diff options
| author | Simon Sapin <simon.sapin@exyr.org> | 2018-04-07 21:56:02 +0200 |
|---|---|---|
| committer | Simon Sapin <simon.sapin@exyr.org> | 2018-04-21 09:47:37 +0200 |
| commit | f0705bf033363757a8a2901cd1a7bd76f0fea820 (patch) | |
| tree | acf32897096a473c675c4112efcbce258c3c91e2 /src/liballoc/str.rs | |
| parent | 90f29fbdb105b65e8ddb2b5c8b834b8db32ef9ef (diff) | |
| download | rust-f0705bf033363757a8a2901cd1a7bd76f0fea820.tar.gz rust-f0705bf033363757a8a2901cd1a7bd76f0fea820.zip | |
Replace StrExt with inherent str methods in libcore
Diffstat (limited to 'src/liballoc/str.rs')
| -rw-r--r-- | src/liballoc/str.rs | 1731 |
1 files changed, 7 insertions, 1724 deletions
diff --git a/src/liballoc/str.rs b/src/liballoc/str.rs index 686a0408a7c..82ba2f45711 100644 --- a/src/liballoc/str.rs +++ b/src/liballoc/str.rs @@ -40,6 +40,7 @@ use core::fmt; use core::str as core_str; +#[cfg(stage0)] use core::str::StrExt; use core::str::pattern::Pattern; use core::str::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher}; use core::mem; @@ -76,7 +77,8 @@ pub use core::str::{from_utf8_unchecked, from_utf8_unchecked_mut, ParseBoolError pub use core::str::SplitWhitespace; #[stable(feature = "rust1", since = "1.0.0")] pub use core::str::pattern; - +#[stable(feature = "encode_utf16", since = "1.8.0")] +pub use core::str::EncodeUtf16; #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", @@ -133,64 +135,6 @@ impl<S: Borrow<str>> SliceConcatExt<str> for [S] { } } -/// An iterator of [`u16`] over the string encoded as UTF-16. -/// -/// [`u16`]: ../../std/primitive.u16.html -/// -/// This struct is created by the [`encode_utf16`] method on [`str`]. -/// See its documentation for more. -/// -/// [`encode_utf16`]: ../../std/primitive.str.html#method.encode_utf16 -/// [`str`]: ../../std/primitive.str.html -#[derive(Clone)] -#[stable(feature = "encode_utf16", since = "1.8.0")] -pub struct EncodeUtf16<'a> { - chars: Chars<'a>, - extra: u16, -} - -#[stable(feature = "collection_debug", since = "1.17.0")] -impl<'a> fmt::Debug for EncodeUtf16<'a> { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - f.pad("EncodeUtf16 { .. }") - } -} - -#[stable(feature = "encode_utf16", since = "1.8.0")] -impl<'a> Iterator for EncodeUtf16<'a> { - type Item = u16; - - #[inline] - fn next(&mut self) -> Option<u16> { - if self.extra != 0 { - let tmp = self.extra; - self.extra = 0; - return Some(tmp); - } - - let mut buf = [0; 2]; - self.chars.next().map(|ch| { - let n = ch.encode_utf16(&mut buf).len(); - if n == 2 { - self.extra = buf[1]; - } - buf[0] - }) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - let (low, high) = self.chars.size_hint(); - // every char gets either one u16 or two u16, - // so this iterator is between 1 or 2 times as - // long as the underlying iterator. - (low, high.and_then(|n| n.checked_mul(2))) - } -} - -#[stable(feature = "fused", since = "1.26.0")] -impl<'a> FusedIterator for EncodeUtf16<'a> {} - #[stable(feature = "rust1", since = "1.0.0")] impl Borrow<str> for String { #[inline] @@ -214,1605 +158,12 @@ impl ToOwned for str { } /// Methods for string slices. -#[lang = "str"] +#[cfg_attr(stage0, lang = "str")] +#[cfg_attr(not(stage0), lang = "str_alloc")] #[cfg(not(test))] impl str { - /// Returns the length of `self`. - /// - /// This length is in bytes, not [`char`]s or graphemes. In other words, - /// it may not be what a human considers the length of the string. - /// - /// [`char`]: primitive.char.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let len = "foo".len(); - /// assert_eq!(3, len); - /// - /// let len = "ƒoo".len(); // fancy f! - /// assert_eq!(4, len); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn len(&self) -> usize { - core_str::StrExt::len(self) - } - - /// Returns `true` if `self` has a length of zero bytes. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = ""; - /// assert!(s.is_empty()); - /// - /// let s = "not empty"; - /// assert!(!s.is_empty()); - /// ``` - #[inline] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn is_empty(&self) -> bool { - core_str::StrExt::is_empty(self) - } - - /// Checks that `index`-th byte lies at the start and/or end of a - /// UTF-8 code point sequence. - /// - /// The start and end of the string (when `index == self.len()`) are - /// considered to be - /// boundaries. - /// - /// Returns `false` if `index` is greater than `self.len()`. - /// - /// # Examples - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// assert!(s.is_char_boundary(0)); - /// // start of `老` - /// assert!(s.is_char_boundary(6)); - /// assert!(s.is_char_boundary(s.len())); - /// - /// // second byte of `ö` - /// assert!(!s.is_char_boundary(2)); - /// - /// // third byte of `老` - /// assert!(!s.is_char_boundary(8)); - /// ``` - #[stable(feature = "is_char_boundary", since = "1.9.0")] - #[inline] - pub fn is_char_boundary(&self, index: usize) -> bool { - core_str::StrExt::is_char_boundary(self, index) - } - - /// Converts a string slice to a byte slice. To convert the byte slice back - /// into a string slice, use the [`str::from_utf8`] function. - /// - /// [`str::from_utf8`]: ./str/fn.from_utf8.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let bytes = "bors".as_bytes(); - /// assert_eq!(b"bors", bytes); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline(always)] - pub fn as_bytes(&self) -> &[u8] { - core_str::StrExt::as_bytes(self) - } - - /// Converts a mutable string slice to a mutable byte slice. To convert the - /// mutable byte slice back into a mutable string slice, use the - /// [`str::from_utf8_mut`] function. - /// - /// [`str::from_utf8_mut`]: ./str/fn.from_utf8_mut.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let mut s = String::from("Hello"); - /// let bytes = unsafe { s.as_bytes_mut() }; - /// - /// assert_eq!(b"Hello", bytes); - /// ``` - /// - /// Mutability: - /// - /// ``` - /// let mut s = String::from("🗻∈🌏"); - /// - /// unsafe { - /// let bytes = s.as_bytes_mut(); - /// - /// bytes[0] = 0xF0; - /// bytes[1] = 0x9F; - /// bytes[2] = 0x8D; - /// bytes[3] = 0x94; - /// } - /// - /// assert_eq!