diff options
| author | bors <bors@rust-lang.org> | 2019-07-13 06:49:02 +0000 |
|---|---|---|
| committer | bors <bors@rust-lang.org> | 2019-07-13 06:49:02 +0000 |
| commit | 4a95e9704de0eeaecba55df102c1129e79a3a929 (patch) | |
| tree | 363bc1700a2826f38735027195160fa84ecefc2c /src/liballoc | |
| parent | a9c7febb879689a3d24e3ba34531026930313c4c (diff) | |
| parent | 85def307fc83f8c0d164b1506bb855dfaed5f8b5 (diff) | |
| download | rust-4a95e9704de0eeaecba55df102c1129e79a3a929.tar.gz rust-4a95e9704de0eeaecba55df102c1129e79a3a929.zip | |
Auto merge of #61953 - Centril:shared-from-iter, r=RalfJung
Add `impl<T> FromIterator<T> for Arc/Rc<[T]>` Add implementations of `FromIterator<T> for Arc/Rc<[T]>` with symmetrical logic. This also takes advantage of specialization in the case of iterators with known length (`TrustedLen`) to elide the final allocation/copying from a `Vec<T>` into `Rc<[T]>` because we can allocate the space for the `Rc<[T]>` directly when the size is known. This is the primary motivation and why this is to be preferred over `iter.collect::<Vec<_>>().into(): Rc<[T]>`. Moreover, this PR does some refactoring in some places. r? @RalfJung for the code cc @alexcrichton from T-libs
Diffstat (limited to 'src/liballoc')
| -rw-r--r-- | src/liballoc/lib.rs | 1 | ||||
| -rw-r--r-- | src/liballoc/rc.rs | 287 | ||||
| -rw-r--r-- | src/liballoc/sync.rs | 264 | ||||
| -rw-r--r-- | src/liballoc/tests/arc.rs | 121 | ||||
| -rw-r--r-- | src/liballoc/tests/lib.rs | 2 | ||||
| -rw-r--r-- | src/liballoc/tests/rc.rs | 117 |
6 files changed, 652 insertions, 140 deletions
diff --git a/src/liballoc/lib.rs b/src/liballoc/lib.rs index 0750665c6b4..2e48825e81c 100644 --- a/src/liballoc/lib.rs +++ b/src/liballoc/lib.rs @@ -93,6 +93,7 @@ #![feature(ptr_offset_from)] #![feature(rustc_attrs)] #![feature(receiver_trait)] +#![feature(slice_from_raw_parts)] #![feature(specialization)] #![feature(staged_api)] #![feature(std_internals)] diff --git a/src/liballoc/rc.rs b/src/liballoc/rc.rs index 45a8b4a25c8..36d54656795 100644 --- a/src/liballoc/rc.rs +++ b/src/liballoc/rc.rs @@ -238,12 +238,13 @@ use core::cmp::Ordering; use core::fmt; use core::hash::{Hash, Hasher}; use core::intrinsics::abort; +use core::iter; use core::marker::{self, Unpin, Unsize, PhantomData}; use core::mem::{self, align_of, align_of_val, forget, size_of_val}; use core::ops::{Deref, Receiver, CoerceUnsized, DispatchFromDyn}; use core::pin::Pin; use core::ptr::{self, NonNull}; -use core::slice::from_raw_parts_mut; +use core::slice::{self, from_raw_parts_mut}; use core::convert::From; use core::usize; @@ -286,6 +287,19 @@ impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {} #[unstable(feature = "dispatch_from_dyn", issue = "0")] impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {} +impl<T: ?Sized> Rc<T> { + fn from_inner(ptr: NonNull<RcBox<T>>) -> Self { + Self { + ptr, + phantom: PhantomData, + } + } + + unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self { + Self::from_inner(NonNull::new_unchecked(ptr)) + } +} + impl<T> Rc<T> { /// Constructs a new `Rc<T>`. /// @@ -298,18 +312,15 @@ impl<T> Rc<T> { /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new(value: T) -> Rc<T> { - Rc { - // there is an implicit weak pointer owned by all the strong - // pointers, which ensures that the weak destructor never frees - // the allocation while the strong destructor is running, even - // if the weak pointer is stored inside the strong one. - ptr: Box::into_raw_non_null(box RcBox { - strong: Cell::new(1), - weak: Cell::new(1), - value, - }), - phantom: PhantomData, - } + // There is an implicit weak pointer owned by all the strong + // pointers, which ensures that the weak destructor never frees + // the allocation while the strong destructor is running, even + // if the weak pointer is stored inside the strong one. + Self::from_inner(Box::into_raw_non_null(box RcBox { + strong: Cell::new(1), + weak: Cell::new(1), + value, + })) } /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then @@ -422,10 +433,7 @@ impl<T: ?Sized> Rc<T> { let fake_ptr = ptr as *mut RcBox<T>; let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset)); - Rc { - ptr: