about summary refs log tree commit diff
diff options
context:
space:
mode:
authorAlex Crichton <alex@alexcrichton.com>2015-11-16 17:36:14 -0800
committerAlex Crichton <alex@alexcrichton.com>2015-11-19 09:32:38 -0800
commitc6eb8527e09bed702f30ffdc8d6e54acf9b867ca (patch)
treed3892a612ffcc125881ae8e4ff04c98ddcd5df49
parent22e31f10c22112b486f4999f90e4ba9c7e23b9b6 (diff)
downloadrust-c6eb8527e09bed702f30ffdc8d6e54acf9b867ca.tar.gz
rust-c6eb8527e09bed702f30ffdc8d6e54acf9b867ca.zip
std: Add Instant and SystemTime to std::time
This commit is an implementation of [RFC 1288][rfc] which adds two new unstable
types to the `std::time` module. The `Instant` type is used to represent
measurements of a monotonically increasing clock suitable for measuring time
withing a process for operations such as benchmarks or just the elapsed time to
do something. An `Instant` favors panicking when bugs are found as the bugs are
programmer errors rather than typical errors that can be encountered.

[rfc]: https://github.com/rust-lang/rfcs/pull/1288

The `SystemTime` type is used to represent a system timestamp and is not
monotonic. Very few guarantees are provided about this measurement of the system
clock, but a fixed point in time (`UNIX_EPOCH`) is provided to learn about the
relative distance from this point for any particular time stamp.

This PR takes the same implementation strategy as the `time` crate on crates.io,
namely:

|  Platform  |  Instant                 |  SystemTime              |
|------------|--------------------------|--------------------------|
| Windows    | QueryPerformanceCounter  | GetSystemTimeAsFileTime  |
| OSX        | mach_absolute_time       | gettimeofday             |
| Unix       | CLOCK_MONOTONIC          | CLOCK_REALTIME           |

These implementations can perhaps be refined over time, but they currently
satisfy the requirements of the `Instant` and `SystemTime` types while also
being portable across implementations and revisions of each platform.
-rw-r--r--src/libstd/sync/condvar.rs8
-rw-r--r--src/libstd/sys/common/mod.rs19
-rw-r--r--src/libstd/sys/unix/condvar.rs7
-rw-r--r--src/libstd/sys/unix/time.rs381
-rw-r--r--src/libstd/sys/windows/c.rs2
-rw-r--r--src/libstd/sys/windows/time.rs191
-rw-r--r--src/libstd/time/duration.rs6
-rw-r--r--src/libstd/time/mod.rs304
8 files changed, 816 insertions, 102 deletions
diff --git a/src/libstd/sync/condvar.rs b/src/libstd/sync/condvar.rs
index a18370dc68e..389c9c4a066 100644
--- a/src/libstd/sync/condvar.rs
+++ b/src/libstd/sync/condvar.rs
@@ -12,11 +12,10 @@ use prelude::v1::*;
 
 use sync::atomic::{AtomicUsize, Ordering};
 use sync::{mutex, MutexGuard, PoisonError};
-use sys::time::SteadyTime;
 use sys_common::condvar as sys;
 use sys_common::mutex as sys_mutex;
 use sys_common::poison::{self, LockResult};
-use time::Duration;
+use time::{Instant, Duration};
 
 /// A type indicating whether a timed wait on a condition variable returned
 /// due to a time out or not.
@@ -345,14 +344,13 @@ impl StaticCondvar {
             where F: FnMut(LockResult<&mut T>) -> bool {
         // This could be made more efficient by pushing the implementation into
         // sys::condvar
-        let start = SteadyTime::now();
+        let start = Instant::now();
         let mut guard_result: LockResult<MutexGuard<'a, T>> = Ok(guard);
         while !f(guard_result
                     .as_mut()
                     .map(|g| &mut **g)
                     .map_err(|e| PoisonError::new(&mut **e.get_mut()))) {
-            let now = SteadyTime::now();
-            let consumed = &now - &start;
+            let consumed = start.elapsed();
             let guard = guard_result.unwrap_or_else(|e| e.into_inner());
             let (new_guard_result, timed_out) = if consumed > dur {
                 (Ok(guard), WaitTimeoutResult(true))
diff --git a/src/libstd/sys/common/mod.rs b/src/libstd/sys/common/mod.rs
index 44c55d1e2c4..5062be8cd63 100644
--- a/src/libstd/sys/common/mod.rs
+++ b/src/libstd/sys/common/mod.rs
@@ -98,3 +98,22 @@ pub fn cleanup() {
         at_exit_imp::cleanup();
     });
 }
+
+// Computes (value*numer)/denom without overflow, as long as both
+// (numer*denom) and the overall result fit into i64 (which is the case
+// for our time conversions).
+#[allow(dead_code)] // not used on all platforms
+pub fn mul_div_u64(value: u64, numer: u64, denom: u64) -> u64 {
+    let q = value / denom;
+    let r = value % denom;
+    // Decompose value as (value/denom*denom + value%denom),
+    // substitute into (value*numer)/denom and simplify.
+    // r < denom, so (denom*numer) is the upper bound of (r*numer)
+    q * numer + r * numer / denom
+}
+
+#[test]
+fn test_muldiv() {
+    assert_eq!(mul_div_u64( 1_000_000_000_001, 1_000_000_000, 1_000_000),
+               1_000_000_000_001_000);
+}
diff --git a/src/libstd/sys/unix/condvar.rs b/src/libstd/sys/unix/condvar.rs
index 3e0f41933e6..2e1c1900b46 100644
--- a/src/libstd/sys/unix/condvar.rs
+++ b/src/libstd/sys/unix/condvar.rs
@@ -12,8 +12,7 @@ use cell::UnsafeCell;
 use libc;
 use ptr;
 use sys::mutex::{self, Mutex};
-use sys::time;
-use time::Duration;
+use time::{Instant, Duration};
 