("🍔∈🌏", s); - /// ``` - #[stable(feature = "str_mut_extras", since = "1.20.0")] - #[inline(always)] - pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { - core_str::StrExt::as_bytes_mut(self) - } - - /// Converts a string slice to a raw pointer. - /// - /// As string slices are a slice of bytes, the raw pointer points to a - /// [`u8`]. This pointer will be pointing to the first byte of the string - /// slice. - /// - /// [`u8`]: primitive.u8.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = "Hello"; - /// let ptr = s.as_ptr(); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn as_ptr(&self) -> *const u8 { - core_str::StrExt::as_ptr(self) - } - - /// Returns a subslice of `str`. - /// - /// This is the non-panicking alternative to indexing the `str`. Returns - /// [`None`] whenever equivalent indexing operation would panic. - /// - /// [`None`]: option/enum.Option.html#variant.None - /// - /// # Examples - /// - /// ``` - /// let v = String::from("🗻∈🌏"); - /// - /// assert_eq!(Some("🗻"), v.get(0..4)); - /// - /// // indices not on UTF-8 sequence boundaries - /// assert!(v.get(1..).is_none()); - /// assert!(v.get(..8).is_none()); - /// - /// // out of bounds - /// assert!(v.get(..42).is_none()); - /// ``` - #[stable(feature = "str_checked_slicing", since = "1.20.0")] - #[inline] - pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { - core_str::StrExt::get(self, i) - } - - /// Returns a mutable subslice of `str`. - /// - /// This is the non-panicking alternative to indexing the `str`. Returns - /// [`None`] whenever equivalent indexing operation would panic. - /// - /// [`None`]: option/enum.Option.html#variant.None - /// - /// # Examples - /// - /// ``` - /// let mut v = String::from("hello"); - /// // correct length - /// assert!(v.get_mut(0..5).is_some()); - /// // out of bounds - /// assert!(v.get_mut(..42).is_none()); - /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); - /// - /// assert_eq!("hello", v); - /// { - /// let s = v.get_mut(0..2); - /// let s = s.map(|s| { - /// s.make_ascii_uppercase(); - /// &*s - /// }); - /// assert_eq!(Some("HE"), s); - /// } - /// assert_eq!("HEllo", v); - /// ``` - #[stable(feature = "str_checked_slicing", since = "1.20.0")] - #[inline] - pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { - core_str::StrExt::get_mut(self, i) - } - - /// Returns a unchecked subslice of `str`. - /// - /// This is the unchecked alternative to indexing the `str`. - /// - /// # Safety - /// - /// Callers of this function are responsible that these preconditions are - /// satisfied: - /// - /// * The starting index must come before the ending index; - /// * Indexes must be within bounds of the original slice; - /// * Indexes must lie on UTF-8 sequence boundaries. - /// - /// Failing that, the returned string slice may reference invalid memory or - /// violate the invariants communicated by the `str` type. - /// - /// # Examples - /// - /// ``` - /// let v = "🗻∈🌏"; - /// unsafe { - /// assert_eq!("🗻", v.get_unchecked(0..4)); - /// assert_eq!("∈", v.get_unchecked(4..7)); - /// assert_eq!("🌏", v.get_unchecked(7..11)); - /// } - /// ``` - #[stable(feature = "str_checked_slicing", since = "1.20.0")] - #[inline] - pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { - core_str::StrExt::get_unchecked(self, i) - } - - /// Returns a mutable, unchecked subslice of `str`. - /// - /// This is the unchecked alternative to indexing the `str`. - /// - /// # Safety - /// - /// Callers of this function are responsible that these preconditions are - /// satisfied: - /// - /// * The starting index must come before the ending index; - /// * Indexes must be within bounds of the original slice; - /// * Indexes must lie on UTF-8 sequence boundaries. - /// - /// Failing that, the returned string slice may reference invalid memory or - /// violate the invariants communicated by the `str` type. - /// - /// # Examples - /// - /// ``` - /// let mut v = String::from("🗻∈🌏"); - /// unsafe { - /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); - /// assert_eq!("∈", v.get_unchecked_mut(4..7)); - /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); - /// } - /// ``` - #[stable(feature = "str_checked_slicing", since = "1.20.0")] - #[inline] - pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { - core_str::StrExt::get_unchecked_mut(self, i) - } - - /// Creates a string slice from another string slice, bypassing safety - /// checks. - /// - /// This is generally not recommended, use with caution! For a safe - /// alternative see [`str`] and [`Index`]. - /// - /// [`str`]: primitive.str.html - /// [`Index`]: ops/trait.Index.html - /// - /// This new slice goes from `begin` to `end`, including `begin` but - /// excluding `end`. - /// - /// To get a mutable string slice instead, see the - /// [`slice_mut_unchecked`] method. - /// - /// [`slice_mut_unchecked`]: #method.slice_mut_unchecked - /// - /// # Safety - /// - /// Callers of this function are responsible that three preconditions are - /// satisfied: - /// - /// * `begin` must come before `end`. - /// * `begin` and `end` must be byte positions within the string slice. - /// * `begin` and `end` must lie on UTF-8 sequence boundaries. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// - /// unsafe { - /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); - /// } - /// - /// let s = "Hello, world!"; - /// - /// unsafe { - /// assert_eq!