NonNull::new_unchecked(rc_ptr), - phantom: PhantomData, - } + Self::from_ptr(rc_ptr) } /// Consumes the `Rc`, returning the wrapped pointer as `NonNull<T>`. @@ -683,7 +691,7 @@ impl Rc<dyn Any> { if (*self).is::<T>() { let ptr = self.ptr.cast::<RcBox<T>>(); forget(self); - Ok(Rc { ptr, phantom: PhantomData }) + Ok(Rc::from_inner(ptr)) } else { Err(self) } @@ -691,21 +699,29 @@ impl Rc<dyn Any> { } impl<T: ?Sized> Rc<T> { - // Allocates an `RcBox<T>` with sufficient space for an unsized value - unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> { - // Calculate layout using the given value. + /// Allocates an `RcBox<T>` with sufficient space for + /// an unsized value where the value has the layout provided. + /// + /// The function `mem_to_rcbox` is called with the data pointer + /// and must return back a (potentially fat)-pointer for the `RcBox<T>`. + unsafe fn allocate_for_unsized( + value_layout: Layout, + mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T> + ) -> *mut RcBox<T> { + // Calculate layout using the given value layout. // Previously, layout was calculated on the expression // `&*(ptr as *const RcBox<T>)`, but this created a misaligned // reference (see #54908). let layout = Layout::new::<RcBox<()>>() - .extend(Layout::for_value(&*ptr)).unwrap().0 + .extend(value_layout).unwrap().0 .pad_to_align().unwrap(); + // Allocate for the layout. let mem = Global.alloc(layout) .unwrap_or_else(|_| handle_alloc_error(layout)); // Initialize the RcBox - let inner = set_data_ptr(ptr as *mut T, mem.as_ptr() as *mut u8) as *mut RcBox<T>; + let inner = mem_to_rcbox(mem.as_ptr()); debug_assert_eq!(Layout::for_value(&*inner), layout); ptr::write(&mut (*inner).strong, Cell::new(1)); @@ -714,6 +730,15 @@ impl<T: ?Sized> Rc<T> { inner } + /// Allocates an `RcBox<T>` with sufficient space for an unsized value + unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> { + // Allocate for the `RcBox<T>` using the given value. + Self::allocate_for_unsized( + Layout::for_value(&*ptr), + |mem| set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>, + ) + } + fn from_box(v: Box<T>) -> Rc<T> { unsafe { let box_unique = Box::into_unique(v); @@ -731,44 +756,49 @@ impl<T: ?Sized> Rc<T> { // Free the allocation without dropping its contents box_free(box_unique); - Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } + Self::from_ptr(ptr) } } } -// Sets the data pointer of a `?Sized` raw pointer. -// -// For a slice/trait object, this sets the `data` field and leaves the rest -// unchanged. For a sized raw pointer, this simply sets the pointer. +impl<T> Rc<[T]> { + /// Allocates an `RcBox<[T]>` with the given length. + unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> { + Self::allocate_for_unsized( + Layout::array::<T>(len).unwrap(), + |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>, + ) + } +} + +/// Sets the data pointer of a `?Sized` raw pointer. +/// +/// For a slice/trait object, this sets the `data` field and leaves the rest +/// unchanged. For a sized raw pointer, this simply sets the pointer. unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T { ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8); ptr } impl<T> Rc<[T]> { - // Copy elements from slice into newly allocated Rc<[T]> - // - // Unsafe because the caller must either take ownership or bind `T: Copy` + /// Copy elements from slice into newly allocated Rc<[T]> + /// + /// Unsafe because the caller must either take ownership or bind `T: Copy` unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> { - let v_ptr = v as *const [T]; - let ptr = Self::allocate_for_ptr(v_ptr); + let ptr = Self::allocate_for_slice(v.len()); ptr::copy_nonoverlapping( v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len()); - Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } + Self::from_ptr(ptr) } -} -trait RcFromSlice<T> { - fn from_slice(slice: &[T]) -> Self; -} - -impl<T: Clone> RcFromSlice<T> for Rc<[T]> { - #[inline] - default fn from_slice(v: &[T]) -> Self { + /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size. + /// + /// Behavior is undefined should the size be wrong. + unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> { // Panic