure_kind = kind.internal(&mut *tables, cx.tcx);
        cx.resolve_closure(def_id, args_ref, closure_kind).map(|inst| inst.stable(&mut *tables, cx))
    }

    /// Evaluate a static's initializer.
    fn eval_static_initializer(&self, def: StaticDef) -> Result<Allocation, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let def_id = def.0.internal(&mut *tables, cx.tcx);

        cx.eval_static_initializer(def_id).stable(&mut *tables, cx)
    }

    /// Try to evaluate an instance into a constant.
    fn eval_instance(&self, def: InstanceDef, const_ty: Ty) -> Result<Allocation, Error> {
        let mut tables = self.tables.borrow_mut();
        let instance = tables.instances[def];
        let cx = &*self.cx.borrow();
        let const_ty = const_ty.internal(&mut *tables, cx.tcx);
        cx.eval_instance(instance)
            .map(|const_val| alloc::try_new_allocation(const_ty, const_val, &mut *tables, cx))
            .map_err(|e| e.stable(&mut *tables, cx))?
    }

    /// Retrieve global allocation for the given allocation ID.
    fn global_alloc(&self, id: AllocId) -> GlobalAlloc {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let alloc_id = id.internal(&mut *tables, cx.tcx);
        cx.global_alloc(alloc_id).stable(&mut *tables, cx)
    }

    /// Retrieve the id for the virtual table.
    fn vtable_allocation(&self, global_alloc: &GlobalAlloc) -> Option<AllocId> {
        let mut tables = self.tables.borrow_mut();
        let GlobalAlloc::VTable(ty, trait_ref) = global_alloc else {
            return None;
        };
        let cx = &*self.cx.borrow();
        let ty = ty.internal(&mut *tables, cx.tcx);
        let trait_ref = trait_ref.internal(&mut *tables, cx.tcx);
        let alloc_id = cx.vtable_allocation(ty, trait_ref);
        Some(alloc_id.stable(&mut *tables, cx))
    }

    fn krate(&self, def_id: DefId) -> Crate {
        let tables = self.tables.borrow();
        let cx = &*self.cx.borrow();
        smir_crate(cx, tables[def_id].krate)
    }

    fn instance_name(&self, def: InstanceDef, trimmed: bool) -> Symbol {
        let tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[def];
        cx.instance_name(instance, trimmed)
    }

    /// Return information about the target machine.
    fn target_info(&self) -> MachineInfo {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        MachineInfo {
            endian: cx.target_endian().stable(&mut *tables, cx),
            pointer_width: MachineSize::from_bits(cx.target_pointer_size()),
        }
    }

    /// Get an instance ABI.
    fn instance_abi(&self, def: InstanceDef) -> Result<FnAbi, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let instance = tables.instances[def];
        cx.instance_abi(instance).map(|fn_abi| fn_abi.stable(&mut *tables, cx))
    }

    /// Get the ABI of a function pointer.
    fn fn_ptr_abi(&self, fn_ptr: PolyFnSig) -> Result<FnAbi, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let sig = fn_ptr.internal(&mut *tables, cx.tcx);
        cx.fn_ptr_abi(sig).map(|fn_abi| fn_abi.stable(&mut *tables, cx))
    }

    /// Get the layout of a type.
    fn ty_layout(&self, ty: Ty) -> Result<Layout, Error> {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let internal_ty = ty.internal(&mut *tables, cx.tcx);
        cx.ty_layout(internal_ty).map(|layout| layout.stable(&mut *tables, cx))
    }

    /// Get the layout shape.
    fn layout_shape(&self, id: Layout) -> LayoutShape {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        id.internal(&mut *tables, cx.tcx).0.stable(&mut *tables, cx)
    }

    /// Get a debug string representation of a place.
    fn place_pretty(&self, place: &Place) -> String {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();

        format!("{:?}", place.internal(&mut *tables, cx.tcx))
    }

    /// Get the resulting type of binary operation.
    fn binop_ty(&self, bin_op: BinOp, rhs: Ty, lhs: Ty) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let rhs_internal = rhs.internal(&mut *tables, cx.tcx);
        let lhs_internal = lhs.internal(&mut *tables, cx.tcx);
        let bin_op_internal = bin_op.internal(&mut *tables, cx.tcx);
        cx.binop_ty(bin_op_internal, rhs_internal, lhs_internal).stable(&mut *tables, cx)
    }

    /// Get the resulting type of unary operation.
    fn unop_ty(&self, un_op: UnOp, arg: Ty) -> Ty {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let un_op = un_op.internal(&mut *tables, cx.tcx);
        let arg = arg.internal(&mut *tables, cx.tcx);
        cx.unop_ty(un_op, arg).stable(&mut *tables, cx)
    }

    /// Get all associated items of a definition.
    fn associated_items(&self, def_id: DefId) -> AssocItems {
        let mut tables = self.tables.borrow_mut();
        let cx = &*self.cx.borrow();
        let did = tables[def_id];
        cx.associated_items(did).iter().map(|assoc| assoc.stable(&mut *tables, cx)).collect()
    }
}

// A thread local variable that stores a pointer to [`SmirInterface`].
scoped_tls::scoped_thread_local!(static TLV: Cell<*const ()>);

pub(crate) fn run<F, T>(interface: &dyn SmirInterface, f: F) -> Result<T, Error>
where
    F: FnOnce() -> T,
{
    if TLV.is_set() {
        Err(Error::from("StableMIR already running"))
    } else {
        let ptr: *const () = (&raw const interface) as _;
        TLV.set(&Cell::new(ptr), || Ok(f()))
    }
}

/// Execute the given function with access the [`SmirInterface`].
///
/// I.e., This function will load the current interface and calls a function with it.
/// Do not nest these, as that will ICE.
pub(crate) fn with<R>(f: impl FnOnce(&dyn SmirInterface) -> R) -> R {
    assert!(TLV.is_set());
    TLV.with(|tlv| {
        let ptr = tlv.get();
        assert!(!ptr.is_null());
        f(unsafe { *(ptr as *const &dyn SmirInterface) })
    })
}

fn smir_crate<'tcx>(
    cx: &SmirCtxt<'tcx, BridgeTys>,
    crate_num: rustc_span::def_id::CrateNum,
) -> Crate {
    let name = cx.crate_name(crate_num);
    let is_local = cx.crate_is_local(crate_num);
    let id = cx.crate_num_id(crate_num);
    debug!(?name, ?crate_num, "smir_crate");
    Crate { id, name, is_local }
}