diff options
| author | Rich Kadel <richkadel@google.com> | 2020-10-22 23:11:38 -0700 |
|---|---|---|
| committer | Rich Kadel <richkadel@google.com> | 2020-11-05 18:24:13 -0800 |
| commit | b5020648fe294a1f139586e4243903d8c1a105b8 (patch) | |
| tree | e3dbb52086281fac3491100066e8d3fb98367a84 /compiler/rustc_mir/src/transform/coverage/graph.rs | |
| parent | c7ae4c2cb6d7e58ad0f9c12047e3d747c26a9d71 (diff) | |
| download | rust-b5020648fe294a1f139586e4243903d8c1a105b8.tar.gz rust-b5020648fe294a1f139586e4243903d8c1a105b8.zip | |
Implemented CoverageGraph of BasicCoverageBlocks
Diffstat (limited to 'compiler/rustc_mir/src/transform/coverage/graph.rs')
| -rw-r--r-- | compiler/rustc_mir/src/transform/coverage/graph.rs | 458 |
1 files changed, 301 insertions, 157 deletions
diff --git a/compiler/rustc_mir/src/transform/coverage/graph.rs b/compiler/rustc_mir/src/transform/coverage/graph.rs index c0a698833a1..3d3e76f907b 100644 --- a/compiler/rustc_mir/src/transform/coverage/graph.rs +++ b/compiler/rustc_mir/src/transform/coverage/graph.rs @@ -1,152 +1,100 @@ +use rustc_data_structures::graph::dominators::{self, Dominators}; +use rustc_data_structures::graph::{self, GraphSuccessors, WithNumNodes}; use rustc_index::bit_set::BitSet; use rustc_index::vec::IndexVec; -use rustc_middle::mir::{self, BasicBlock, BasicBlockData, TerminatorKind}; +use rustc_middle::mir::{self, BasicBlock, BasicBlockData, Terminator, TerminatorKind}; + +use std::ops::{Index, IndexMut}; const ID_SEPARATOR: &str = ","; -/// A BasicCoverageBlock (BCB) represents the maximal-length sequence of CFG (MIR) BasicBlocks -/// without conditional branches. -/// -/// The BCB allows coverage analysis to be performed on a simplified projection of the underlying -/// MIR CFG, without altering the original CFG. Note that running the MIR `SimplifyCfg` transform, -/// is not sufficient, and therefore not necessary, since the BCB-based CFG projection is a more -/// aggressive simplification. For example: -/// -/// * The BCB CFG projection ignores (trims) branches not relevant to coverage, such as unwind- -/// related code that is injected by the Rust compiler but has no physical source code to -/// count. This also means a BasicBlock with a `Call` terminator can be merged into its -/// primary successor target block, in the same BCB. -/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are -/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as -/// a `Goto`, and merged with its successor into the same BCB. -/// -/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`. -/// In some cases, a BCB's execution count can be computed by `CounterExpression`. Additional -/// disjoint `CoverageSpan`s in a BCB can also be counted by `CounterExpression` (by adding `ZERO` -/// to the BCB's primary counter or expression). -/// -/// Dominator/dominated relationships (which are fundamental to the coverage analysis algorithm) -/// between two BCBs can be computed using the `mir::Body` `dominators()` with any `BasicBlock` -/// member of each BCB. (For consistency, BCB's use the first `BasicBlock`, also referred to as the -/// `bcb_leader_bb`.) -/// -/// The BCB CFG projection is critical to simplifying the coverage analysis by ensuring graph -/// path-based queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch -/// (control flow) significance. -#[derive(Debug, Clone)] -pub(crate) struct BasicCoverageBlock { - pub blocks: Vec<BasicBlock>, +/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s +/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s, plus a +/// `CoverageKind` counter (to be added by `CoverageCounters::make_bcb_counters`), and an optional +/// set of additional counters--if needed--to count incoming edges, if there are more than one. +/// (These "edge counters" are eventually converted into new MIR `BasicBlock`s.) +pub(crate) struct CoverageGraph { + bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>, + bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>, + pub successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>, + pub predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>, + dominators: Option<Dominators<BasicCoverageBlock>>, } -impl BasicCoverageBlock { - pub fn leader_bb(&self) -> BasicBlock { - self.blocks[0] - } +impl CoverageGraph { + pub fn from_mir(mir_body: &mir::Body<'tcx>) -> Self { + let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body); - pub fn id(&self) -> String { - format!