 pub struct Condvar { inner: UnsafeCell<libc::pthread_cond_t> }
 
@@ -53,7 +52,7 @@ impl Condvar {
         // stable time.  pthread_cond_timedwait uses system time, but we want to
         // report timeout based on stable time.
         let mut sys_now = libc::timeval { tv_sec: 0, tv_usec: 0 };
-        let stable_now = time::SteadyTime::now();
+        let stable_now = Instant::now();
         let r = libc::gettimeofday(&mut sys_now, ptr::null_mut());
         debug_assert_eq!(r, 0);
 
@@ -81,7 +80,7 @@ impl Condvar {
 
         // ETIMEDOUT is not a totally reliable method of determining timeout due
         // to clock shifts, so do the check ourselves
-        &time::SteadyTime::now() - &stable_now < dur
+        stable_now.elapsed() < dur
     }
 
     #[inline]
diff --git a/src/libstd/sys/unix/time.rs b/src/libstd/sys/unix/time.rs
index 5b60b821c34..75319ce962c 100644
--- a/src/libstd/sys/unix/time.rs
+++ b/src/libstd/sys/unix/time.rs
@@ -8,30 +8,183 @@
 // option. This file may not be copied, modified, or distributed
 // except according to those terms.
 
-pub use self::inner::SteadyTime;
+pub use self::inner::{Instant, SystemTime, UNIX_EPOCH};
 
 const NSEC_PER_SEC: u64 = 1_000_000_000;
 
 #[cfg(any(target_os = "macos", target_os = "ios"))]
 mod inner {
+    use cmp::Ordering;
+    use fmt;
     use libc;
-    use time::Duration;
-    use ops::Sub;
-    use sync::Once;
     use super::NSEC_PER_SEC;
+    use sync::Once;
+    use sys::cvt;
+    use sys_common::mul_div_u64;
+    use time::Duration;
 
-    pub struct SteadyTime {
+    const USEC_PER_SEC: u64 = NSEC_PER_SEC / 1000;
+
+    #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
+    pub struct Instant {
         t: u64
     }
 
-    impl SteadyTime {
-        pub fn now() -> SteadyTime {
-            SteadyTime {
-                t: unsafe { libc::mach_absolute_time() },
+    #[derive(Copy, Clone)]
+    pub struct SystemTime {
+        t: libc::timeval,
+    }
+
+    pub const UNIX_EPOCH: SystemTime = SystemTime {
+        t: libc::timeval {
+            tv_sec: 0,
+            tv_usec: 0,
+        },
+    };
+
+    impl Instant {
+        pub fn now() -> Instant {
+            Instant { t: unsafe { libc::mach_absolute_time() } }
+        }
+
+        pub fn sub_instant(&self, other: &Instant) -> Duration {
+            let info = info();
+            let diff = self.t.checked_sub(other.t)
+                           .expect("second instant is later than self");
+            let nanos = mul_div_u64(diff, info.numer as u64, info.denom as u64);
+            Duration::new(nanos / NSEC_PER_SEC, (nanos % NSEC_PER_SEC) as u32)
+        }
+
+        pub fn add_duration(&self, other: &Duration) -> Instant {
+            Instant {
+                t: self.t.checked_add(dur2intervals(other))
+                       .expect("overflow when adding duration to instant"),
+            }
+        }
+
+        pub fn sub_duration(&self, other: &Duration) -> Instant {
+            Instant {
+                t: self.t.checked_sub(dur2intervals(other))
+                       .expect("overflow when adding duration to instant"),
+            }
+        }
+    }
+
+    impl SystemTime {
+        pub fn now() -> SystemTime {
+            let mut s = SystemTime {
+                t: libc::timeval {
+                    tv_sec: 0,
+                    tv_usec: 0,
+                },
+            };
+            cvt(unsafe {
+                libc::gettimeofday(&mut s.t, 0 as *mut _)
+            }).unwrap();
+            return s
+        }
+
+        pub fn sub_time(&self, other: &SystemTime)
+                        -> Result<Duration, Duration> {
+            if self >= other {
+                Ok(if self.t.tv_usec >= other.t.tv_usec {
+                    Duration::new(self.t.tv_sec as u64 - other.t.tv_sec as u64,
+                                  (self.t.tv_usec as u32 -
+                                   other.t.tv_usec as u32) * 1000)
+                } else {
+                    Duration::new(self.t.tv_sec as u64 - 1 - other.t.tv_sec as u64,
+                                  (self.t.tv_usec as u32 + (USEC_PER_SEC as u32) -
+                                   other.t.tv_usec as u32) * 1000)
+                })
+            } else {
+                match other.sub_time(self) {
+                    Ok(d) => Err(d),
+                    Err(d) => Ok(d),
+                }
+            }
+        }
+
+        pub fn add_duration(&self, other: &Duration) -> SystemTime {
+            let secs = (self.t.tv_sec as i64).checked_add(other.as_secs() as i64);
+            let mut secs = secs.expect("overflow when adding duration to time");
+
+            // Nano calculations can't overflow because nanos are <1B which fit
+            // in a u32.
+            let mut usec = (other.subsec_nanos() / 1000) + self.t.tv_usec as u32;
+            if usec > USEC_PER_SEC as u32 {
+                usec -= USEC_PER_SEC as u32;
+                secs = secs.checked_add(1).expect("overflow when adding \
+                                                   duration to time");
+            }
+            SystemTime {
+                t: libc::timeval {
+                    tv_sec: secs as libc::time_t,
+                    tv_usec: usec as libc::suseconds_t,
+                },
+            }
+        }
+
+        pub fn sub_duration(&self, other: &Duration) -> SystemTime {
+            let secs = (self.t.tv_sec as i64).checked_sub(other.as_secs() as i64);
+            let mut secs = secs.expect("overflow when subtracting duration \
+                                        from time");
+
+            // Similar to above, nanos can't overflow.
+            let mut usec = self.t.tv_usec as i32 -
+                           (other.subsec_nanos() / 1000) as i32;
+            if usec < 0 {
+                usec += USEC_PER_SEC as i32;
+                secs = secs.checked_sub(1).expect("overflow when subtracting \
+                                                   duration from time");
+            }
+            SystemTime {
+                t: libc::timeval {
+                    tv_sec: secs as libc::time_t,
+                    tv_usec: usec as libc::suseconds_t,
+                },
             }
         }
     }
 
