diff options
| author | Camelid <camelidcamel@gmail.com> | 2021-03-20 14:23:38 -0700 |
|---|---|---|
| committer | Camelid <camelidcamel@gmail.com> | 2021-03-20 14:38:49 -0700 |
| commit | a2e9374048f1c04f025469dde88e13a5037d8db7 (patch) | |
| tree | cc88dbf3b98090012562886fc60015425394f266 /compiler/rustc_codegen_llvm/src/debuginfo/doc.rs | |
| parent | 61edfd591cedff66fca639c02f66984f6271e5a6 (diff) | |
| download | rust-a2e9374048f1c04f025469dde88e13a5037d8db7.tar.gz rust-a2e9374048f1c04f025469dde88e13a5037d8db7.zip | |
Move debuginfo docs from `doc.rs` module to `doc.md` file
And use `#[doc = include_str!("doc.md")]` in `mod.rs` so the docs are
rendered as if they were inline in the root module.
Diffstat (limited to 'compiler/rustc_codegen_llvm/src/debuginfo/doc.rs')
| -rw-r--r-- | compiler/rustc_codegen_llvm/src/debuginfo/doc.rs | 179 |
1 files changed, 0 insertions, 179 deletions
diff --git a/compiler/rustc_codegen_llvm/src/debuginfo/doc.rs b/compiler/rustc_codegen_llvm/src/debuginfo/doc.rs deleted file mode 100644 index 10dd5906529..00000000000 --- a/compiler/rustc_codegen_llvm/src/debuginfo/doc.rs +++ /dev/null @@ -1,179 +0,0 @@ -//! # Debug Info Module -//! -//! This module serves the purpose of generating debug symbols. We use LLVM's -//! [source level debugging](https://llvm.org/docs/SourceLevelDebugging.html) -//! features for generating the debug information. The general principle is -//! this: -//! -//! Given the right metadata in the LLVM IR, the LLVM code generator is able to -//! create DWARF debug symbols for the given code. The -//! [metadata](https://llvm.org/docs/LangRef.html#metadata-type) is structured -//! much like DWARF *debugging information entries* (DIE), representing type -//! information such as datatype layout, function signatures, block layout, -//! variable location and scope information, etc. It is the purpose of this -//! module to generate correct metadata and insert it into the LLVM IR. -//! -//! As the exact format of metadata trees may change between different LLVM -//! versions, we now use LLVM -//! [DIBuilder](https://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) -//! to create metadata where possible. This will hopefully ease the adaption of -//! this module to future LLVM versions. -//! -//! The public API of the module is a set of functions that will insert the -//! correct metadata into the LLVM IR when called with the right parameters. -//! The module is thus driven from an outside client with functions like -//! `debuginfo::create_local_var_metadata(bx: block, local: &ast::local)`. -//! -//! Internally the module will try to reuse already created metadata by -//! utilizing a cache. The way to get a shared metadata node when needed is -//! thus to just call the corresponding function in this module: -//! -//! let file_metadata = file_metadata(cx, file); -//! -//! The function will take care of probing the cache for an existing node for -//! that exact file path. -//! -//! All private state used by the module is stored within either the -//! CrateDebugContext struct (owned by the CodegenCx) or the -//! FunctionDebugContext (owned by the FunctionCx). -//! -//! This file consists of three conceptual sections: -//! 1. The public interface of the module -//! 2. Module-internal metadata creation functions -//! 3. Minor utility functions -//! -//! -//! ## Recursive Types -//! -//! Some kinds of types, such as structs and enums can be recursive. That means -//! that the type definition of some type X refers to some other type which in -//! turn (transitively) refers to X. This introduces cycles into the type -//! referral graph. A naive algorithm doing an on-demand, depth-first traversal -//! of this graph when describing types, can get trapped in an endless loop -//! when it reaches such a cycle. -//! -//! For example, the following simple type for a singly-linked list... -//! -//! ``` -//! struct List { -//! value: i32, -//! tail: Option<Box<List>>, -//! } -//! ``` -//! -//! will generate the following callstack with a naive DFS algorithm: -//! -//! ``` -//! describe(t = List) -//! describe(t = i32) -//! describe(t = Option<Box<List>>) -//! describe(t = Box<List>) -//! describe(t = List) // at the beginning again... -//! ... -//! ``` -//! -//! To break cycles like these, we use "forward declarations". That is, when -//! the algorithm encounters a possibly recursive type (any struct or enum), it -//! immediately creates a type description node and inserts it into the cache -//! *before* describing the members of the type. This type description is just -//! a stub (as type members are not described and added to it yet) but it -//! allows the algorithm to already refer to the type. After the stub is -//! inserted into the cache, the algorithm continues as before. If it now -//! encounters a recursive reference, it will hit the cache and does not try to -//! describe the type anew. -//! -//! This behavior is encapsulated in the 'RecursiveTypeDescription' enum, -//! which represents a kind of continuation, storing all state needed to -//! continue traversal at the type members after the type has been registered -//! with the cache. (This implementation approach might be a tad over- -//! engineered