1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
use std::{fs::File, path::Path};
use lri_rs::Message;
use png::{BitDepth, ColorType};
// This code is going to be rough. Just trying to parse this using the technique
// I know: just play with the raw data
fn main() {
let fname = std::env::args().nth(1).unwrap();
let data = std::fs::read(fname).unwrap();
println!("Read {:.2}MB", data.len() as f32 / (1024.0 * 1024.0));
let magic_id = [76, 69, 76, 82];
let magic_id_skip = 21;
let reserved = [0, 0, 0, 0, 0, 0, 0];
let look_length = magic_id.len() + magic_id_skip + reserved.len();
let mut heads = vec![];
println!("\nLooking for LELR");
for idx in 0..data.len() - look_length {
if &data[idx..idx + magic_id.len()] == magic_id.as_slice() {
print!("Found! Offset {idx} - ");
let reserved_start = idx + magic_id.len() + magic_id_skip;
if &data[reserved_start..reserved_start + reserved.len()] == reserved.as_slice() {
println!("Reserved matched!");
let header = LightHeader::new(&data[idx..]);
let start = idx;
let end = start + header.combined_length as usize;
heads.push(HeaderAndOffset { header, start, end });
} else {
println!("No reserve match :(");
}
}
}
let ar835 = 3264 * 2448;
let ar835_6mp = 3264 * 1836;
let ar1335 = 4208 * 3120;
let imx386 = 4032 * 3024;
let known_res = vec![ar835, ar835_6mp, ar1335, imx386];
println!("\nFound {} LightHeaders", heads.len());
println!("\nLooking for known resolutions!");
for (idx, head) in heads.iter().enumerate() {
for res in &known_res {
if head.header.header_length == *res {
println!("KNOWN RES: {}", idx);
}
}
}
println!("\nChecking if there is outlying data...");
for idx in 1..heads.len() {
let this = &heads[idx];
let before = &heads[idx - 1];
if before.end != this.start {
println!(
"Headers {} and {} are gapped by {} bytes",
idx - 1,
idx,
this.start - before.end
);
} else {
println!("{} and {} are consecutive with no gap!", idx - 1, idx);
}
}
let end_difference = heads.last().unwrap().end - data.len();
if end_difference > 0 {
println!("{} bytes at the end", end_difference);
} else {
println!("File has no extraneous data at the end!");
}
println!("\nDumping header info..");
heads.iter().for_each(|h| h.header.nice_info())
}
fn make_png<P: AsRef<Path>>(
path: P,
width: usize,
height: usize,
color: ColorType,
depth: BitDepth,
data: &[u8],
) {
let bpp = match (color, depth) {
(ColorType::Grayscale, BitDepth::Eight) => 1,
(ColorType::Grayscale, BitDepth::Sixteen) => 2,
(ColorType::Rgb, BitDepth::Eight) => 3,
(ColorType::Rgb, BitDepth::Sixteen) => 6,
_ => panic!("unsupported color or depth"),
};
let pix = width * height;
let file = File::create("ahh.png").unwrap();
let mut enc = png::Encoder::new(file, width as u32, height as u32);
enc.set_color(color);
enc.set_depth(depth);
let mut writer = enc.write_header().unwrap();
writer.write_image_data(&data[..pix * bpp]).unwrap();
}
struct HeaderAndOffset {
header: LightHeader,
// Inclusive
start: usize,
// Exclusive
end: usize,
}
struct LightHeader {
magic_number: String,
combined_length: u64,
//FIXME: This appears to be the content length and not the header length? I thought
//it was weird that they were putting the header length here. Is the java decomp
//wrong?
header_length: u64,
message_length: u32,
// type
kind: u8,
reserved: [u8; 7],
}
impl LightHeader {
pub fn new(data: &[u8]) -> Self {
let magic_number = String::from_utf8(data[0..4].to_vec()).unwrap();
let combined_length = u64::from_le_bytes(data[4..12].try_into().unwrap());
//println!("Combined Length: {:?}", &data[4..12]);
let header_length = u64::from_le_bytes(data[12..20].try_into().unwrap());
//println!("Header Length: {:?}", &data[12..20]);
let message_length = u32::from_le_bytes(data[20..24].try_into().unwrap());
//println!("Message Length: {:?}", &data[20..24]);
let kind = data[24];
let reserved = data[25..32].try_into().unwrap();
LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
}
}
pub fn print_info(&self) {
let LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
} = self;
println!("\nMagic: {magic_number}\nCombined Length: {combined_length}\nHeader Length: {header_length}\nMessage Length: {message_length}\nKind: {kind}\nReserved: {reserved:?}");
}
pub fn nice_info(&self) {
let LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
} = self;
println!(
"Content length: {:.2}KB | Kind {kind}",
*header_length as f32 / 1024.0
);
}
}
|