diff options
| author | Stuart Cook <Zalathar@users.noreply.github.com> | 2025-08-26 14:19:16 +1000 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2025-08-26 14:19:16 +1000 |
| commit | e011dd47ee04cd1e62786b5a0b3bfe2d5e58ae35 (patch) | |
| tree | bb813cb7db0a62e18e70f88f9563583c8fcec1e1 | |
| parent | 27415080ccb4c27269eedf01fea99654a96bfed4 (diff) | |
| parent | 25afbbc9814dba4ad6f06b6d1bf14e92851ccd32 (diff) | |
| download | rust-e011dd47ee04cd1e62786b5a0b3bfe2d5e58ae35.tar.gz rust-e011dd47ee04cd1e62786b5a0b3bfe2d5e58ae35.zip | |
Rollup merge of #144885 - zachs18:ptr_guaranteed_cmp_more, r=RalfJung
Implement some more checks in `ptr_guaranteed_cmp`. * Pointers with different residues modulo their allocations' least common alignment are never equal. * Pointers to the same static allocation are equal if and only if they have the same offset. * Pointers to different non-zero-sized static allocations are unequal if both point within their allocation, and not on opposite ends. Tracking issue for `const_raw_ptr_comparison`: <https://github.com/rust-lang/rust/issues/53020> This should not affect `is_null`, the only usage of this intrinsic on stable. Closes https://github.com/rust-lang/rust/issues/144584
| -rw-r--r-- | compiler/rustc_const_eval/src/const_eval/machine.rs | 118 | ||||
| -rw-r--r-- | tests/ui/consts/ptr_comparisons.rs | 222 |
2 files changed, 295 insertions, 45 deletions
diff --git a/compiler/rustc_const_eval/src/const_eval/machine.rs b/compiler/rustc_const_eval/src/const_eval/machine.rs index da954cf4ed7..fccb6b171b1 100644 --- a/compiler/rustc_const_eval/src/const_eval/machine.rs +++ b/compiler/rustc_const_eval/src/const_eval/machine.rs @@ -280,22 +280,110 @@ impl<'tcx> CompileTimeInterpCx<'tcx> { interp_ok(match (a, b) { // Comparisons between integers are always known. (Scalar::Int(a), Scalar::Int(b)) => (a == b) as u8, - // Comparisons of null with an arbitrary scalar can be known if `scalar_may_be_null` - // indicates that the scalar can definitely *not* be null. - (Scalar::Int(int), ptr) | (ptr, Scalar::Int(int)) - if int.is_null() && !self.scalar_may_be_null(ptr)? => - { - 0 + // Comparing a pointer `ptr` with an integer `int` is equivalent to comparing + // `ptr-int` with null, so we can reduce this case to a `scalar_may_be_null` test. + (Scalar::Int(int), Scalar::Ptr(ptr, _)) | (Scalar::Ptr(ptr, _), Scalar::Int(int)) => { + let int = int.to_target_usize(*self.tcx); + // The `wrapping_neg` here may produce a value that is not + // a valid target usize any more... but `wrapping_offset` handles that correctly. + let offset_ptr = ptr.wrapping_offset(Size::from_bytes(int.wrapping_neg()), self); + if !self.scalar_may_be_null(Scalar::from_pointer(offset_ptr, self))? { + // `ptr.wrapping_sub(int)` is definitely not equal to `0`, so `ptr != int` + 0 + } else { + // `ptr.wrapping_sub(int)` could be equal to `0`, but might not be, + // so we cannot know for sure if `ptr == int` or not + 2 + } + } + (Scalar::Ptr(a, _), Scalar::Ptr(b, _)) => { + let (a_prov, a_offset) = a.prov_and_relative_offset(); + let (b_prov, b_offset) = b.prov_and_relative_offset(); + let a_allocid = a_prov.alloc_id(); + let b_allocid = b_prov.alloc_id(); + let a_info = self.get_alloc_info(a_allocid); + let b_info = self.get_alloc_info(b_allocid); + + // Check if the pointers cannot be equal due to alignment + if a_info.align > Align::ONE && b_info.align > Align::ONE { + let min_align = Ord::min(a_info.align.bytes(), b_info.align.bytes()); + let a_residue = a_offset.bytes() % min_align; + let b_residue = b_offset.bytes() % min_align; + if a_residue != b_residue { + // If the two pointers have a different residue modulo their + // common alignment, they cannot be equal. + return interp_ok(0); + } + // The pointers have the same residue modulo their common alignment, + // so they could be equal. Try the other checks. + } + + if let (Some(GlobalAlloc::Static(a_did)), Some(GlobalAlloc::Static(b_did))) = ( + self.tcx.try_get_global_alloc(a_allocid), + self.tcx.try_get_global_alloc(b_allocid), + ) { + if a_allocid == b_allocid { + debug_assert_eq!