( - "@{}", - self.blocks - .iter() - .map(|bb| bb.index().to_string()) - .collect::<Vec<_>>() - .join(ID_SEPARATOR) - ) - } -} + // Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock + // equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the + // each predecessor of a BCB leader_bb should be in a unique BCB, and each successor of a + // BCB last_bb should bin in its own unique BCB. Therefore, collecting the BCBs using + // `bb_to_bcb` should work without requiring a deduplication step. -pub(crate) struct BasicCoverageBlocks { - vec: IndexVec<BasicBlock, Option<BasicCoverageBlock>>, -} + let successors = IndexVec::from_fn_n( + |bcb| { + let bcb_data = &bcbs[bcb]; + let bcb_successors = + bcb_filtered_successors(&mir_body, &bcb_data.terminator(mir_body).kind) + .filter_map(|&successor_bb| bb_to_bcb[successor_bb]) + .collect::<Vec<_>>(); + debug_assert!({ + let mut sorted = bcb_successors.clone(); + sorted.sort_unstable(); + let initial_len = sorted.len(); + sorted.dedup(); + sorted.len() == initial_len + }); + bcb_successors + }, + bcbs.len(), + ); + + let mut predecessors = IndexVec::from_elem_n(Vec::new(), bcbs.len()); + for (bcb, bcb_successors) in successors.iter_enumerated() { + for &successor in bcb_successors { + predecessors[successor].push(bcb); + } + } -impl BasicCoverageBlocks { - pub fn from_mir(mir_body: &mir::Body<'tcx>) -> Self { let mut basic_coverage_blocks = - BasicCoverageBlocks { vec: IndexVec::from_elem_n(None, mir_body.basic_blocks().len()) }; - basic_coverage_blocks.extract_from_mir(mir_body); + Self { bcbs, bb_to_bcb, successors, predecessors, dominators: None }; + let dominators = dominators::dominators(&basic_coverage_blocks); + basic_coverage_blocks.dominators = Some(dominators); basic_coverage_blocks } - pub fn iter(&self) -> impl Iterator<Item = &BasicCoverageBlock> { - self.vec.iter().filter_map(|bcb| bcb.as_ref()) - } - - pub fn num_nodes(&self) -> usize { - self.vec.len() - } - - pub fn extract_from_mir(&mut self, mir_body: &mir::Body<'tcx>) { - // Traverse the CFG but ignore anything following an `unwind` - let cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, |term_kind| { - let mut successors = term_kind.successors(); - match &term_kind { - // SwitchInt successors are never unwind, and all of them should be traversed. - - // NOTE: TerminatorKind::FalseEdge targets from SwitchInt don't appear to be - // helpful in identifying unreachable code. I did test the theory, but the following - // changes were not beneficial. (I assumed that replacing some constants with - // non-deterministic variables might effect which blocks were targeted by a - // `FalseEdge` `imaginary_target`. It did not.) - // - // Also note that, if there is a way to identify BasicBlocks that are part of the - // MIR CFG, but not actually reachable, here are some other things to consider: - // - // Injecting unreachable code regions will probably require computing the set - // difference between the basic blocks found without filtering out unreachable - // blocks, and the basic blocks found with the filter; then computing the - // `CoverageSpans` without the filter; and then injecting `Counter`s or - // `CounterExpression`s for blocks that are not unreachable, or injecting - // `Unreachable` code regions otherwise. This seems straightforward, but not - // trivial. - // - // Alternatively, we might instead want to leave the unreachable blocks in - // (bypass the filter here), and inject the counters. This will result in counter - // values of zero (0) for unreachable code (and, notably, the code will be displayed - // with a red background by `llvm-cov show`). - // - // TerminatorKind::SwitchInt { .. } => { - // let some_imaginary_target = successors.clone().find_map(|&successor| { - // let term = mir_body.basic_blocks()[successor].terminator(); - // if let TerminatorKind::FalseEdge { imaginary_target, .. } = term.kind { - // if mir_body.predecessors()[imaginary_target].len() == 1 { - // return Some(imaginary_target); - // } - // } - // None - // }); - // if let Some(imaginary_target) = some_imaginary_target { - // box