("world", s.slice_unchecked(7, 12)); - /// } - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { - core_str::StrExt::slice_unchecked(self, begin, end) - } - - /// Creates a string slice from another string slice, bypassing safety - /// checks. - /// This is generally not recommended, use with caution! For a safe - /// alternative see [`str`] and [`IndexMut`]. - /// - /// [`str`]: primitive.str.html - /// [`IndexMut`]: ops/trait.IndexMut.html - /// - /// This new slice goes from `begin` to `end`, including `begin` but - /// excluding `end`. - /// - /// To get an immutable string slice instead, see the - /// [`slice_unchecked`] method. - /// - /// [`slice_unchecked`]: #method.slice_unchecked - /// - /// # Safety - /// - /// Callers of this function are responsible that three preconditions are - /// satisfied: - /// - /// * `begin` must come before `end`. - /// * `begin` and `end` must be byte positions within the string slice. - /// * `begin` and `end` must lie on UTF-8 sequence boundaries. - #[stable(feature = "str_slice_mut", since = "1.5.0")] - #[inline] - pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { - core_str::StrExt::slice_mut_unchecked(self, begin, end) - } - - /// Divide one string slice into two at an index. - /// - /// The argument, `mid`, should be a byte offset from the start of the - /// string. It must also be on the boundary of a UTF-8 code point. - /// - /// The two slices returned go from the start of the string slice to `mid`, - /// and from `mid` to the end of the string slice. - /// - /// To get mutable string slices instead, see the [`split_at_mut`] - /// method. - /// - /// [`split_at_mut`]: #method.split_at_mut - /// - /// # Panics - /// - /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is - /// beyond the last code point of the string slice. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = "Per Martin-Löf"; - /// - /// let (first, last) = s.split_at(3); - /// - /// assert_eq!("Per", first); - /// assert_eq!(" Martin-Löf", last); - /// ``` - #[inline] - #[stable(feature = "str_split_at", since = "1.4.0")] - pub fn split_at(&self, mid: usize) -> (&str, &str) { - core_str::StrExt::split_at(self, mid) - } - - /// Divide one mutable string slice into two at an index. - /// - /// The argument, `mid`, should be a byte offset from the start of the - /// string. It must also be on the boundary of a UTF-8 code point. - /// - /// The two slices returned go from the start of the string slice to `mid`, - /// and from `mid` to the end of the string slice. - /// - /// To get immutable string slices instead, see the [`split_at`] method. - /// - /// [`split_at`]: #method.split_at - /// - /// # Panics - /// - /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is - /// beyond the last code point of the string slice. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let mut s = "Per Martin-Löf".to_string(); - /// { - /// let (first, last) = s.split_at_mut(3); - /// first.make_ascii_uppercase(); - /// assert_eq!("PER", first); - /// assert_eq!(" Martin-Löf", last); - /// } - /// assert_eq!("PER Martin-Löf", s); - /// ``` - #[inline] - #[stable(feature = "str_split_at", since = "1.4.0")] - pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { - core_str::StrExt::split_at_mut(self, mid) - } - - /// Returns an iterator over the [`char`]s of a string slice. - /// - /// As a string slice consists of valid UTF-8, we can iterate through a - /// string slice by [`char`]. This method returns such an iterator. - /// - /// It's important to remember that [`char`] represents a Unicode Scalar - /// Value, and may not match your idea of what a 'character' is. Iteration - /// over grapheme clusters may be what you actually want. - /// - /// [`char`]: primitive.char.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let word = "goodbye"; - /// - /// let count = word.chars().count(); - /// assert_eq!(7, count); - /// - /// let mut chars = word.chars(); - /// - /// assert_eq!(Some('g'), chars.next()); - /// assert_eq!(Some('o'), chars.next()); - /// assert_eq!(Some('o'), chars.next()); - /// assert_eq!(Some('d'), chars.next()); - /// assert_eq!(Some('b'), chars.next()); - /// assert_eq!(Some('y'), chars.next()); - /// assert_eq!(Some('e'), chars.next()); - /// - /// assert_eq!(None, chars.next()); - /// ``` - /// - /// Remember, [`char`]s may not match your human intuition about characters: - /// - /// ``` - /// let y = "y̆"; - /// - /// let mut chars = y.chars(); - /// - /// assert_eq!(Some('y'), chars.next()); // not 'y̆' - /// assert_eq!(Some('\u{0306}'), chars.next()); - /// - /// assert_eq!(None, chars.next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn chars(&self) -> Chars { - core_str::StrExt::chars(self) - } - /// Returns an iterator over the [`char`]s of a string slice, and their - /// positions. - /// - /// As a string slice consists of valid UTF-8, we can iterate through a - /// string slice by [`char`]. This method returns an iterator of both - /// these [`char`]s, as well as their byte positions. - /// - /// The iterator yields tuples. The position is first, the [`char`] is - /// second. - /// - /// [`char`]: primitive.char.html - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let word = "goodbye"; - /// - /// let count = word.char_indices().count(); - /// assert_eq!(7, count); - /// - /// let mut char_indices = word.char_indices(); - /// - /// assert_eq!(Some((0, 'g')), char_indices.next()); - /// assert_eq!(Some((1, 'o')), char_indices.next()); - /// assert_eq!(Some((2, 'o')), char_indices.next()); - /// assert_eq!(Some((3, 'd')), char_indices.next()); - /// assert_eq!(Some((4, 'b')), char_indices.next()); - /// assert_eq!(Some((5, 'y')), char_indices.next()); - /// assert_eq!(Some((6, 'e')), char_indices.next()); - /// - /// assert_eq!(None, char_indices.next()); - /// ``` - /// - /// Remember, [`char`]s may not match your human intuition about characters: - /// - /// ``` - /// let yes = "y̆es"; - /// - /// let mut char_indices = yes.char_indices(); - /// - /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') - /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); - /// - /// // note the 3 here - the last character took up two bytes - /// assert_eq!(Some((3, 'e')), char_indices.next()); - /// assert_eq!(Some((4, 's')), char_indices.next()); - /// - /// assert_eq!