( + a_did, b_did, + "different static item DefIds had same AllocId? {a_allocid:?} == {b_allocid:?}, {a_did:?} != {b_did:?}" + ); + // Comparing two pointers into the same static. As per + // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro + // a static cannot be duplicated, so if two pointers are into the same + // static, they are equal if and only if their offsets are equal. + (a_offset == b_offset) as u8 + } else { + debug_assert_ne!( + a_did, b_did, + "same static item DefId had two different AllocIds? {a_allocid:?} != {b_allocid:?}, {a_did:?} == {b_did:?}" + ); + // Comparing two pointers into the different statics. + // We can never determine for sure that two pointers into different statics + // are *equal*, but we can know that they are *inequal* if they are both + // strictly in-bounds (i.e. in-bounds and not one-past-the-end) of + // their respective static, as different non-zero-sized statics cannot + // overlap or be deduplicated as per + // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro + // (non-deduplication), and + // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness + // (non-overlapping). + if a_offset < a_info.size && b_offset < b_info.size { + 0 + } else { + // Otherwise, conservatively say we don't know. + // There are some cases we could still return `0` for, e.g. + // if the pointers being equal would require their statics to overlap + // one or more bytes, but for simplicity we currently only check + // strictly in-bounds pointers. + 2 + } + } + } else { + // All other cases we conservatively say we don't know. + // + // For comparing statics to non-statics, as per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness + // immutable statics can overlap with other kinds of allocations sometimes. + // + // FIXME: We could be more decisive for (non-zero-sized) mutable statics, + // which cannot overlap with other kinds of allocations. + // + // Functions and vtables can be duplicated and deduplicated, so we + // cannot be sure of runtime equality of pointers to the same one, or the + // runtime inequality of pointers to different ones (see e.g. #73722), + // so comparing those should return 2, whether they are the same allocation + // or not. + // + // `GlobalAlloc::TypeId` exists mostly to prevent consteval from comparing + // `TypeId`s, so comparing those should always return 2, whether they are the + // same allocation or not. + // + // FIXME: We could revisit comparing pointers into the same + // `GlobalAlloc::Memory` once https://github.com/rust-lang/rust/issues/128775 + // is fixed (but they can be deduplicated, so comparing pointers into different + // ones should return 2). + 2 + } } - // Other ways of comparing integers and pointers can never be known for sure. - (Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2, - // FIXME: return a `1` for when both sides are the same pointer, *except* that - // some things (like functions and vtables) do not have stable addresses - // so we need to be careful around them (see e.g. #73722). - // FIXME: return `0` for at least some comparisons where