successors.filter(move |&&successor| successor != imaginary_target) - // } else { - // box successors - // } - // } - // - // Note this also required changing the closure signature for the - // `ShortCurcuitPreorder` to: - // - // F: Fn(&'tcx TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = &BasicBlock> + 'a>, - TerminatorKind::SwitchInt { .. } => successors, - - // For all other kinds, return only the first successor, if any, and ignore unwinds - _ => successors.next().into_iter().chain(&[]), - } - }); + fn compute_basic_coverage_blocks( + mir_body: &mir::Body<'tcx>, + ) -> ( + IndexVec<BasicCoverageBlock, BasicCoverageBlockData>, + IndexVec<BasicBlock, Option<BasicCoverageBlock>>, + ) { + let num_basic_blocks = mir_body.num_nodes(); + let mut bcbs = IndexVec::with_capacity(num_basic_blocks); + let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks); - // Walk the CFG using a Preorder traversal, which starts from `START_BLOCK` and follows + // Walk the MIR CFG using a Preorder traversal, which starts from `START_BLOCK` and follows // each block terminator's `successors()`. Coverage spans must map to actual source code, - // so compiler generated blocks and paths can be ignored. To that end the CFG traversal + // so compiler generated blocks and paths can be ignored. To that end, the CFG traversal // intentionally omits unwind paths. - let mut blocks = Vec::new(); - for (bb, data) in cfg_without_unwind { - if let Some(last) = blocks.last() { + let mir_cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, bcb_filtered_successors); + + let mut basic_blocks = Vec::new(); + for (bb, data) in mir_cfg_without_unwind { + if let Some(last) = basic_blocks.last() { let predecessors = &mir_body.predecessors()[bb]; if predecessors.len() > 1 || !predecessors.contains(last) { // The `bb` has more than one _incoming_ edge, and should start its own - // `BasicCoverageBlock`. (Note, the `blocks` vector does not yet include `bb`; - // it contains a sequence of one or more sequential blocks with no intermediate - // branches in or out. Save these as a new `BasicCoverageBlock` before starting - // the new one.) - self.add_basic_coverage_block(blocks.split_off(0)); + // `BasicCoverageBlockData`. (Note, the `basic_blocks` vector does not yet + // include `bb`; it contains a sequence of one or more sequential basic_blocks + // with no intermediate branches in or out. Save these as a new + // `BasicCoverageBlockData` before starting the new one.) + Self::add_basic_coverage_block( + &mut bcbs, + &mut bb_to_bcb, + basic_blocks.split_off(0), + ); debug!( " because {}", if predecessors.len() > 1 { @@ -157,27 +105,40 @@ impl BasicCoverageBlocks { ); } } - blocks.push(bb); + basic_blocks.push(bb); let term = data.terminator(); match term.kind { TerminatorKind::Return { .. } + // FIXME(richkadel): Add test(s) for `Abort` coverage. | TerminatorKind::Abort + // FIXME(richkadel): Add test(s) for `Assert` coverage. + // Should `Assert` be handled like `FalseUnwind` instead? Since we filter out unwind + // branches when creating the BCB CFG, aren't `Assert`s (without unwinds) just like + // `FalseUnwinds` (which are kind of like `Goto`s)? | TerminatorKind::Assert { .. } + // FIXME(richkadel): Add test(s) for `Yield` coverage, and confirm coverage is + // sensible for code using the `yield` keyword. | TerminatorKind::Yield { .. } + // FIXME(richkadel): Also add coverage tests using async/await, and threading. + | TerminatorKind::SwitchInt { .. } => { // The `bb` has more than one _outgoing_ edge, or exits the function. Save the - // current sequence of `blocks` gathered to this point, as a new - // `BasicCoverageBlock`. - self.add_basic_coverage_block(blocks.split_off(0)); + // current sequence of `basic_blocks` gathered to this point, as a new + // `BasicCoverageBlockData`. + Self::add_basic_coverage_block( + &mut bcbs, + &mut bb_to_bcb, + basic_blocks.split_off(0), + ); debug!(" because term.kind = {:?