(None, char_indices.next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn char_indices(&self) -> CharIndices { - core_str::StrExt::char_indices(self) - } - - /// An iterator over the bytes of a string slice. - /// - /// As a string slice consists of a sequence of bytes, we can iterate - /// through a string slice by byte. This method returns such an iterator. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let mut bytes = "bors".bytes(); - /// - /// assert_eq!(Some(b'b'), bytes.next()); - /// assert_eq!(Some(b'o'), bytes.next()); - /// assert_eq!(Some(b'r'), bytes.next()); - /// assert_eq!(Some(b's'), bytes.next()); - /// - /// assert_eq!(None, bytes.next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn bytes(&self) -> Bytes { - core_str::StrExt::bytes(self) - } - - /// Split a string slice by whitespace. - /// - /// The iterator returned will return string slices that are sub-slices of - /// the original string slice, separated by any amount of whitespace. - /// - /// 'Whitespace' is defined according to the terms of the Unicode Derived - /// Core Property `White_Space`. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let mut iter = "A few words".split_whitespace(); - /// - /// assert_eq!(Some("A"), iter.next()); - /// assert_eq!(Some("few"), iter.next()); - /// assert_eq!(Some("words"), iter.next()); - /// - /// assert_eq!(None, iter.next()); - /// ``` - /// - /// All kinds of whitespace are considered: - /// - /// ``` - /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); - /// assert_eq!(Some("Mary"), iter.next()); - /// assert_eq!(Some("had"), iter.next()); - /// assert_eq!(Some("a"), iter.next()); - /// assert_eq!(Some("little"), iter.next()); - /// assert_eq!(Some("lamb"), iter.next()); - /// - /// assert_eq!(None, iter.next()); - /// ``` - #[stable(feature = "split_whitespace", since = "1.1.0")] - #[inline] - pub fn split_whitespace(&self) -> SplitWhitespace { - StrExt::split_whitespace(self) - } - - /// An iterator over the lines of a string, as string slices. - /// - /// Lines are ended with either a newline (`\n`) or a carriage return with - /// a line feed (`\r\n`). - /// - /// The final line ending is optional. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let text = "foo\r\nbar\n\nbaz\n"; - /// let mut lines = text.lines(); - /// - /// assert_eq!(Some("foo"), lines.next()); - /// assert_eq!(Some("bar"), lines.next()); - /// assert_eq!(Some(""), lines.next()); - /// assert_eq!(Some("baz"), lines.next()); - /// - /// assert_eq!(None, lines.next()); - /// ``` - /// - /// The final line ending isn't required: - /// - /// ``` - /// let text = "foo\nbar\n\r\nbaz"; - /// let mut lines = text.lines(); - /// - /// assert_eq!(Some("foo"), lines.next()); - /// assert_eq!(Some("bar"), lines.next()); - /// assert_eq!(Some(""), lines.next()); - /// assert_eq!(Some("baz"), lines.next()); - /// - /// assert_eq!(None, lines.next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn lines(&self) -> Lines { - core_str::StrExt::lines(self) - } - - /// An iterator over the lines of a string. - #[stable(feature = "rust1", since = "1.0.0")] - #[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")] - #[inline] - #[allow(deprecated)] - pub fn lines_any(&self) -> LinesAny { - core_str::StrExt::lines_any(self) - } - - /// Returns an iterator of `u16` over the string encoded as UTF-16. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let text = "Zażółć gęślą jaźń"; - /// - /// let utf8_len = text.len(); - /// let utf16_len = text.encode_utf16().count(); - /// - /// assert!(utf16_len <= utf8_len); - /// ``` - #[stable(feature = "encode_utf16", since = "1.8.0")] - pub fn encode_utf16(&self) -> EncodeUtf16 { - EncodeUtf16 { chars: self[..].chars(), extra: 0 } - } - - /// Returns `true` if the given pattern matches a sub-slice of - /// this string slice. - /// - /// Returns `false` if it does not. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let bananas = "bananas"; - /// - /// assert!(bananas.contains("nana")); - /// assert!(!bananas.contains("apples")); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { - core_str::StrExt::contains(self, pat) - } - - /// Returns `true` if the given pattern matches a prefix of this - /// string slice. - /// - /// Returns `false` if it does not. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let bananas = "bananas"; - /// - /// assert!(bananas.starts_with("bana")); - /// assert!(!bananas.starts_with("nana")); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { - core_str::StrExt::starts_with(self, pat) - } - - /// Returns `true` if the given pattern matches a suffix of this - /// string slice. - /// - /// Returns `false` if it does not. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let bananas = "bananas"; - /// - /// assert!(bananas.ends_with("anas")); - /// assert!(!bananas.ends_with("nana")); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::ends_with(self, pat) - } - - /// Returns the byte index of the first character of this string slice that - /// matches the pattern. - /// - /// Returns [`None`] if the pattern doesn't match. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines if - /// a character matches. - /// - /// [`char`]: primitive.char.html - /// [`None`]: option/enum.Option.html#variant.None - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// - /// assert_eq!(s.find('L'), Some(0)); - /// assert_eq!(s.find('é'), Some(14)); - /// assert_eq!(s.find("Léopard"), Some(13)); - /// ``` - /// - /// More complex patterns using point-free style and closures: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// - /// assert_eq!(s.find(char::is_whitespace), Some(5)); - /// assert_eq!(s.find(char::is_lowercase), Some(1)); - /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); - /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); - /// ``` - /// - /// Not finding the pattern: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// let x: &[_] = &['1', '2']; - /// - /// assert_eq!