guard while cloning T elements. // In the event of a panic, elements that have been written // into the new RcBox will be dropped, then the memory freed. @@ -790,32 +820,43 @@ impl<T: Clone> RcFromSlice<T> for Rc<[T]> { } } - unsafe { - let v_ptr = v as *const [T]; - let ptr = Self::allocate_for_ptr(v_ptr); + let ptr = Self::allocate_for_slice(len); - let mem = ptr as *mut _ as *mut u8; - let layout = Layout::for_value(&*ptr); + let mem = ptr as *mut _ as *mut u8; + let layout = Layout::for_value(&*ptr); - // Pointer to first element - let elems = &mut (*ptr).value as *mut [T] as *mut T; + // Pointer to first element + let elems = &mut (*ptr).value as *mut [T] as *mut T; - let mut guard = Guard{ - mem: NonNull::new_unchecked(mem), - elems: elems, - layout: layout, - n_elems: 0, - }; + let mut guard = Guard { + mem: NonNull::new_unchecked(mem), + elems, + layout, + n_elems: 0, + }; - for (i, item) in v.iter().enumerate() { - ptr::write(elems.add(i), item.clone()); - guard.n_elems += 1; - } + for (i, item) in iter.enumerate() { + ptr::write(elems.add(i), item); + guard.n_elems += 1; + } + + // All clear. Forget the guard so it doesn't free the new RcBox. + forget(guard); + + Self::from_ptr(ptr) + } +} - // All clear. Forget the guard so it doesn't free the new RcBox. - forget(guard); +/// Specialization trait used for `From<&[T]>`. +trait RcFromSlice<T> { + fn from_slice(slice: &[T]) -> Self; +} - Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } +impl<T: Clone> RcFromSlice<T> for Rc<[T]> { + #[inline] + default fn from_slice(v: &[T]) -> Self { + unsafe { + Self::from_iter_exact(v.iter().cloned(), v.len()) } } } @@ -907,7 +948,7 @@ impl<T: ?Sized> Clone for Rc<T> { #[inline] fn clone(&self) -> Rc<T> { self.inc_strong(); - Rc { ptr: self.ptr, phantom: PhantomData } + Self::from_inner(self.ptr) } } @@ -1213,6 +1254,98 @@ impl<T> From<Vec<T>> for Rc<[T]> { } } +#[stable(feature = "shared_from_iter", since = "1.37.0")] +impl<T> iter::FromIterator<T> for Rc<[T]> { + /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`. + /// + /// # Performance characteristics + /// + /// ## The general case + /// + /// In the general case, collecting into `Rc<[T]>` is done by first + /// collecting into a `Vec<T>`. That is, when writing the following: + /// + /// ```rust + /// # use std::rc::Rc; + /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); + /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); + /// ``` + /// + /// this behaves as if we wrote: + /// + /// ```rust + /// # use std::rc::Rc; + /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0) + /// .collect::<Vec<_>>() // The first set of allocations happens here. + /// .into(); // A second allocation for `Rc<[T]>` happens here. + /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); + /// ``` + /// + /// This will allocate as many times as needed for constructing the `Vec<T>` + /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`. + /// + /// ## Iterators of known length + /// + /// When your `Iterator` implements `TrustedLen` and is of an exact size, + /// a single allocation will be made for the `Rc<[T]>`. For example: + /// + /// ```rust + /// # use std::rc::Rc; + /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here. + /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); + /// ``` + fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self { + RcFromIter::from_iter(iter.into_iter()) + } +} + +/// Specialization trait used for collecting into `Rc<[T]>`. +trait RcFromIter<T, I> { + fn from_iter(iter: I) -> Self; +} + +impl<T, I: Iterator<Item = T>> RcFromIter<T, I> for Rc<[T]> { + default fn from_iter(iter: I) -> Self { + iter.collect::<Vec<T>>().into() + } +} + +impl<T, I: iter::TrustedLen<Item = T>> RcFromIter<T, I> for Rc<[T]> { + default fn from_iter(iter: I) -> Self { + // This is the case for a `TrustedLen` iterator. + let (low, high) = iter.size_hint(); + if let Some(high) = high { + debug_assert_eq!( + low, high, + "TrustedLen iterator's size hint is not exact: {:?