we can reliably - // determine the result of runtime inequality tests at compile-time. - // Examples include comparison of addresses in different static items. - (Scalar::Ptr(..), Scalar::Ptr(..)) => 2, }) } } diff --git a/tests/ui/consts/ptr_comparisons.rs b/tests/ui/consts/ptr_comparisons.rs index e142ab3a754..b8d809475cf 100644 --- a/tests/ui/consts/ptr_comparisons.rs +++ b/tests/ui/consts/ptr_comparisons.rs @@ -1,43 +1,205 @@ //@ compile-flags: --crate-type=lib //@ check-pass +//@ edition: 2024 +#![feature(const_raw_ptr_comparison)] +#![feature(fn_align)] +// Generally: +// For any `Some` return, `None` would also be valid, unless otherwise noted. +// For any `None` return, only `None` is valid, unless otherwise noted. -#![feature( - core_intrinsics, - const_raw_ptr_comparison, -)] +macro_rules! do_test { + ($a:expr, $b:expr, $expected:pat) => { + const _: () = { + let a: *const _ = $a; + let b: *const _ = $b; + assert!(matches!(<*const u8>::guaranteed_eq(a.cast(), b.cast()), $expected)); + }; + }; +} -const FOO: &usize = &42; +#[repr(align(2))] +struct T(#[allow(unused)] u16); -macro_rules! check { - (eq, $a:expr, $b:expr) => { - pub const _: () = - assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 1); - }; - (ne, $a:expr, $b:expr) => { - pub const _: () = - assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 0); +#[repr(align(2))] +struct AlignedZst; + +static A: T = T(42); +static B: T = T(42); +static mut MUT_STATIC: T = T(42); +static ZST: () = (); +static ALIGNED_ZST: AlignedZst = AlignedZst; +static LARGE_WORD_ALIGNED: [usize; 2] = [0, 1]; +static mut MUT_LARGE_WORD_ALIGNED: [usize; 2] = [0, 1]; + +const FN_PTR: *const () = { + fn foo() {} + unsafe { std::mem::transmute(foo as fn()) } +}; + +const ALIGNED_FN_PTR: *const () = { + #[rustc_align(2)] + fn aligned_foo() {} + unsafe { std::mem::transmute(aligned_foo as fn()) } +}; + +trait Trait { + #[allow(unused)] + fn method(&self) -> u8; +} +impl Trait for u32 { + fn method(&self) -> u8 { 1 } +} +impl Trait for i32 { + fn method(&self) -> u8 { 2 } +} + +const VTABLE_PTR_1: *const () = { + let [_data, vtable] = unsafe { + std::mem::transmute::<&dyn Trait, [*const (); 2]>(&42_u32 as &dyn Trait) }; - (!, $a:expr, $b:expr) => { - pub const _: () = - assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 2); + vtable +}; +const VTABLE_PTR_2: *const () = { + let [_data, vtable] = unsafe { + std::mem::transmute::<&dyn Trait, [*const (); 2]>(&42_i32 as &dyn Trait) }; -} + vtable +}; -check!(eq, 0, 0); -check!(ne, 0, 1); -check!(ne, FOO as *const _, 0); -check!(ne, unsafe { (FOO as *const usize).offset(1) }, 0); -check!(ne, unsafe { (FOO as *const usize as *const u8).offset(3) }, 0); +// Cannot be `None`: `is_null` is stable with strong guarantees about integer-valued pointers. +do_test!(0 as *const u8, 0 as *const u8, Some(true)); +do_test!(0 as *const u8, 1 as *const u8, Some(false)); -// We want pointers to be equal to themselves, but aren't checking this yet because -// there are some open questions (e.g. whether function pointers to the same function -// compare equal: they don't necessarily do at runtime). -check!(!, FOO as *const _, FOO as *const _); +// Integer-valued pointers can always be compared. +do_test!(1 as *const u8, 1 as *const u8, Some(true)); +do_test!(1 as *const u8, 2 as *const u8, Some(false)); + +// Cannot be `None`: `static`s' addresses, references, (and within and one-past-the-end of those), +// and `fn` pointers cannot be null, and `is_null` is stable with strong guarantees, and +// `is_null` is implemented using `guaranteed_cmp`. +do_test!