(s.find(x), None); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> { - core_str::StrExt::find(self, pat) - } - - /// Returns the byte index of the last character of this string slice that - /// matches the pattern. - /// - /// Returns [`None`] if the pattern doesn't match. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines if - /// a character matches. - /// - /// [`char`]: primitive.char.html - /// [`None`]: option/enum.Option.html#variant.None - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// - /// assert_eq!(s.rfind('L'), Some(13)); - /// assert_eq!(s.rfind('é'), Some(14)); - /// ``` - /// - /// More complex patterns with closures: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// - /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); - /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); - /// ``` - /// - /// Not finding the pattern: - /// - /// ``` - /// let s = "Löwe 老虎 Léopard"; - /// let x: &[_] = &['1', '2']; - /// - /// assert_eq!(s.rfind(x), None); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rfind(self, pat) - } - - /// An iterator over substrings of this string slice, separated by - /// characters matched by a pattern. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines the - /// split. - /// - /// # Iterator behavior - /// - /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern - /// allows a reverse search and forward/reverse search yields the same - /// elements. This is true for, eg, [`char`] but not for `&str`. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// - /// If the pattern allows a reverse search but its results might differ - /// from a forward search, the [`rsplit`] method can be used. - /// - /// [`char`]: primitive.char.html - /// [`rsplit`]: #method.rsplit - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); - /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); - /// - /// let v: Vec<&str> = "".split('X').collect(); - /// assert_eq!(v, [""]); - /// - /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); - /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); - /// - /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); - /// assert_eq!(v, ["lion", "tiger", "leopard"]); - /// - /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); - /// assert_eq!(v, ["abc", "def", "ghi"]); - /// - /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); - /// assert_eq!(v, ["lion", "tiger", "leopard"]); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); - /// assert_eq!(v, ["abc", "def", "ghi"]); - /// ``` - /// - /// If a string contains multiple contiguous separators, you will end up - /// with empty strings in the output: - /// - /// ``` - /// let x = "||||a||b|c".to_string(); - /// let d: Vec<_> = x.split('|').collect(); - /// - /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); - /// ``` - /// - /// Contiguous separators are separated by the empty string. - /// - /// ``` - /// let x = "(///)".to_string(); - /// let d: Vec<_> = x.split('/').collect(); - /// - /// assert_eq!(d, &["(", "", "", ")"]); - /// ``` - /// - /// Separators at the start or end of a string are neighbored - /// by empty strings. - /// - /// ``` - /// let d: Vec<_> = "010".split("0").collect(); - /// assert_eq!(d, &["", "1", ""]); - /// ``` - /// - /// When the empty string is used as a separator, it separates - /// every character in the string, along with the beginning - /// and end of the string. - /// - /// ``` - /// let f: Vec<_> = "rust".split("").collect(); - /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); - /// ``` - /// - /// Contiguous separators can lead to possibly surprising behavior - /// when whitespace is used as the separator. This code is correct: - /// - /// ``` - /// let x = " a b c".to_string(); - /// let d: Vec<_> = x.split(' ').collect(); - /// - /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); - /// ``` - /// - /// It does _not_ give you: - /// - /// ```,ignore - /// assert_eq!(d, &["a", "b", "c"]); - /// ``` - /// - /// Use [`split_whitespace`] for this behavior. - /// - /// [`split_whitespace`]: #method.split_whitespace - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { - core_str::StrExt::split(self, pat) - } - - /// An iterator over substrings of the given string slice, separated by - /// characters matched by a pattern and yielded in reverse order. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines the - /// split. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator requires that the pattern supports a reverse - /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse - /// search yields the same elements. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// - /// For iterating from the front, the [`split`] method can be used. - /// - /// [`split`]: #method.split - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); - /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); - /// - /// let v: Vec<&str> = "".rsplit('X').collect(); - /// assert_eq!(v, [""]); - /// - /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); - /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); - /// - /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); - /// assert_eq!(v, ["leopard", "tiger", "lion"]); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); - /// assert_eq!(v, ["ghi", "def", "abc"]); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rsplit(self, pat) - } - - /// An iterator over substrings of the given string slice, separated by - /// characters matched by a pattern. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines the - /// split. - /// - /// Equivalent to [`split`], except that the trailing substring - /// is skipped if empty. - /// - /// [`split`]: #method.split - /// - /// This method can be used for string data that is _terminated_, - /// rather than _separated_ by a pattern. - /// - /// # Iterator behavior - /// - /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern - /// allows a reverse search and forward/reverse search yields the same - /// elements. This is true for, eg, [`char`] but not for `&str`. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// [`char`]: primitive.char.html - /// - /// If the pattern allows a reverse search but its results might differ - /// from a forward search, the [`rsplit_terminator`] method can be used. - /// - /// [`rsplit_terminator`]: #method.rsplit_terminator - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); - /// assert_eq!(v, ["A", "B"]); - /// - /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); - /// assert_eq!(v, ["A", "", "B", ""]); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { - core_str::StrExt::split_terminator(self, pat) - } - - /// An iterator over substrings of `self`, separated by characters - /// matched by a pattern and yielded in reverse order. - /// - /// The pattern can be a simple `&str`, [`char`], or a closure that - /// determines the split. - /// Additional libraries might provide more complex patterns like - /// regular expressions. - /// - /// [`char`]: primitive.char.html - /// - /// Equivalent to [`split`], except that the trailing substring is - /// skipped if empty. - /// - /// [`split`]: #method.split - /// - /// This method can be used for string data that is _terminated_, - /// rather than _separated_ by a pattern. - /// - /// # Iterator behavior - /// - /// The returned iterator requires that the pattern supports a - /// reverse search, and it will be double ended if a forward/reverse - /// search yields the same elements. - /// - /// For iterating from the front, the [`split_terminator`] method can be - /// used. - /// - /// [`split_terminator`]: #method.split_terminator - /// - /// # Examples - /// - /// ``` - /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); - /// assert_eq!(v, ["B", "A"]); - /// - /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); - /// assert_eq!(v, ["", "B", "", "A"]); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rsplit_terminator(self, pat) - } - - /// An iterator over substrings of the given string slice, separated by a - /// pattern, restricted to returning at most `n` items. - /// - /// If `n` substrings are returned, the last substring (the `n`th substring) - /// will contain the remainder of the string. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines the - /// split. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator will not be double ended, because it is - /// not efficient to support. - /// - /// If the pattern allows a reverse search, the [`rsplitn`] method can be - /// used. - /// - /// [`rsplitn`]: #method.rsplitn - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); - /// assert_eq!(v, ["Mary", "had", "a little lambda"]); - /// - /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); - /// assert_eq!(v, ["lion", "", "tigerXleopard"]); - /// - /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); - /// assert_eq!(v, ["abcXdef"]); - /// - /// let v: Vec<&str> = "".splitn(1, 'X').collect(); - /// assert_eq!(v, [""]); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); - /// assert_eq!(v, ["abc", "defXghi"]); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { - core_str::StrExt::splitn(self, n, pat) - } - - /// An iterator over substrings of this string slice, separated by a - /// pattern, starting from the end of the string, restricted to returning - /// at most `n` items. - /// - /// If `n` substrings are returned, the last substring (the `n`th substring) - /// will contain the remainder of the string. - /// - /// The pattern can be a `&str`, [`char`], or a closure that - /// determines the split. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator will not be double ended, because it is not - /// efficient to support. - /// - /// For splitting from the front, the [`splitn`] method can be used. - /// - /// [`splitn`]: #method.splitn - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); - /// assert_eq!(v, ["lamb", "little", "Mary had a"]); - /// - /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); - /// assert_eq!(v, ["leopard", "tiger", "lionX"]); - /// - /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); - /// assert_eq!(v, ["leopard", "lion::tiger"]); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); - /// assert_eq!(v, ["ghi", "abc1def"]); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[inline] - pub fn rsplitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rsplitn(self, n, pat) - } - - /// An iterator over the disjoint matches of a pattern within the given string - /// slice. - /// - /// The pattern can be a `&str`, [`char`], or a closure that - /// determines if a character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern - /// allows a reverse search and forward/reverse search yields the same - /// elements. This is true for, eg, [`char`] but not for `&str`. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// [`char`]: primitive.char.html - /// - /// If the pattern allows a reverse search but its results might differ - /// from a forward search, the [`rmatches`] method can be used. - /// - /// [`rmatches`]: #method.rmatches - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); - /// assert_eq!(v, ["abc", "abc", "abc"]); - /// - /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); - /// assert_eq!(v, ["1", "2", "3"]); - /// ``` - #[stable(feature = "str_matches", since = "1.2.0")] - #[inline] - pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { - core_str::StrExt::matches(self, pat) - } - - /// An iterator over the disjoint matches of a pattern within this string slice, - /// yielded in reverse order. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines if - /// a character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator requires that the pattern supports a reverse - /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse - /// search yields the same elements. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// - /// For iterating from the front, the [`matches`] method can be used. - /// - /// [`matches`]: #method.matches - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); - /// assert_eq!(v, ["abc", "abc", "abc"]); - /// - /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); - /// assert_eq!(v, ["3", "2", "1"]); - /// ``` - #[stable(feature = "str_matches", since = "1.2.0")] - #[inline] - pub fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rmatches(self, pat) - } - - /// An iterator over the disjoint matches of a pattern within this string - /// slice as well as the index that the match starts at. - /// - /// For matches of `pat` within `self` that overlap, only the indices - /// corresponding to the first match are returned. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines - /// if a character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern - /// allows a reverse search and forward/reverse search yields the same - /// elements. This is true for, eg, [`char`] but not for `&str`. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// - /// If the pattern allows a reverse search but its results might differ - /// from a forward search, the [`rmatch_indices`] method can be used. - /// - /// [`rmatch_indices`]: #method.rmatch_indices - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); - /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); - /// - /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); - /// assert_eq!(v, [(1, "abc"), (4, "abc")]); - /// - /// let v: Vec<_> = "ababa".match_indices("aba").collect(); - /// assert_eq!(v, [(0, "aba")]); // only the first `aba` - /// ``` - #[stable(feature = "str_match_indices", since = "1.5.0")] - #[inline] - pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { - core_str::StrExt::match_indices(self, pat) - } - - /// An iterator over the disjoint matches of a pattern within `self`, - /// yielded in reverse order along with the index of the match. - /// - /// For matches of `pat` within `self` that overlap, only the indices - /// corresponding to the last match are returned. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines if a - /// character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Iterator behavior - /// - /// The returned iterator requires that the pattern supports a reverse - /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse - /// search yields the same elements. - /// - /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html - /// - /// For iterating from the front, the [`match_indices`] method can be used. - /// - /// [`match_indices`]: #method.match_indices - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); - /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); - /// - /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); - /// assert_eq!(v, [(4, "abc"), (1, "abc")]); - /// - /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); - /// assert_eq!(v, [(2, "aba")]); // only the last `aba` - /// ``` - #[stable(feature = "str_match_indices", since = "1.5.0")] - #[inline] - pub fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P> - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::rmatch_indices(self, pat) - } - - /// Returns a string slice with leading and trailing whitespace removed. - /// - /// 'Whitespace' is defined according to the terms of the Unicode Derived - /// Core Property `White_Space`. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = " Hello\tworld\t"; - /// - /// assert_eq!("Hello\tworld", s.trim()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim(&self) -> &str { - StrExt::trim(self) - } - - /// Returns a string slice with leading whitespace removed. - /// - /// 'Whitespace' is defined according to the terms of the Unicode Derived - /// Core Property `White_Space`. - /// - /// # Text directionality - /// - /// A string is a sequence of bytes. 'Left' in this context means the first - /// position of that byte string; for a language like Arabic or Hebrew - /// which are 'right to left' rather than 'left to right', this will be - /// the _right_ side, not the left. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = " Hello\tworld\t"; - /// - /// assert_eq!("Hello\tworld\t", s.trim_left()); - /// ``` - /// - /// Directionality: - /// - /// ``` - /// let s = " English"; - /// assert!(Some('E') == s.trim_left().chars().next()); - /// - /// let s = " עברית"; - /// assert!(Some('ע') == s.trim_left().chars().next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim_left(&self) -> &str { - StrExt::trim_left(self) - } - - /// Returns a string slice with trailing whitespace removed. - /// - /// 'Whitespace' is defined according to the terms of the Unicode Derived - /// Core Property `White_Space`. - /// - /// # Text directionality - /// - /// A string is a sequence of bytes. 'Right' in this context means the last - /// position of that byte string; for a language like Arabic or Hebrew - /// which are 'right to left' rather than 'left to right', this will be - /// the _left_ side, not the right. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// let s = " Hello\tworld\t"; - /// - /// assert_eq!(" Hello\tworld", s.trim_right()); - /// ``` - /// - /// Directionality: - /// - /// ``` - /// let s = "English "; - /// assert!(Some('h') == s.trim_right().chars().rev().next()); - /// - /// let s = "עברית "; - /// assert!(Some('ת') == s.trim_right().chars().rev().next()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim_right(&self) -> &str { - StrExt::trim_right(self) - } - - /// Returns a string slice with all prefixes and suffixes that match a - /// pattern repeatedly removed. - /// - /// The pattern can be a [`char`] or a closure that determines if a - /// character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); - /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); - /// - /// let x: &[_] = &['1', '2']; - /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str - where P::Searcher: DoubleEndedSearcher<'a> - { - core_str::StrExt::trim_matches(self, pat) - } - - /// Returns a string slice with all prefixes that match a pattern - /// repeatedly removed. - /// - /// The pattern can be a `&str`, [`char`], or a closure that determines if - /// a character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Text directionality - /// - /// A string is a sequence of bytes. 