}", term.kind); // Note that this condition is based on `TerminatorKind`, even though it // theoretically boils down to `successors().len() != 1`; that is, either zero // (e.g., `Return`, `Abort`) or multiple successors (e.g., `SwitchInt`), but - // since the Coverage graph (the BCB CFG projection) ignores things like unwind - // branches (which exist in the `Terminator`s `successors()` list) checking the - // number of successors won't work. + // since the BCB CFG ignores things like unwind branches (which exist in the + // `Terminator`s `successors()` list) checking the number of successors won't + // work. } TerminatorKind::Goto { .. } | TerminatorKind::Resume @@ -192,45 +153,222 @@ impl BasicCoverageBlocks { } } - if !blocks.is_empty() { - // process any remaining blocks into a final `BasicCoverageBlock` - self.add_basic_coverage_block(blocks.split_off(0)); - debug!(" because the end of the CFG was reached while traversing"); + if !basic_blocks.is_empty() { + // process any remaining basic_blocks into a final `BasicCoverageBlockData` + Self::add_basic_coverage_block(&mut bcbs, &mut bb_to_bcb, basic_blocks.split_off(0)); + debug!(" because the end of the MIR CFG was reached while traversing"); + } + + (bcbs, bb_to_bcb) + } + + fn add_basic_coverage_block( + bcbs: &mut IndexVec<BasicCoverageBlock, BasicCoverageBlockData>, + bb_to_bcb: &mut IndexVec<BasicBlock, Option<BasicCoverageBlock>>, + basic_blocks: Vec<BasicBlock>, + ) { + let bcb = BasicCoverageBlock::from_usize(bcbs.len()); + for &bb in basic_blocks.iter() { + bb_to_bcb[bb] = Some(bcb); } + let bcb_data = BasicCoverageBlockData::from(basic_blocks); + debug!("adding bcb{}: {:?}", bcb.index(), bcb_data); + bcbs.push(bcb_data); + } + + #[inline(always)] + pub fn iter_enumerated( + &self, + ) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> { + self.bcbs.iter_enumerated() + } + + #[inline(always)] + pub fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> { + if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None } + } + + #[inline(always)] + pub fn is_dominated_by(&self, node: BasicCoverageBlock, dom: BasicCoverageBlock) -> bool { + self.dominators.as_ref().unwrap().is_dominated_by(node, dom) + } + + #[inline(always)] + pub fn dominators(&self) -> &Dominators<BasicCoverageBlock> { + self.dominators.as_ref().unwrap() + } +} + +impl Index<BasicCoverageBlock> for CoverageGraph { + type Output = BasicCoverageBlockData; + + #[inline] + fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData { + &self.bcbs[index] + } +} + +impl IndexMut<BasicCoverageBlock> for CoverageGraph { + #[inline] + fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData { + &mut self.bcbs[index] + } +} + +impl graph::DirectedGraph for CoverageGraph { + type Node = BasicCoverageBlock; +} + +impl graph::WithNumNodes for CoverageGraph { + #[inline] + fn num_nodes(&self) -> usize { + self.bcbs.len() + } +} + +impl graph::WithStartNode for CoverageGraph { + #[inline] + fn start_node(&self) -> Self::Node { + self.bcb_from_bb(mir::START_BLOCK) + .expect("mir::START_BLOCK should be in a BasicCoverageBlock") + } +} + +type BcbSuccessors<'graph> = std::slice::Iter<'graph, BasicCoverageBlock>; + +impl<'graph> graph::GraphSuccessors<'graph> for CoverageGraph { + type Item = BasicCoverageBlock; + type Iter = std::iter::Cloned<BcbSuccessors<'graph>>; +} + +impl graph::WithSuccessors for CoverageGraph { + #[inline] + fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter { + self.successors[node].iter().cloned() + } +} + +impl graph::GraphPredecessors<'graph> for CoverageGraph { + type Item = BasicCoverageBlock; + type Iter = std::vec::IntoIter<BasicCoverageBlock>; +} + +impl graph::WithPredecessors for CoverageGraph { + #[inline] + fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter { + self.predecessors[node].clone().into_iter() } +} - fn add_basic_coverage_block(&mut self, blocks: Vec<BasicBlock>) { - let leader_bb = blocks[0]; - let bcb = BasicCoverageBlock { blocks }; - debug!("adding BCB: {:?