and may change in the future) -//! -//! -//! ## Source Locations and Line Information -//! -//! In addition to data type descriptions the debugging information must also -//! allow to map machine code locations back to source code locations in order -//! to be useful. This functionality is also handled in this module. The -//! following functions allow to control source mappings: -//! -//! + set_source_location() -//! + clear_source_location() -//! + start_emitting_source_locations() -//! -//! `set_source_location()` allows to set the current source location. All IR -//! instructions created after a call to this function will be linked to the -//! given source location, until another location is specified with -//! `set_source_location()` or the source location is cleared with -//! `clear_source_location()`. In the later case, subsequent IR instruction -//! will not be linked to any source location. As you can see, this is a -//! stateful API (mimicking the one in LLVM), so be careful with source -//! locations set by previous calls. It's probably best to not rely on any -//! specific state being present at a given point in code. -//! -//! One topic that deserves some extra attention is *function prologues*. At -//! the beginning of a function's machine code there are typically a few -//! instructions for loading argument values into allocas and checking if -//! there's enough stack space for the function to execute. This *prologue* is -//! not visible in the source code and LLVM puts a special PROLOGUE END marker -//! into the line table at the first non-prologue instruction of the function. -//! In order to find out where the prologue ends, LLVM looks for the first -//! instruction in the function body that is linked to a source location. So, -//! when generating prologue instructions we have to make sure that we don't -//! emit source location information until the 'real' function body begins. For -//! this reason, source location emission is disabled by default for any new -//! function being codegened and is only activated after a call to the third -//! function from the list above, `start_emitting_source_locations()`. This -//! function should be called right before regularly starting to codegen the -//! top-level block of the given function. -//! -//! There is one exception to the above rule: `llvm.dbg.declare` instruction -//! must be linked to the source location of the variable being declared. For -//! function parameters these `llvm.dbg.declare` instructions typically occur -//! in the middle of the prologue, however, they are ignored by LLVM's prologue -//! detection. The `create_argument_metadata()` and related functions take care -//! of linking the `llvm.dbg.declare` instructions to the correct source -//! locations even while source location emission is still disabled, so there -//! is no need to do anything special with source location handling here. -//! -//! ## Unique Type Identification -//! -//! In order for link-time optimization to work properly, LLVM needs a unique -//! type identifier that tells it across compilation units which types are the -//! same as others. This type identifier is created by -//! `TypeMap::get_unique_type_id_of_type()` using the following algorithm: -//! -//! (1) Primitive types have their name as ID -//! (2) Structs, enums and traits have a multipart identifier -//! -//! (1) The first part is the SVH (strict version hash) of the crate they -//! were originally defined in -//! -//! (2) The second part is the ast::NodeId of the definition in their -//! original crate -//! -//! (3) The final part is a concatenation of the type IDs of their concrete -//! type arguments if they are generic types. -//! -//! (3) Tuple-, pointer and function types are structurally identified, which -//! means that they are equivalent if their component types are equivalent -//! (i.e., (i32, i32) is the same regardless in which crate it is used). -//! -//! This algorithm also provides a stable ID for types that are defined in one -//! crate but instantiated from metadata within another crate. We just have to -//! take care to always map crate and `NodeId`s back to the original crate -//! context. -//! -//! As a side-effect these unique type IDs also help to solve a problem arising -//! from lifetime parameters. Since lifetime parameters are completely omitted -//! in debuginfo, more than one `Ty` instance may map to the same debuginfo -//! type metadata, that is, some struct `Struct<'a>` may have N instantiations -//! with different concrete substitutions for `'a`, and thus there will be N -//! `Ty` instances for the type `Struct<'a>` even though it is not generic -//! otherwise. Unfortunately this means that we cannot use `ty::type_id()` as -//! cheap identifier for type metadata -- we have done this in the past, but it -//! led to unnecessary metadata duplication in the best case and LLVM -//! assertions in the worst. However, the unique type ID as described above -//! *can* be used as identifier. Since it is comparatively expensive to -//! construct, though, `ty::type_id()` is still used additionally as an -//! optimization for cases where the exact same type has been seen before -//! (which is most of the time). |