+    impl PartialEq for SystemTime {
+        fn eq(&self, other: &SystemTime) -> bool {
+            self.t.tv_sec == other.t.tv_sec && self.t.tv_usec == other.t.tv_usec
+        }
+    }
+
+    impl Eq for SystemTime {}
+
+    impl PartialOrd for SystemTime {
+        fn partial_cmp(&self, other: &SystemTime) -> Option<Ordering> {
+            Some(self.cmp(other))
+        }
+    }
+
+    impl Ord for SystemTime {
+        fn cmp(&self, other: &SystemTime) -> Ordering {
+            let me = (self.t.tv_sec, self.t.tv_usec);
+            let other = (other.t.tv_sec, other.t.tv_usec);
+            me.cmp(&other)
+        }
+    }
+
+    impl fmt::Debug for SystemTime {
+        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+            f.debug_struct("SystemTime")
+             .field("tv_sec", &self.t.tv_sec)
+             .field("tv_usec", &self.t.tv_usec)
+             .finish()
+        }
+    }
+
+    fn dur2intervals(dur: &Duration) -> u64 {
+        let info = info();
+        let nanos = dur.as_secs().checked_mul(NSEC_PER_SEC).and_then(|nanos| {
+            nanos.checked_add(dur.subsec_nanos() as u64)
+        }).expect("overflow converting duration to nanoseconds");
+        mul_div_u64(nanos, info.denom as u64, info.numer as u64)
+    }
+
     fn info() -> &'static libc::mach_timebase_info {
         static mut INFO: libc::mach_timebase_info = libc::mach_timebase_info {
             numer: 0,
@@ -46,72 +199,190 @@ mod inner {
             &INFO
         }
     }
-
-    #[unstable(feature = "libstd_sys_internals", issue = "0")]
-    impl<'a> Sub for &'a SteadyTime {
-        type Output = Duration;
-
-        fn sub(self, other: &SteadyTime) -> Duration {
-            let info = info();
-            let diff = self.t as u64 - other.t as u64;
-            let nanos = diff * info.numer as u64 / info.denom as u64;
-            Duration::new(nanos / NSEC_PER_SEC, (nanos % NSEC_PER_SEC) as u32)
-        }
-    }
 }
 
 #[cfg(not(any(target_os = "macos", target_os = "ios")))]
 mod inner {
+    use cmp::Ordering;
+    use fmt;
     use libc;
-    use time::Duration;
-    use ops::Sub;
     use super::NSEC_PER_SEC;
+    use sys::cvt;
+    use time::Duration;
 
-    pub struct SteadyTime {
+    #[derive(Copy, Clone)]
+    struct Timespec {
         t: libc::timespec,
     }
 