}", bcb); - self.vec[leader_bb] = Some(bcb); +rustc_index::newtype_index! { + /// A node in the [control-flow graph][CFG] of CoverageGraph. + pub(crate) struct BasicCoverageBlock { + DEBUG_FORMAT = "bcb{}", } } -impl std::ops::Index<BasicBlock> for BasicCoverageBlocks { - type Output = BasicCoverageBlock; +/// A BasicCoverageBlockData (BCB) represents the maximal-length sequence of MIR BasicBlocks without +/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without +/// altering the original MIR CFG. +/// +/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not +/// necessary). The BCB-based CFG is a more aggressive simplification. For example: +/// +/// * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code, +/// that is injected by the Rust compiler but has no physical source code to count. This also +/// means a BasicBlock with a `Call` terminator can be merged into its primary successor target +/// block, in the same BCB. +/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are +/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as +/// a `Goto`, and merged with its successor into the same BCB. +/// +/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`. +/// In some cases, a BCB's execution count can be computed by `Expression`. Additional +/// disjoint `CoverageSpan`s in a BCB can also be counted by `Expression` (by adding `ZERO` +/// to the BCB's primary counter or expression). +/// +/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based +/// queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch (control flow) +/// significance. +#[derive(Debug, Clone)] +pub(crate) struct BasicCoverageBlockData { + pub basic_blocks: Vec<BasicBlock>, +} + +impl BasicCoverageBlockData { + pub fn from(basic_blocks: Vec<BasicBlock>) -> Self { + assert!(basic_blocks.len() > 0); + Self { basic_blocks } + } + + #[inline(always)] + pub fn leader_bb(&self) -> BasicBlock { + self.basic_blocks[0] + } + + #[inline(always)] + pub fn last_bb(&self) -> BasicBlock { + *self.basic_blocks.last().unwrap() + } + + #[inline(always)] + pub fn terminator<'a, 'tcx>(&self, mir_body: &'a mir::Body<'tcx>) -> &'a Terminator<'tcx> { + &mir_body[self.last_bb()].terminator() + } + + pub fn id(&self) -> String { + format!( + "@{}", + self.basic_blocks + .iter() + .map(|bb| bb.index().to_string()) + .collect::<Vec<_>>() + .join(ID_SEPARATOR) + ) + } +} - fn index(&self, index: BasicBlock) -> &Self::Output { - self.vec[index].as_ref().expect("is_some if BasicBlock is a BasicCoverageBlock leader") +fn bcb_filtered_successors<'a, 'tcx>( + body: &'tcx &'a mir::Body<'tcx>, + term_kind: &'tcx TerminatorKind<'tcx>, +) -> Box<dyn Iterator<Item = &'a BasicBlock> + 'a> { + let mut successors = term_kind.successors(); + box match &term_kind { + // SwitchInt successors are never unwind, and all of them should be traversed. + TerminatorKind::SwitchInt { .. } => successors, + // For all other kinds, return only the first successor, if any, and ignore unwinds. + // NOTE: `chain(&[])` is required to coerce the `option::iter` (from + // `next().into_iter()`) into the `mir::Successors` aliased type. + _ => successors.next().into_iter().chain(&[]), } + .filter(move |&&successor| body[successor].terminator().kind != TerminatorKind::Unreachable) } pub struct ShortCircuitPreorder< 'a, 'tcx, - F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>, + F: Fn( + &'tcx &'a mir::Body<'tcx>, + &'tcx TerminatorKind<'tcx>, + ) -> Box<dyn Iterator<Item = &'a BasicBlock> + 'a>, > { - body: &'a mir::Body<'tcx>, + body: &'tcx &'a mir::Body<'tcx>, visited: BitSet<BasicBlock>, worklist: Vec<BasicBlock>, filtered_successors: F, } -impl<'a, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> - ShortCircuitPreorder<'a, 'tcx, F> +impl< + 'a, + 'tcx, + F: Fn( + &'tcx &'a mir::Body<'tcx>, + &'tcx TerminatorKind<'tcx>, + ) -> Box<dyn Iterator<Item = &'a BasicBlock> + 'a>, +> ShortCircuitPreorder<'a, 'tcx, F> { pub fn new( - body: &'a mir::Body<'tcx>, + body: &'tcx &'a mir::Body<'tcx>, filtered_successors: F, ) -> ShortCircuitPreorder<'a, 'tcx, F> { let worklist = vec![mir::START_BLOCK]; @@ -244,8 +382,14 @@ impl<'a, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> } } -impl<'a: 'tcx, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> Iterator - for ShortCircuitPreorder<'a, 'tcx, F> +impl< + 'a: 'tcx, + 'tcx, + F: Fn( + &'tcx &'a mir::Body<'tcx>, + &'tcx TerminatorKind<'tcx>, + ) -> Box<dyn Iterator<Item = &'a BasicBlock> + 'a>, +> Iterator for ShortCircuitPreorder<'a, 'tcx, F> { type Item = (BasicBlock, &'a BasicBlockData<'tcx>); @@ -258,7 +402,7 @@ impl<'a: 'tcx, 'tcx, F: Fn(&'tcx TerminatorKind<'tcx>) -> mir::Successors<'tcx>> let data = &self.body[idx]; if let Some(ref term) = data.terminator { - self.worklist.extend((self.filtered_successors)(&term.kind)); + self.worklist.extend((self.filtered_successors)(&self.body, &term.kind)); } return Some((idx, data)); |