(&A, 0 as *const u8, Some(false)); +do_test!((&raw const A).cast::<u8>().wrapping_add(1), 0 as *const u8, Some(false)); +do_test!((&raw const A).wrapping_add(1), 0 as *const u8, Some(false)); +do_test!(&ZST, 0 as *const u8, Some(false)); +do_test!(&(), 0 as *const u8, Some(false)); +do_test!(const { &() }, 0 as *const u8, Some(false)); +do_test!(FN_PTR, 0 as *const u8, Some(false)); + +// This pointer is out-of-bounds, but still cannot be equal to 0 because of alignment. +do_test!((&raw const A).cast::<u8>().wrapping_add(size_of::<T>() + 1), 0 as *const u8, Some(false)); // aside from 0, these pointers might end up pretty much anywhere. -check!(!, FOO as *const _, 1); // this one could be `ne` by taking into account alignment -check!(!, FOO as *const _, 1024); +do_test!(&A, align_of::<T>() as *const u8, None); +do_test!((&raw const A).wrapping_byte_add(1), (align_of::<T>() + 1) as *const u8, None); + +// except that they must still be aligned +do_test!(&A, 1 as *const u8, Some(false)); +do_test!((&raw const A).wrapping_byte_add(1), align_of::<T>() as *const u8, Some(false)); + +// If `ptr.wrapping_sub(int)` cannot be null (because it is in-bounds or one-past-the-end of +// `ptr`'s allocation, or because it is misaligned from `ptr`'s allocation), then we know that +// `ptr != int`, even if `ptr` itself is out-of-bounds or one-past-the-end of its allocation. +do_test!((&raw const A).wrapping_byte_add(1), 1 as *const u8, Some(false)); +do_test!((&raw const A).wrapping_byte_add(2), 2 as *const u8, Some(false)); +do_test!((&raw const A).wrapping_byte_add(3), 1 as *const u8, Some(false)); +do_test!((&raw const ZST).wrapping_byte_add(1), 1 as *const u8, Some(false)); +do_test!(VTABLE_PTR_1.wrapping_byte_add(1), 1 as *const u8, Some(false)); +do_test!(FN_PTR.wrapping_byte_add(1), 1 as *const u8, Some(false)); +do_test!(&A, size_of::<T>().wrapping_neg() as *const u8, Some(false)); +do_test!(&LARGE_WORD_ALIGNED, size_of::<usize>().wrapping_neg() as *const u8, Some(false)); +// (`ptr - int != 0` due to misalignment) +do_test!((&raw const A).wrapping_byte_add(2), 1 as *const u8, Some(false)); +do_test!((&raw const ALIGNED_ZST).wrapping_byte_add(2), 1 as *const u8, Some(false)); // When pointers go out-of-bounds, they *might* become null, so these comparions cannot work. -check!(!, unsafe { (FOO as *const usize).wrapping_add(2) }, 0); -check!(!, unsafe { (FOO as *const usize).wrapping_sub(1) }, 0); +do_test!((&raw const A).wrapping_add(2), 0 as *const u8, None); +do_test!((&raw const A).wrapping_sub(1), 0 as *const u8, None); + +// Statics cannot be duplicated +do_test!(&A, &A, Some(true)); + +// Two non-ZST statics cannot have the same address +do_test!(&A, &B, Some(false)); +do_test!(&A, &raw const MUT_STATIC, Some(false)); + +// One-past-the-end of one static can be equal to the address of another static. +do_test!(&A, (&raw const B).wrapping_add(1), None); + +// Cannot know if ZST static is at the same address with anything non-null (if alignment allows). +do_test!(&A, &ZST, None); +do_test!(&A, &ALIGNED_ZST, None); + +// Unclear if ZST statics can be placed "in the middle of" non-ZST statics. +// For now, we conservatively say they could, and return None here. +do_test!(&ZST, (&raw const A).wrapping_byte_add(1), None); + +// As per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness +// immutable statics are allowed to overlap with const items and promoteds. +do_test!(&A, &T(42), None); +do_test!(&A, const { &T(42) }, None); +do_test!(&A, { const X: T = T(42); &X }, None); + +// These could return Some(false), since only immutable statics can overlap with const items +// and promoteds. +do_test!