'Left' in this context means the first - /// position of that byte string; for a language like Arabic or Hebrew - /// which are 'right to left' rather than 'left to right', this will be - /// the _right_ side, not the left. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); - /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); - /// - /// let x: &[_] = &['1', '2']; - /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { - core_str::StrExt::trim_left_matches(self, pat) - } - - /// Returns a string slice with all suffixes that match a pattern - /// repeatedly removed. - /// - /// The pattern can be a `&str`, [`char`], or a closure that - /// determines if a character matches. - /// - /// [`char`]: primitive.char.html - /// - /// # Text directionality - /// - /// A string is a sequence of bytes. 'Right' in this context means the last - /// position of that byte string; for a language like Arabic or Hebrew - /// which are 'right to left' rather than 'left to right', this will be - /// the _left_ side, not the right. - /// - /// # Examples - /// - /// Simple patterns: - /// - /// ``` - /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); - /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); - /// - /// let x: &[_] = &['1', '2']; - /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); - /// ``` - /// - /// A more complex pattern, using a closure: - /// - /// ``` - /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str - where P::Searcher: ReverseSearcher<'a> - { - core_str::StrExt::trim_right_matches(self, pat) - } - - /// Parses this string slice into another type. - /// - /// Because `parse` is so general, it can cause problems with type - /// inference. As such, `parse` is one of the few times you'll see - /// the syntax affectionately known as the 'turbofish': `::<>`. This - /// helps the inference algorithm understand specifically which type - /// you're trying to parse into. - /// - /// `parse` can parse any type that implements the [`FromStr`] trait. - /// - /// [`FromStr`]: str/trait.FromStr.html - /// - /// # Errors - /// - /// Will return [`Err`] if it's not possible to parse this string slice into - /// the desired type. - /// - /// [`Err`]: str/trait.FromStr.html#associatedtype.Err - /// - /// # Examples - /// - /// Basic usage - /// - /// ``` - /// let four: u32 = "4".parse().unwrap(); - /// - /// assert_eq!(4, four); - /// ``` - /// - /// Using the 'turbofish' instead of annotating `four`: - /// - /// ``` - /// let four = "4".parse::<u32>(); - /// - /// assert_eq!(Ok(4), four); - /// ``` - /// - /// Failing to parse: - /// - /// ``` - /// let nope = "j".parse::<u32>(); - /// - /// assert!(nope.is_err()); - /// ``` - #[inline] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { - core_str::StrExt::parse(self) - } + #[cfg(stage0)] + str_core_methods!(); /// Converts a `Box<str>` into a `Box<[u8]>` without copying or allocating. /// @@ -2140,26 +491,6 @@ impl str { unsafe { String::from_utf8_unchecked(buf) } } - /// Checks if all characters in this string are within the ASCII range. - /// - /// # Examples - /// - /// ``` - /// let ascii = "hello!\n"; - /// let non_ascii = "Grüße, Jürgen ❤"; - /// - /// assert!(ascii.is_ascii()); - /// assert!(!non_ascii.is_ascii()); - /// ``` - #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] - #[inline] - pub fn is_ascii(&self) -> bool { - // We can treat each byte as character here: all multibyte characters - // start with a byte that is not in the ascii range, so we will stop - // there already. - self.bytes().all(|b| b.is_ascii()) - } - /// Returns a copy of this string where each character is mapped to its /// ASCII upper case equivalent. /// @@ -2219,54 +550,6 @@ impl str { // make_ascii_lowercase() preserves the UTF-8 invariant. unsafe { String::from_utf8_unchecked(bytes) } } - - /// Checks that two strings are an ASCII case-insensitive match. - /// - /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, - /// but without allocating and copying temporaries. - /// - /// # Examples - /// - /// ``` - /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); - /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); - /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); - /// ``` - #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] - #[inline] - pub fn eq_ignore_ascii_case(&self, other: &str) -> bool { - self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) - } - - /// Converts this string to its ASCII upper case equivalent in-place. - /// - /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', - /// but non-ASCII letters are unchanged. - /// - /// To return a new uppercased value without modifying the existing one, use - /// [`to_ascii_uppercase`]. - /// - /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase - #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] - pub fn make_ascii_uppercase(&mut self) { - let me = unsafe { self.as_bytes_mut() }; - me.make_ascii_uppercase() - } - - /// Converts this string to its ASCII lower case equivalent in-place. - /// - /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', - /// but non-ASCII letters are unchanged. - /// - /// To return a new lowercased value without modifying the existing one, use - /// [`to_ascii_lowercase`]. - /// - /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase - #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] - pub fn make_ascii_lowercase(&mut self) { - let me = unsafe { self.as_bytes_mut() }; - me.make_ascii_lowercase() - } } /// Converts a boxed slice of bytes to a boxed string slice without checking |