-    // Apparently android provides this in some other library?
-    // Bitrig's RT extensions are in the C library, not a separate librt
-    // OpenBSD and NaCl provide it via libc
-    #[cfg(not(any(target_os = "android",
-                  target_os = "bitrig",
-                  target_os = "netbsd",
-                  target_os = "openbsd",
-                  target_env = "musl",
-                  target_os = "nacl")))]
-    #[link(name = "rt")]
-    extern {}
-
-    impl SteadyTime {
-        pub fn now() -> SteadyTime {
-            let mut t = SteadyTime {
+    #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+    pub struct Instant {
+        t: Timespec,
+    }
+
+    #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+    pub struct SystemTime {
+        t: Timespec,
+    }
+
+    pub const UNIX_EPOCH: SystemTime = SystemTime {
+        t: Timespec {
+            t: libc::timespec {
+                tv_sec: 0,
+                tv_nsec: 0,
+            },
+        },
+    };
+
+    impl Instant {
+        pub fn now() -> Instant {
+            Instant { t: Timespec::now(libc::CLOCK_MONOTONIC) }
+        }
+
+        pub fn sub_instant(&self, other: &Instant) -> Duration {
+            self.t.sub_timespec(&other.t).unwrap_or_else(|_| {
+                panic!("other was less than the current instant")
+            })
+        }
+
+        pub fn add_duration(&self, other: &Duration) -> Instant {
+            Instant { t: self.t.add_duration(other) }
+        }
+
+        pub fn sub_duration(&self, other: &Duration) -> Instant {
+            Instant { t: self.t.sub_duration(other) }
+        }
+    }
+
+    impl fmt::Debug for Instant {
+        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+            f.debug_struct("Instant")
+             .field("tv_sec", &self.t.t.tv_sec)
+             .field("tv_nsec", &self.t.t.tv_nsec)
+             .finish()
+        }
+    }
+
+    impl SystemTime {
+        pub fn now() -> SystemTime {
+            SystemTime { t: Timespec::now(libc::CLOCK_REALTIME) }
+        }
+
+        pub fn sub_time(&self, other: &SystemTime)
+                        -> Result<Duration, Duration> {
+            self.t.sub_timespec(&other.t)
+        }
+
+        pub fn add_duration(&self, other: &Duration) -> SystemTime {
+            SystemTime { t: self.t.add_duration(other) }
+        }
+
+        pub fn sub_duration(&self, other: &Duration) -> SystemTime {
+            SystemTime { t: self.t.sub_duration(other) }
+        }
+    }
+
+    impl fmt::Debug for SystemTime {
+        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+            f.debug_struct("SystemTime")
+             .field("tv_sec", &self.t.t.tv_sec)
+             .field("tv_nsec", &self.t.t.tv_nsec)
+             .finish()
+        }
+    }
+
+    impl Timespec {
+        pub fn now(clock: libc::c_int) -> Timespec {
+            let mut t = Timespec {
                 t: libc::timespec {
                     tv_sec: 0,
                     tv_nsec: 0,
                 }
             };
-            unsafe {
-                assert_eq!(0, libc::clock_gettime(libc::CLOCK_MONOTONIC,
-                                                  &mut t.t));
-            }
+            cvt(unsafe {
+                libc::clock_gettime(clock, &mut t.t)
+            }).unwrap();
             t
         }
-    }
 
-    #[unstable(feature = "libstd_sys_internals", issue = "0")]
-    impl<'a> Sub for &'a SteadyTime {
-        type Output = Duration;
-
-        fn sub(self, other: &SteadyTime) -> Duration {
-            if self.t.tv_nsec >= other.t.tv_nsec {
-                Duration::new(self.t.tv_sec as u64 - other.t.tv_sec as u64,
-                              self.t.tv_nsec as u32 - other.t.tv_nsec as u32)
+        fn sub_timespec(&self, other: &Timespec) -> Result<Duration, Duration> {
+            if self >= other {
+                Ok(if self.t.tv_nsec >= other.t.tv_nsec {
+                    Duration::new((self.t.tv_sec - other.t.tv_sec) as u64,
+                                  (self.t.tv_nsec - other.t.tv_nsec) as u32)
+                } else {
+                    Duration::new((self.t.tv_sec - 1 - other.t.tv_sec) as u64,
+                                  self.t.tv_nsec as u32 + (NSEC_PER_SEC as u32) -
+                                  other.t.tv_nsec as u32)
+                })
             } else {
-                Duration::new(self.t.tv_sec as u64 - 1 - other.t.tv_sec as u64,
-                              self.t.tv_nsec as u32 + (NSEC_PER_SEC as u32) -
-                                          other.t.tv_nsec as u32)
+                match other.sub_timespec(self) {
+                    Ok(d) => Err(d),
+                    Err(d) => Ok(d),
+                }
+            }
+        }
+
+        fn add_duration(&self, other: &Duration) -> Timespec {
+            let secs = (self.t.tv_sec as i64).checked_add(other.as_secs() as i64);
+            let mut secs = secs.expect("overflow when adding duration to time");
+
+            // Nano calculations can't overflow because nanos are <1B which fit
+            // in a u32.
+            let mut nsec = other.subsec_nanos() + self.t.tv_nsec as u32;
+            if nsec > NSEC_PER_SEC as u32 {
+                nsec -= NSEC_PER_SEC as u32;
+                secs = secs.checked_add(1).expect("overflow when adding \
+                                                   duration to time");
+            }
+            Timespec {
+                t: libc::timespec {
+                    tv_sec: secs as libc::time_t,
+                    tv_nsec: nsec as libc::c_long,
+                },
+            }
+        }
+
+        fn sub_duration(&self, other: &Duration) -> Timespec {
+            let secs = (self.t.tv_sec as i64).checked_sub(other.as_secs() as i64);
+            let mut secs = secs.expect("overflow when subtracting duration \
+                                        from time");
+
+            // Similar to above, nanos can't overflow.
+            let mut nsec = self.t.tv_nsec as i32 - other.subsec_nanos() as i32;
+            if nsec < 0 {
+                nsec += NSEC_PER_SEC as i32;
+                secs = secs.checked_sub(1).expect("overflow when subtracting \
+                                                   duration from time");
+            }
+            Timespec {
+                t: libc::timespec {
+                    tv_sec: secs as libc::time_t,
+                    tv_nsec: nsec as libc::c_long,
+                },
             }
         }
     }
+
+    impl PartialEq for Timespec {
+        fn eq(&self, other: &Timespec) -> bool {
+            self.t.tv_sec == other.t.tv_sec && self.t.tv_nsec == other.t.tv_nsec
+        }
+    }
+
+    impl Eq for Timespec {}
+
+    impl PartialOrd for Timespec {
+        fn partial_cmp(&self, other: &Timespec) -> Option<Ordering> {
+            Some(self.cmp(other))
+        }
+    }
+
+    impl Ord for Timespec {
+        fn cmp(&self, other: &Timespec) -> Ordering {
+            let me = (self.t.tv_sec, self.t.tv_nsec);
+            let other = (other.t.tv_sec, other.t.tv_nsec);
+            me.cmp(&other)
+        }
+    }
 }
diff --git a/src/libstd/sys/windows/c.rs b/src/libstd/sys/windows/c.rs
index 42f182eb010..7ef504fba81 100644
--- a/src/libstd/sys/windows/c.rs
+++ b/src/libstd/sys/windows/c.rs
@@ -65,6 +65,7 @@ pub type LPWSANETWORKEVENTS = *mut WSANETWORKEVENTS;
 pub type LPWSAPROTOCOLCHAIN = *mut WSAPROTOCOLCHAIN;
 pub type LPWSAPROTOCOL_INFO = *mut WSAPROTOCOL_INFO;
 pub type LPWSTR = *mut WCHAR;
+pub type LPFILETIME = *mut FILETIME;
 