}", + (low, high) + ); + + unsafe { + // SAFETY: We need to ensure that the iterator has an exact length and we have. + Rc::from_iter_exact(iter, low) + } + } else { + // Fall back to normal implementation. + iter.collect::<Vec<T>>().into() + } + } +} + +impl<'a, T: 'a + Clone> RcFromIter<&'a T, slice::Iter<'a, T>> for Rc<[T]> { + fn from_iter(iter: slice::Iter<'a, T>) -> Self { + // Delegate to `impl<T: Clone> From<&[T]> for Rc<[T]>`. + // + // In the case that `T: Copy`, we get to use `ptr::copy_nonoverlapping` + // which is even more performant. + // + // In the fall-back case we have `T: Clone`. This is still better + // than the `TrustedLen` implementation as slices have a known length + // and so we get to avoid calling `size_hint` and avoid the branching. + iter.as_slice().into() + } +} + /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the /// managed value. The value is accessed by calling [`upgrade`] on the `Weak` /// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`. @@ -1456,7 +1589,7 @@ impl<T: ?Sized> Weak<T> { None } else { inner.inc_strong(); - Some(Rc { ptr: self.ptr, phantom: PhantomData }) + Some(Rc::from_inner(self.ptr)) } } @@ -1660,14 +1793,16 @@ trait RcBoxPtr<T: ?Sized> { #[inline] fn inc_strong(&self) { + let strong = self.strong(); + // We want to abort on overflow instead of dropping the value. // The reference count will never be zero when this is called; // nevertheless, we insert an abort here to hint LLVM at // an otherwise missed optimization. - if self.strong() == 0 || self.strong() == usize::max_value() { + if strong == 0 || strong == usize::max_value() { unsafe { abort(); } } - self.inner().strong.set(self.strong() + 1); + self.inner().strong.set(strong + 1); } #[inline] @@ -1682,14 +1817,16 @@ trait RcBoxPtr<T: ?Sized> { #[inline] fn inc_weak(&self) { + let weak = self.weak(); + // We want to abort on overflow instead of dropping the value. // The reference count will never be zero when this is called; // nevertheless, we insert an abort here to hint LLVM at // an otherwise missed optimization. - if self.weak() == 0 || self.weak() == usize::max_value() { + if weak == 0 || weak == usize::max_value() { unsafe { abort(); } } - self.inner().weak.set(self.weak() + 1); + self.inner().weak.set(weak + 1); } #[inline] @@ -2162,18 +2299,20 @@ impl<T: ?Sized> AsRef<T> for Rc<T> { impl<T: ?Sized> Unpin for Rc<T> { } unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize { - // Align the unsized value to the end of the RcBox. + // Align the unsized value to the end of the `RcBox`. // Because it is ?Sized, it will always be the last field in memory. - let align = align_of_val(&*ptr); - let layout = Layout::new::<RcBox<()>>(); - (layout.size() + layout.padding_needed_for(align)) as isize + data_offset_align(align_of_val(&*ptr)) } -/// Computes the offset of the data field within ArcInner. +/// Computes the offset of the data field within `RcBox`. /// /// Unlike [`data_offset`], this doesn't need the pointer, but it works only on `T: Sized`. fn data_offset_sized<T>() -> isize { - let align = align_of::<T>(); + data_offset_align(align_of::<T>()) +} + +#[inline] +fn data_offset_align(align: usize) -> isize { let layout = Layout::new::<RcBox<()>>(); (layout.size() + layout.padding_needed_for(align)) as isize } diff --git a/src/liballoc/sync.rs b/src/liballoc/sync.rs index 126169b5c82..7cb826ee024 100644 --- a/src/liballoc/sync.rs +++ b/src/liballoc/sync.rs @@ -12,6 +12,7 @@ use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst}; use core::borrow; use core::fmt; use core::cmp::{self, Ordering}; +use core::iter; use core::intrinsics::abort; use core::mem::{self, align_of, align_of_val, size_of_val}; use core::ops::{Deref, Receiver, CoerceUnsized, DispatchFromDyn}; @@ -21,7 +22,7 @@ use core::marker::{Unpin, Unsize, PhantomData}; use core::hash::{Hash, Hasher}; use core::{isize, usize}; use core::convert::From; -use core::slice::from_raw_parts_mut; +use core::slice::{self, from_raw_parts_mut}; use crate::alloc::{Global, Alloc, Layout, box_free, handle_alloc_error}; use crate::boxed::Box; @@ -206,6 +207,19 @@ impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {} #[unstable(feature = "dispatch_from_dyn", issue = "0")] impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {} +impl<T: ?Sized> Arc<T> { + fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self { + Self { + ptr, + phantom: PhantomData, + } + } + + unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self { + Self::from_inner(NonNull::new_unchecked(ptr)) + } +} + /// `Weak` is a version of [`Arc`] that holds a non-owning reference to the /// managed value. The value is accessed by calling [`upgrade`] on the `Weak` /// pointer, which returns an [`Option`]`<`[`Arc`]`<T>>`. @@ -290,7 +304,7 @@ impl<T> Arc<T> { weak: atomic::AtomicUsize::new(1), data, }; - Arc { ptr: Box::into_raw_non_null(x), phantom: PhantomData } + Self::from_inner(Box::into_raw_non_null(x)) } /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then @@ -403,10 +417,7 @@ impl<T: ?Sized> Arc<T> { let fake_ptr = ptr as *mut ArcInner<T>; let arc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset)); - Arc { - ptr: NonNull::new_unchecked(arc_ptr), - phantom: PhantomData, - } + Self::from_ptr(arc_ptr) } /// Consumes the `Arc`, returning the wrapped pointer as `NonNull<T>`. @@ -577,21 +588,28 @@ impl<T: ?Sized> Arc<T> { } impl<T: ?Sized> Arc<T> { - // Allocates an `ArcInner<T>` with sufficient space for an unsized value - unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> { - // Calculate layout using the given value. + /// Allocates an `ArcInner<T>` with sufficient space for + /// an unsized value where the value has the layout provided. + /// + /// The function `mem_to_arcinner` is called with the data pointer + /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`. + unsafe fn allocate_for_unsized( + value_layout: Layout, + mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T> + ) -> *mut ArcInner<T> { + // Calculate layout using the given value layout. // Previously, layout was calculated on the expression // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned // reference (see #54908). let layout = Layout::new::<ArcInner<()>>() - .extend(Layout::for_value(&*ptr)).unwrap().0 + .extend(value_layout).unwrap().0 .pad_to_align().unwrap(); let mem = Global.alloc(layout) .unwrap_or_else(|_| handle_alloc_error(layout)); // Initialize the ArcInner - let inner = set_data_ptr(ptr as *mut T, mem.as_ptr() as *mut u8) as *mut ArcInner<T>; + let inner = mem_to_arcinner(mem.as_ptr()); debug_assert_eq!(Layout::for_value(&*inner), layout); ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1)); @@ -600,6 +618,15 @@ impl<T: ?Sized> Arc<T> { inner } + /// Allocates an `ArcInner<T>` with sufficient space for an unsized value. + unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> { + // Allocate for the `ArcInner<T>` using the given value. + Self::allocate_for_unsized( + Layout::for_value(&*ptr), + |mem| set_data_ptr(ptr as *mut T, mem) as *mut ArcInner<T>, + ) + } + fn from_box(v: Box<T>) -> Arc<T> { unsafe { let box_unique = Box::into_unique(v); @@ -617,45 +644,49 @@ impl<T: ?Sized> Arc<T> { // Free the allocation without dropping its contents box_free(box_unique); - Arc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } + Self::from_ptr(ptr) } } } -// Sets the data pointer of a `?Sized` raw pointer. -// -// For a slice/trait object, this sets the `data` field and leaves the rest -// unchanged. For a sized raw pointer, this simply sets the pointer. +impl<T> Arc<[T]> { + /// Allocates an `ArcInner<[T]>` with the given length. + unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> { + Self::allocate_for_unsized( + Layout::array::<T>(len).unwrap(), + |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>, + ) + } +} + +/// Sets the data pointer of a `?Sized` raw pointer. +/// +/// For a slice/trait object, this sets the `data` field and leaves the rest +/// unchanged. For a sized raw pointer, this simply sets the pointer. unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T { ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8); ptr } impl<T> Arc<[T]> { - // Copy elements from slice into newly allocated Arc<[T]> - // - // Unsafe because the caller must either take ownership or bind `T: Copy` + /// Copy elements from slice into newly allocated Arc<[T]> + /// + /// Unsafe because the caller must either take ownership or bind `T: Copy`. unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> { - let v_ptr = v as *const [T]; - let ptr = Self::allocate_for_ptr(v_ptr); + let ptr = Self::allocate_for_slice(v.len()); ptr::copy_nonoverlapping( v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len()); - Arc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } + Self::from_ptr(ptr) } -} -// Specialization trait used for From<&[T]> -trait ArcFromSlice<T> { - fn from_slice(slice: &[T]) -> Self; -} - -impl<T: Clone> ArcFromSlice<T> for Arc<[T]> { - #[inline] - default fn from_slice(v: &[T]) -> Self { + /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size. + /// + /// Behavior is undefined should the size be wrong. + unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> { // Panic guard while cloning T elements. // In the event of a panic, elements that have been written // into the new ArcInner will be dropped, then the memory freed. @@ -677,32 +708,43 @@ impl<T: Clone> ArcFromSlice<T> for Arc<[T]> { } } - unsafe { - let v_ptr = v as *const [T]; - let ptr = Self::allocate_for_ptr(v_ptr); + let ptr = Self::allocate_for_slice(len); + + let mem = ptr as *mut _ as *mut u8; + let layout = Layout::for_value(&*ptr); - let mem = ptr as *mut _ as *mut u8; - let layout = Layout::for_value(&*ptr); + // Pointer to first element + let elems = &mut (*ptr).data as *mut [T] as *mut T; - // Pointer to first element - let elems = &mut (*ptr).data as *mut [T] as *mut T; + let mut guard = Guard { + mem: NonNull::new_unchecked(mem), + elems, + layout, + n_elems: 0, + }; - let mut guard = Guard{ - mem: NonNull::new_unchecked(mem), - elems: elems, - layout: layout, - n_elems: 0, - }; + for (i, item) in iter.enumerate() { + ptr::write(elems.add(i), item); + guard.n_elems += 1; + } - for (i, item) in v.iter().enumerate() { - ptr::write(elems.add(i), item.clone()); - guard.n_elems += 1; - } + // All clear. Forget the guard so it doesn't free the new ArcInner. + mem::forget(guard); + + Self::from_ptr(ptr) + } +} - // All clear. Forget the guard so it doesn't free the new ArcInner. - mem::forget(guard); +/// Specialization trait used for `From<&[T]>`. +trait ArcFromSlice<T> { + fn from_slice(slice: &[T]) -> Self; +} - Arc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } +impl<T: Clone> ArcFromSlice<T> for Arc<[T]> { + #[inline] + default fn from_slice(v: &[T]) -> Self { + unsafe { + Self::from_iter_exact(v.iter().cloned(), v.len()) } } } @@ -760,7 +802,7 @@ impl<T: ?Sized> Clone for Arc<T> { } } - Arc { ptr: self.ptr, phantom: PhantomData } + Self::from_inner(self.ptr) } } @@ -1039,7 +1081,7 @@ impl Arc<dyn Any + Send + Sync> { if (*self).is::<T>() { let ptr = self.ptr.cast::<ArcInner<T>>(); mem::forget(self); - Ok(Arc { ptr, phantom: PhantomData }) + Ok(Arc::from_inner(ptr)) } else { Err(self) } @@ -1260,11 +1302,7 @@ impl<T: ?Sized> Weak<T> { // Relaxed is valid for the same reason it is on Arc's Clone impl match inner.strong.compare_exchange_weak(n, n + 1, Relaxed, Relaxed) { - Ok(_) => return Some(Arc { - // null checked above - ptr: self.ptr, - phantom: PhantomData, - }), + Ok(_) => return Some(Arc::from_inner(self.ptr)), // null checked above Err(old) => n = old, } } @@ -1785,6 +1823,98 @@ impl<T> From<Vec<T>> for Arc<[T]> { } } +#[stable(feature = "shared_from_iter", since = "1.37.0")] +impl<T> iter::FromIterator<T> for Arc<[T]> { + /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`. + /// + /// # Performance characteristics + /// + /// ## The general case + /// + /// In the general case, collecting into `Arc<[T]>` is done by first + /// collecting into a `Vec<T>`. That is, when writing the following: + /// + /// ```rust + /// # use std::sync::Arc; + /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); + /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); + /// ``` + /// + /// this behaves as if we wrote: + /// + /// ```rust + /// # use std::sync::Arc; + /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0) + /// .collect::<Vec<_>>() // The first set of allocations happens here. + /// .into(); // A second allocation for `Arc<[T]>` happens here. + /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); + /// ``` + /// + /// This will allocate