(&raw const MUT_STATIC, &T(42), None); +do_test!(&raw const MUT_STATIC, const { &T(42) }, None); +do_test!(&raw const MUT_STATIC, { const X: T = T(42); &X }, None); + +// An odd offset from a 2-aligned allocation can never be equal to an even offset from a +// 2-aligned allocation, even if the offsets are out-of-bounds. +do_test!(&A, (&raw const B).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&raw const B).wrapping_byte_add(5), Some(false)); +do_test!(&A, (&raw const ALIGNED_ZST).wrapping_byte_add(1), Some(false)); +do_test!(&ALIGNED_ZST, (&raw const A).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&T(42) as *const T).wrapping_byte_add(1), Some(false)); +do_test!(&A, (const { &T(42) } as *const T).wrapping_byte_add(1), Some(false)); +do_test!(&A, ({ const X: T = T(42); &X } as *const T).wrapping_byte_add(1), Some(false)); + +// We could return `Some(false)` for these, as pointers to different statics can never be equal if +// that would require the statics to overlap, even if the pointers themselves are offset out of +// bounds or one-past-the-end. We currently only check strictly in-bounds pointers when comparing +// pointers to different statics, however. +do_test!((&raw const A).wrapping_add(1), (&raw const B).wrapping_add(1), None); +do_test!( + (&raw const LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(2), + (&raw const MUT_LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(1), + None +); + +// Pointers into the same static are equal if and only if their offset is the same, +// even if either is out-of-bounds. +do_test!(&A, &A, Some(true)); +do_test!(&A, &A.0, Some(true)); +do_test!(&A, (&raw const A).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&raw const A).wrapping_byte_add(2), Some(false)); +do_test!(&A, (&raw const A).wrapping_byte_add(51), Some(false)); +do_test!((&raw const A).wrapping_byte_add(51), (&raw const A).wrapping_byte_add(51), Some(true)); + +// Pointers to the same fn may be unequal, since `fn`s can be duplicated. +do_test!(FN_PTR, FN_PTR, None); +do_test!(ALIGNED_FN_PTR, ALIGNED_FN_PTR, None); + +// Pointers to different fns may be equal, since `fn`s can be deduplicated. +do_test!(FN_PTR, ALIGNED_FN_PTR, None); + +// Pointers to the same vtable may be unequal, since vtables can be duplicated. +do_test!(VTABLE_PTR_1, VTABLE_PTR_1, None); + +// Pointers to different vtables may be equal, since vtables can be deduplicated. +do_test!(VTABLE_PTR_1, VTABLE_PTR_2, None); + +// Function pointers to aligned function allocations are not necessarily actually aligned, +// due to platform-specific semantics. +// See https://github.com/rust-lang/rust/issues/144661 +// FIXME: This could return `Some` on platforms where function pointers' addresses actually +// correspond to function addresses including alignment, or on platforms where all functions +// are aligned to some amount (e.g. ARM where a32 function pointers are at least 4-aligned, +// and t32 function pointers are 2-aligned-offset-by-1). +do_test!(ALIGNED_FN_PTR, ALIGNED_FN_PTR.wrapping_byte_offset(1), None); + +// Conservatively say we don't know. +do_test!(FN_PTR, VTABLE_PTR_1, None); +do_test!((&raw const LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(1), VTABLE_PTR_1, None); +do_test!((&raw const MUT_LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(1), VTABLE_PTR_1, None); +do_test!((&raw const LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(1), FN_PTR, None); +do_test!((&raw const MUT_LARGE_WORD_ALIGNED).cast::<usize>().wrapping_add(1), FN_PTR, None); |