 pub type PCONDITION_VARIABLE = *mut CONDITION_VARIABLE;
 pub type PLARGE_INTEGER = *mut c_longlong;
@@ -1231,6 +1232,7 @@ extern "system" {
                        ReturnValue: LPVOID,
                        OriginalContext: *const CONTEXT,
                        HistoryTable: *const UNWIND_HISTORY_TABLE);
+    pub fn GetSystemTimeAsFileTime(lpSystemTimeAsFileTime: LPFILETIME);
 }
 
 // Functions that aren't available on Windows XP, but we still use them and just
diff --git a/src/libstd/sys/windows/time.rs b/src/libstd/sys/windows/time.rs
index 707e8c05e17..058587b11dc 100644
--- a/src/libstd/sys/windows/time.rs
+++ b/src/libstd/sys/windows/time.rs
@@ -8,62 +8,183 @@
 // option. This file may not be copied, modified, or distributed
 // except according to those terms.
 
-use ops::Sub;
+use cmp::Ordering;
+use fmt;
+use mem;
 use sync::Once;
 use sys::c;
+use sys::cvt;
+use sys_common::mul_div_u64;
 use time::Duration;
 
 const NANOS_PER_SEC: u64 = 1_000_000_000;
+const INTERVALS_PER_SEC: u64 = NANOS_PER_SEC / 100;
 
-pub struct SteadyTime {
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
+pub struct Instant {
     t: c::LARGE_INTEGER,
 }
 
-impl SteadyTime {
-    pub fn now() -> SteadyTime {
-        let mut t = SteadyTime { t: 0 };
-        unsafe { c::QueryPerformanceCounter(&mut t.t); }
+#[derive(Copy, Clone)]
+pub struct SystemTime {
+    t: c::FILETIME,
+}
+
+const INTERVALS_TO_UNIX_EPOCH: u64 = 11_644_473_600 * INTERVALS_PER_SEC;
+
+pub const UNIX_EPOCH: SystemTime = SystemTime {
+    t: c::FILETIME {
+        dwLowDateTime: INTERVALS_TO_UNIX_EPOCH as u32,
+        dwHighDateTime: (INTERVALS_TO_UNIX_EPOCH >> 32) as u32,
+    },
+};
+
+impl Instant {
+    pub fn now() -> Instant {
+        let mut t = Instant { t: 0 };
+        cvt(unsafe {
+            c::QueryPerformanceCounter(&mut t.t)
+        }).unwrap();
         t
     }
+
+    pub fn sub_instant(&self, other: &Instant) -> Duration {
+        // Values which are +- 1 need to be considered as basically the same
+        // units in time due to various measurement oddities, according to
+        // Windows [1]
+        //
+        // [1]:
+        // https://msdn.microsoft.com/en-us/library/windows/desktop
+        //                           /dn553408%28v=vs.85%29.aspx#guidance
+        if other.t > self.t && other.t - self.t == 1 {
+            return Duration::new(0, 0)
+        }
+        let diff = (self.t as u64).checked_sub(other.t as u64)
+                                  .expect("specified instant was later than \
+                                           self");
+        let nanos = mul_div_u64(diff, NANOS_PER_SEC, frequency() as u64);
+        Duration::new(nanos / NANOS_PER_SEC, (nanos % NANOS_PER_SEC) as u32)
+    }
+
+    pub fn add_duration(&self, other: &Duration) -> Instant {
+        let freq = frequency() as u64;
+        let t = other.as_secs().checked_mul(freq).and_then(|i| {
+            (self.t as u64).checked_add(i)
+        }).and_then(|i| {
+            i.checked_add(mul_div_u64(other.subsec_nanos() as u64, freq,
+                                      NANOS_PER_SEC))
+        }).expect("overflow when adding duration to time");
+        Instant {
+            t: t as c::LARGE_INTEGER,
+        }
+    }
+
+    pub fn sub_duration(&self, other: &Duration) -> Instant {
+        let freq = frequency() as u64;
+        let t = other.as_secs().checked_mul(freq).and_then(|i| {
+            (self.t as u64).checked_sub(i)
+        }).and_then(|i| {
+            i.checked_sub(mul_div_u64(other.subsec_nanos() as u64, freq,
+                                      NANOS_PER_SEC))
+        }).expect("overflow when subtracting duration from time");
+        Instant {
+            t: t as c::LARGE_INTEGER,
+        }
+    }
 }
 
