1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
use std::fmt::{self, Debug};
use std::hash::Hash;
use std::ops::RangeInclusive;
pub(crate) mod tree;
pub(crate) use tree::Tree;
pub(crate) mod dfa;
pub(crate) use dfa::{Dfa, union};
#[derive(Debug)]
pub(crate) struct Uninhabited;
/// A range of byte values (including an uninit byte value).
#[derive(Hash, Eq, PartialEq, Ord, PartialOrd, Clone, Copy)]
pub(crate) struct Byte {
// An inclusive-exclusive range. We use this instead of `Range` because `Range: !Copy`.
//
// Uninit byte value is represented by 256.
pub(crate) start: u16,
pub(crate) end: u16,
}
impl Byte {
const UNINIT: u16 = 256;
#[inline]
fn new(range: RangeInclusive<u8>) -> Self {
let start: u16 = (*range.start()).into();
let end: u16 = (*range.end()).into();
Byte { start, end: end + 1 }
}
#[inline]
fn from_val(val: u8) -> Self {
let val: u16 = val.into();
Byte { start: val, end: val + 1 }
}
#[inline]
fn uninit() -> Byte {
Byte { start: 0, end: Self::UNINIT + 1 }
}
#[inline]
fn is_empty(&self) -> bool {
self.start == self.end
}
#[inline]
fn contains_uninit(&self) -> bool {
self.start <= Self::UNINIT && Self::UNINIT < self.end
}
}
impl fmt::Debug for Byte {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.start == Self::UNINIT && self.end == Self::UNINIT + 1 {
write!(f, "uninit")
} else if self.start <= Self::UNINIT && self.end == Self::UNINIT + 1 {
write!(f, "{}..{}|uninit", self.start, self.end - 1)
} else {
write!(f, "{}..{}", self.start, self.end)
}
}
}
impl From<RangeInclusive<u8>> for Byte {
fn from(src: RangeInclusive<u8>) -> Self {
Self::new(src)
}
}
impl From<u8> for Byte {
#[inline]
fn from(src: u8) -> Self {
Self::from_val(src)
}
}
/// A reference, i.e., `&'region T` or `&'region mut T`.
#[derive(Debug, Hash, Eq, PartialEq, Ord, PartialOrd, Clone, Copy)]
pub(crate) struct Reference<R, T>
where
R: Region,
T: Type,
{
pub(crate) region: R,
pub(crate) is_mut: bool,
pub(crate) referent: T,
pub(crate) referent_size: usize,
pub(crate) referent_align: usize,
}
impl<R, T> fmt::Display for Reference<R, T>
where
R: Region,
T: Type,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("&")?;
if self.is_mut {
f.write_str("mut ")?;
}
self.referent.fmt(f)
}
}
pub(crate) trait Def: Debug + Hash + Eq + PartialEq + Copy + Clone {
fn has_safety_invariants(&self) -> bool;
}
pub(crate) trait Region: Debug + Hash + Eq + PartialEq + Copy + Clone {}
pub(crate) trait Type: Debug + Hash + Eq + PartialEq + Copy + Clone {}
impl Def for ! {
fn has_safety_invariants(&self) -> bool {
unreachable!()
}
}
impl Region for ! {}
impl Type for ! {}
#[cfg(test)]
impl Region for usize {}
#[cfg(test)]
impl Type for () {}
#[cfg(feature = "rustc")]
pub mod rustc {
use rustc_abi::Layout;
use rustc_middle::ty::layout::{HasTyCtxt, LayoutCx, LayoutError};
use rustc_middle::ty::{self, Region, Ty};
/// A visibility node in the layout.
#[derive(Debug, Hash, Eq, PartialEq, Clone, Copy)]
pub enum Def<'tcx> {
Adt(ty::AdtDef<'tcx>),
Variant(&'tcx ty::VariantDef),
Field(&'tcx ty::FieldDef),
Primitive,
}
impl<'tcx> super::Def for Def<'tcx> {
fn has_safety_invariants(&self) -> bool {
// Rust presently has no notion of 'unsafe fields', so for now we
// make the conservative assumption that everything besides
// primitive types carry safety invariants.
self != &Self::Primitive
}
}
impl<'tcx> super::Region for Region<'tcx> {}
impl<'tcx> super::Type for Ty<'tcx> {}
pub(crate) fn layout_of<'tcx>(
cx: LayoutCx<'tcx>,
ty: Ty<'tcx>,
) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
use rustc_middle::ty::layout::LayoutOf;
let ty = cx.tcx().erase_and_anonymize_regions(ty);
cx.layout_of(ty).map(|tl| tl.layout)
}
}
|