as many times as needed for constructing the `Vec<T>` + /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`. + /// + /// ## Iterators of known length + /// + /// When your `Iterator` implements `TrustedLen` and is of an exact size, + /// a single allocation will be made for the `Arc<[T]>`. For example: + /// + /// ```rust + /// # use std::sync::Arc; + /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here. + /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); + /// ``` + fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self { + ArcFromIter::from_iter(iter.into_iter()) + } +} + +/// Specialization trait used for collecting into `Arc<[T]>`. +trait ArcFromIter<T, I> { + fn from_iter(iter: I) -> Self; +} + +impl<T, I: Iterator<Item = T>> ArcFromIter<T, I> for Arc<[T]> { + default fn from_iter(iter: I) -> Self { + iter.collect::<Vec<T>>().into() + } +} + +impl<T, I: iter::TrustedLen<Item = T>> ArcFromIter<T, I> for Arc<[T]> { + default fn from_iter(iter: I) -> Self { + // This is the case for a `TrustedLen` iterator. + let (low, high) = iter.size_hint(); + if let Some(high) = high { + debug_assert_eq!( + low, high, + "TrustedLen iterator's size hint is not exact: {:?}", + (low, high) + ); + + unsafe { + // SAFETY: We need to ensure that the iterator has an exact length and we have. + Arc::from_iter_exact(iter, low) + } + } else { + // Fall back to normal implementation. + iter.collect::<Vec<T>>().into() + } + } +} + +impl<'a, T: 'a + Clone> ArcFromIter<&'a T, slice::Iter<'a, T>> for Arc<[T]> { + fn from_iter(iter: slice::Iter<'a, T>) -> Self { + // Delegate to `impl<T: Clone> From<&[T]> for Arc<[T]>`. + // + // In the case that `T: Copy`, we get to use `ptr::copy_nonoverlapping` + // which is even more performant. + // + // In the fall-back case we have `T: Clone`. This is still better + // than the `TrustedLen` implementation as slices have a known length + // and so we get to avoid calling `size_hint` and avoid the branching. + iter.as_slice().into() + } +} + #[cfg(test)] mod tests { use std::boxed::Box; @@ -2285,20 +2415,22 @@ impl<T: ?Sized> AsRef<T> for Arc<T> { #[stable(feature = "pin", since = "1.33.0")] impl<T: ?Sized> Unpin for Arc<T> { } -/// Computes the offset of the data field within ArcInner. +/// Computes the offset of the data field within `ArcInner`. unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize { - // Align the unsized value to the end of the ArcInner. - // Because it is ?Sized, it will always be the last field in memory. - let align = align_of_val(&*ptr); - let layout = Layout::new::<ArcInner<()>>(); - (layout.size() + layout.padding_needed_for(align)) as isize + // Align the unsized value to the end of the `ArcInner`. + // Because it is `?Sized`, it will always be the last field in memory. + data_offset_align(align_of_val(&*ptr)) } -/// Computes the offset of the data field within ArcInner. +/// Computes the offset of the data field within `ArcInner`. /// /// Unlike [`data_offset`], this doesn't need the pointer, but it works only on `T: Sized`. fn data_offset_sized<T>() -> isize { - let align = align_of::<T>(); + data_offset_align(align_of::<T>()) +} + +#[inline] +fn data_offset_align(align: usize) -> isize { let layout = Layout::new::<ArcInner<()>>(); (layout.size() + layout.padding_needed_for(align)) as isize } diff --git a/src/liballoc/tests/arc.rs b/src/liballoc/tests/arc.rs index 2759b1b1cac..cf2ad2a8e60 100644 --- a/src/liballoc/tests/arc.rs +++ b/src/liballoc/tests/arc.rs @@ -2,6 +2,8 @@ use std::any::Any; use std::sync::{Arc, Weak}; use std::cell::RefCell; use std::cmp::PartialEq; +use std::iter::TrustedLen; +use std::mem; #[test] fn uninhabited() { @@ -85,3 +87,122 @@ fn eq() { assert!(!(x != x)); assert_eq!