-fn frequency() -> c::LARGE_INTEGER {
-    static mut FREQUENCY: c::LARGE_INTEGER = 0;
-    static ONCE: Once = Once::new();
+impl SystemTime {
+    pub fn now() -> SystemTime {
+        unsafe {
+            let mut t: SystemTime = mem::zeroed();
+            c::GetSystemTimeAsFileTime(&mut t.t);
+            return t
+        }
+    }
 
-    unsafe {
-        ONCE.call_once(|| {
-            c::QueryPerformanceFrequency(&mut FREQUENCY);
-        });
-        FREQUENCY
+    fn from_intervals(intervals: i64) -> SystemTime {
+        SystemTime {
+            t: c::FILETIME {
+                dwLowDateTime: intervals as c::DWORD,
+                dwHighDateTime: (intervals >> 32) as c::DWORD,
+            }
+        }
+    }
+
+    fn intervals(&self) -> i64 {
+        (self.t.dwLowDateTime as i64) | ((self.t.dwHighDateTime as i64) << 32)
+    }
+
+    pub fn sub_time(&self, other: &SystemTime) -> Result<Duration, Duration> {
+        let me = self.intervals();
+        let other = other.intervals();
+        if me >= other {
+            Ok(intervals2dur((me - other) as u64))
+        } else {
+            Err(intervals2dur((other - me) as u64))
+        }
+    }
+
+    pub fn add_duration(&self, other: &Duration) -> SystemTime {
+        let intervals = self.intervals().checked_add(dur2intervals(other))
+                            .expect("overflow when adding duration to time");
+        SystemTime::from_intervals(intervals)
+    }
+
+    pub fn sub_duration(&self, other: &Duration) -> SystemTime {
+        let intervals = self.intervals().checked_sub(dur2intervals(other))
+                            .expect("overflow when subtracting from time");
+        SystemTime::from_intervals(intervals)
     }
 }
 
-#[unstable(feature = "libstd_sys_internals", issue = "0")]
-impl<'a> Sub for &'a SteadyTime {
-    type Output = Duration;
+impl PartialEq for SystemTime {
+    fn eq(&self, other: &SystemTime) -> bool {
+        self.intervals() == other.intervals()
+    }
+}
 
-    fn sub(self, other: &SteadyTime) -> Duration {
-        let diff = self.t as u64 - other.t as u64;
-        let nanos = mul_div_u64(diff, NANOS_PER_SEC, frequency() as u64);
-        Duration::new(nanos / NANOS_PER_SEC, (nanos % NANOS_PER_SEC) as u32)
+impl Eq for SystemTime {}
+
+impl PartialOrd for SystemTime {
+    fn partial_cmp(&self, other: &SystemTime) -> Option<Ordering> {
+        Some(self.cmp(other))
+    }
+}
+
+impl Ord for SystemTime {
+    fn cmp(&self, other: &SystemTime) -> Ordering {
+        self.intervals().cmp(&other.intervals())
     }
 }
 
-// Computes (value*numer)/denom without overflow, as long as both
-// (numer*denom) and the overall result fit into i64 (which is the case
-// for our time conversions).
-fn mul_div_u64(value: u64, numer: u64, denom: u64) -> u64 {
-    let q = value / denom;
-    let r = value % denom;
-    // Decompose value as (value/denom*denom + value%denom),
-    // substitute into (value*numer)/denom and simplify.
-    // r < denom, so (denom*numer) is the upper bound of (r*numer)
-    q * numer + r * numer / denom
+impl fmt::Debug for SystemTime {
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        f.debug_struct("SystemTime")
+         .field("intervals", &self.intervals())
+         .finish()
+    }
 }
 
-#[test]
-fn test_muldiv() {
-    assert_eq!(mul_div_u64( 1_000_000_000_001, 1_000_000_000, 1_000_000),
-               1_000_000_000_001_000);
+fn dur2intervals(d: &Duration) -> i64 {
+    d.as_secs().checked_mul(INTERVALS_PER_SEC).and_then(|i| {
+        i.checked_add(d.subsec_nanos() as u64 / 100)
+    }).expect("overflow when converting duration to intervals") as i64
+}
+
+fn intervals2dur(intervals: u64) -> Duration {
+    Duration::new(intervals / INTERVALS_PER_SEC,
+                  ((intervals % INTERVALS_PER_SEC) * 100) as u32)
+}
+
+fn frequency() -> c::LARGE_INTEGER {
+    static mut FREQUENCY: c::LARGE_INTEGER = 0;
+    static ONCE: Once = Once::new();
+
+    unsafe {
+        ONCE.call_once(|| {
+            cvt(c::QueryPerformanceFrequency(&mut FREQUENCY)).unwrap();
+        });
+        FREQUENCY
+    }
 }
diff --git a/src/libstd/time/duration.rs b/src/libstd/time/duration.rs
index ca04ec81a28..63d517606a0 100644
--- a/src/libstd/time/duration.rs
+++ b/src/libstd/time/duration.rs
@@ -9,7 +9,7 @@
 // except according to those terms.
 
 use ops::{Add, Sub, Mul, Div};
-use sys::time::SteadyTime;
+use time::Instant;
 
 const NANOS_PER_SEC: u32 = 1_000_000_000;
 const NANOS_PER_MILLI: u32 = 1_000_000;
@@ -67,9 +67,9 @@ impl Duration {
                          abstraction",
                issue = "27799")]
     pub fn span<F>(f: F) -> Duration where F: FnOnce() {
-        let start = SteadyTime::now();
+        let start = Instant::now();
         f();
-        &SteadyTime::now() - &start
+        start.elapsed()
     }
 
     /// Creates a new `Duration` from the specified number of seconds.
diff --git a/src/libstd/time/mod.rs b/src/libstd/time/mod.rs
index 446fbae52f6..95f68712be2 100644
--- a/src/libstd/time/mod.rs
+++ b/src/libstd/time/mod.rs
@@ -12,7 +12,311 @@
 
 #![stable(feature = "time", since = "1.3.0")]
 
+use error::Error;
+use fmt;
+use ops::{Add, Sub};
+use sys::time;
+
 #[stable(feature = "time", since = "1.3.0")]
 pub use self::duration::Duration;
 
 mod duration;
+
+/// A measurement of a monotonically increasing clock which is suitable for
+/// measuring the amount of time that an operation takes.
+///
+/// Instants are guaranteed always be greater than any previously measured
+/// instant when created, and are often useful for tasks such as measuring
+/// benchmarks or timing how long an operation takes.
+///
+/// Note, however, that instants are not guaranteed to be **steady**.  In other
+/// words each tick of the underlying clock may not be the same length (e.g.
+/// some seconds may be longer than others). An instant may jump forwards or
+/// experience time dilation (slow down or speed up), but it will never go
+/// backwards.
+///
+/// Instants are opaque types that can only be compared to one another. There is
+/// no method to get "the number of seconds" from an instant but instead it only
+/// allow learning the duration between two instants (or comparing two
+/// instants).
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+pub struct Instant(time::Instant);
+
+/// A measurement of the system clock appropriate for timestamps such as those
+/// on files on the filesystem.
+///
+/// Distinct from the `Instant` type, this time measurement **is not
+/// monotonic**. This means that you can save a file to the file system, then
+/// save another file to the file system, **and the second file has a
+/// `SystemTime` measurement earlier than the second**. In other words, an
+/// operation that happens after another operation in real time may have an
+/// earlier `SystemTime`!
+///
+/// Consequently, comparing two `SystemTime` instances to learn about the
+/// duration between them returns a `Result` instead of an infallible `Duration`
+/// to indicate that this sort of time drift may happen and needs to be handled.
+///
+/// Although a `SystemTime` cannot be directly inspected, the `UNIX_EPOCH`
+/// constant is provided in this module as an anchor in time to learn
+/// information about a `SystemTime`. By calculating the duration from this
+/// fixed point in time a `SystemTime` can be converted to a human-readable time
+/// or perhaps some other string representation.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+pub struct SystemTime(time::SystemTime);
+
+/// An error returned from the `duration_from_earlier` method on `SystemTime`,
+/// used to learn about why how far in the opposite direction a timestamp lies.
+#[derive(Clone, Debug)]
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+pub struct SystemTimeError(Duration);
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Instant {
+    /// Returns an instant corresponding to "now".
+    pub fn now() -> Instant {
+        Instant(time::Instant::now())
+    }
+
+    /// Returns the amount of time elapsed from another instant to this one.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `earlier` is later than `self`, which should
+    /// only be possible if `earlier` was created after `self`. Because
+    /// `Instant` is monotonic, the only time that this should happen should be
+    /// a bug.
+    pub fn duration_from_earlier(&self, earlier: Instant) -> Duration {
+        self.0.sub_instant(&earlier.0)
+    }
+
+    /// Returns the amount of time elapsed since this instant was created.
+    ///
+    /// # Panics
+    ///
+    /// This function may panic if the current time is earlier than this instant
+    /// which can happen if an `Instant` is produced synthetically.
+    pub fn elapsed(&self) -> Duration {
+        Instant::now().duration_from_earlier(*self)
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Add<Duration> for Instant {
+    type Output = Instant;
+
+    fn add(self, other: Duration) -> Instant {
+        Instant(self.0.add_duration(&other))
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Sub<Duration> for Instant {
+    type Output = Instant;
+
+    fn sub(self, other: Duration) -> Instant {
+        Instant(self.0.sub_duration(&other))
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl fmt::Debug for Instant {
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        self.0.fmt(f)
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl SystemTime {
+    /// Returns the system time corresponding to "now".
+    pub fn now() -> SystemTime {
+        SystemTime(time::SystemTime::now())
+    }
+
+    /// Returns the amount of time elapsed from an earlier point in time.
+    ///
+    /// This function may fail because measurements taken earlier are not
+    /// guaranteed to always be before later measurements (due to anomalies such
+    /// as the system clock being adjusted either forwards or backwards).
+    ///
+    /// If successful, `Ok(duration)` is returned where the duration represents
+    /// the amount of time elapsed from the specified measurement to this one.
+    ///
+    /// Returns an `Err` if `earlier` is later than `self`, and the error
+    /// contains how far from `self` the time is.
+    pub fn duration_from_earlier(&self, earlier: SystemTime)
+                                 -> Result<Duration, SystemTimeError> {
+        self.0.sub_time(&earlier.0).map_err(SystemTimeError)
+    }
+
+    /// Returns the amount of time elapsed since this system time was created.
+    ///
+    /// This function may fail as the underlying system clock is susceptible to
+    /// drift and updates (e.g. the system clock could go backwards), so this
+    /// function may not always succeed. If successful, `Ok(duration)` is
+    /// returned where the duration represents the amount of time elapsed from
+    /// this time measurement to the current time.
+    ///
+    /// Returns an `Err` if `self` is later than the current system time, and
+    /// the error contains how far from the current system time `self` is.
+    pub fn elapsed(&self) -> Result<Duration, SystemTimeError> {
+        SystemTime::now().duration_from_earlier(*self)
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Add<Duration> for SystemTime {
+    type Output = SystemTime;
+
+    fn add(self, dur: Duration) -> SystemTime {
+        SystemTime(self.0.add_duration(&dur))
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Sub<Duration> for SystemTime {
+    type Output = SystemTime;
+
+    fn sub(self, dur: Duration) -> SystemTime {
+        SystemTime(self.0.sub_duration(&dur))
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl fmt::Debug for SystemTime {
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        self.0.fmt(f)
+    }
+}
+
+/// An anchor in time which can be used to create new `SystemTime` instances or
+/// learn about where in time a `SystemTime` lies.
+///
+/// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with
+/// respect to the system clock. Using `duration_from_earlier` on an existing
+/// `SystemTime` instance can tell how far away from this point in time a
+/// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a
+/// `SystemTime` instance to represent another fixed point in time.
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+pub const UNIX_EPOCH: SystemTime = SystemTime(time::UNIX_EPOCH);
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl SystemTimeError {
+    /// Returns the positive duration which represents how far forward the
+    /// second system time was from the first.
+    ///
+    /// A `SystemTimeError` is returned from the `duration_from_earlier`
+    /// operation whenever the second duration, `earlier`, actually represents a
+    /// point later in time than the `self` of the method call. This function
+    /// will extract and return the amount of time later `earlier` actually is.
+    pub fn duration(&self) -> Duration {
+        self.0
+    }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl Error for SystemTimeError {
+    fn description(&self) -> &str { "other time was not earlier than self" }
+}
+
+#[unstable(feature = "time2", reason = "recently added", issue = "29866")]
+impl fmt::Display for SystemTimeError {
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        write!(f, "second time provided was later than self")
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::{Instant, SystemTime, Duration, UNIX_EPOCH};
+
+    #[test]
+    fn instant_monotonic() {
+        let a = Instant::now();
+        let b = Instant::now();
+        assert!(b >= a);
+    }
+
+    #[test]
+    fn instant_elapsed() {
+        let a = Instant::now();
+        a.elapsed();
+    }
+
+    #[test]
+    fn instant_math() {
+        let a = Instant::now();
+        let b = Instant::now();
+        let dur = b.duration_from_earlier(a);
+        assert_eq!(b - dur, a);
+        assert_eq!(a + dur, b);
+
+        let second = Duration::new(1, 0);
+        assert_eq!(a - second + second, a);
+    }
+
+    #[test]
+    #[should_panic]
+    fn instant_duration_panic() {
+        let a = Instant::now();
+        (a - Duration::new(1, 0)).duration_from_earlier(a);
+    }
+
+    #[test]
+    fn system_time_math() {
+        let a = SystemTime::now();
+        let b = SystemTime::now();
+        match b.duration_from_earlier(a) {
+            Ok(dur) if dur == Duration::new(0, 0) => {
+                assert_eq!(a, b);
+            }
+            Ok(dur) => {
+                assert!(b > a);
+                assert_eq!(b - dur, a);
+                assert_eq!(a + dur, b);
+            }
+            Err(dur) => {
+                let dur = dur.duration();
+                assert!(a > b);
+                assert_eq!(b + dur, a);
+                assert_eq!(b - dur, a);
+            }
+        }
+
+        let second = Duration::new(1, 0);
+        assert_eq!(a.duration_from_earlier(a - second).unwrap(), second);
+        assert_eq!(a.duration_from_earlier(a + second).unwrap_err().duration(),
+                   second);
+
+        assert_eq!(a - second + second, a);
+
+        let eighty_years = second * 60 * 60 * 24 * 365 * 80;
+        assert_eq!(a - eighty_years + eighty_years, a);
+        assert_eq!(a - (eighty_years * 10) + (eighty_years * 10), a);
+    }
+
+    #[test]
+    fn system_time_elapsed() {
+        let a = SystemTime::now();
+        drop(a.elapsed());
+    }
+
+    #[test]
+    fn since_epoch() {
+        let ts = SystemTime::now();
+        let a = ts.duration_from_earlier(UNIX_EPOCH).unwrap();
+        let b = ts.duration_from_earlier(UNIX_EPOCH - Duration::new(1, 0)).unwrap();
+        assert!(b > a);
+        assert_eq!(b - a, Duration::new(1, 0));
+
+        // let's assume that we're all running computers later than 2000
+        let thirty_years = Duration::new(1, 0) * 60 * 60 * 24 * 365 * 30;
+        assert!(a > thirty_years);
+
+        // let's assume that we're all running computers earlier than 2090.
+        // Should give us ~70 years to fix this!
+        let hundred_twenty_years = thirty_years * 4;
+        assert!(a < hundred_twenty_years);
+    }
+}