(*x.0.borrow(), 0); } + +// The test code below is identical to that in `rc.rs`. +// For better maintainability we therefore define this type alias. +type Rc<T> = Arc<T>; + +const SHARED_ITER_MAX: u16 = 100; + +fn assert_trusted_len<I: TrustedLen>(_: &I) {} + +#[test] +fn shared_from_iter_normal() { + // Exercise the base implementation for non-`TrustedLen` iterators. + { + // `Filter` is never `TrustedLen` since we don't + // know statically how many elements will be kept: + let iter = (0..SHARED_ITER_MAX).filter(|x| x % 2 == 0).map(Box::new); + + // Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference: + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + + // Clone a bit and let these get dropped. + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } // Drop what hasn't been here. +} + +#[test] +fn shared_from_iter_trustedlen_normal() { + // Exercise the `TrustedLen` implementation under normal circumstances + // where `size_hint()` matches `(_, Some(exact_len))`. + { + let iter = (0..SHARED_ITER_MAX).map(Box::new); + assert_trusted_len(&iter); + + // Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference: + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + assert_eq!(mem::size_of::<Box<u16>>() * SHARED_ITER_MAX as usize, mem::size_of_val(&*rc)); + + // Clone a bit and let these get dropped. + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } // Drop what hasn't been here. + + // Try a ZST to make sure it is handled well. + { + let iter = (0..SHARED_ITER_MAX).map(|_| ()); + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + assert_eq!(0, mem::size_of_val(&*rc)); + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } +} + +#[test] +#[should_panic = "I've almost got 99 problems."] +fn shared_from_iter_trustedlen_panic() { + // Exercise the `TrustedLen` implementation when `size_hint()` matches + // `(_, Some(exact_len))` but where `.next()` drops before the last iteration. + let iter = (0..SHARED_ITER_MAX) + .map(|val| { + match val { + 98 => panic!("I've almost got 99 problems."), + _ => Box::new(val), + } + }); + assert_trusted_len(&iter); + let _ = iter.collect::<Rc<[_]>>(); + + panic!("I am unreachable."); +} + +#[test] +fn shared_from_iter_trustedlen_no_fuse() { + // Exercise the `TrustedLen` implementation when `size_hint()` matches + // `(_, Some(exact_len))` but where the iterator does not behave in a fused manner. + struct Iter(std::vec::IntoIter<Option<Box<u8>>>); + + unsafe impl TrustedLen for Iter {} + + impl Iterator for Iter { + fn size_hint(&self) -> (usize, Option<usize>) { + (2, Some(2)) + } + + type Item = Box<u8>; + + fn next(&mut self) -> Option<Self::Item> { + self.0.next().flatten() + } + } + + let vec = vec![ + Some(Box::new(42)), + Some(Box::new(24)), + None, + Some(Box::new(12)), + ]; + let iter = Iter(vec.into_iter()); + assert_trusted_len(&iter); + assert_eq!( + &[Box::new(42), Box::new(24)], + &*iter.collect::<Rc<[_]>>() + ); +} diff --git a/src/liballoc/tests/lib.rs b/src/liballoc/tests/lib.rs index ddb3120e89d..5a43c8e09a2 100644 --- a/src/liballoc/tests/lib.rs +++ b/src/liballoc/tests/lib.rs @@ -2,8 +2,10 @@ #![feature(box_syntax)] #![feature(drain_filter)] #![feature(exact_size_is_empty)] +#![feature(option_flattening)] #![feature(pattern)] #![feature(repeat_generic_slice)] +#![feature(trusted_len)] #![feature(try_reserve)] #![feature(unboxed_closures)] #![deny(rust_2018_idioms)] diff --git a/src/liballoc/tests/rc.rs b/src/liballoc/tests/rc.rs index 18f82e80410..7854ca0fc16 100644 --- a/src/liballoc/tests/rc.rs +++ b/src/liballoc/tests/rc.rs @@ -2,6 +2,8 @@ use std::any::Any; use std::rc::{Rc, Weak}; use std::cell::RefCell; use std::cmp::PartialEq; +use std::mem; +use std::iter::TrustedLen; #[test] fn uninhabited() { @@ -85,3 +87,118 @@ fn eq() { assert!(!(x != x)); assert_eq!(*x.0.borrow(), 0); } + +const SHARED_ITER_MAX: u16 = 100; + +fn assert_trusted_len<I: TrustedLen>(_: &I) {} + +#[test] +fn shared_from_iter_normal() { + // Exercise the base implementation for non-`TrustedLen` iterators. + { + // `Filter` is never `TrustedLen` since we don't + // know statically how many elements will be kept: + let iter = (0..SHARED_ITER_MAX).filter(|x| x % 2 == 0).map(Box::new); + + // Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference: + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + + // Clone a bit and let these get dropped. + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } // Drop what hasn't been here. +} + +#[test] +fn shared_from_iter_trustedlen_normal() { + // Exercise the `TrustedLen` implementation under normal circumstances + // where `size_hint()` matches `(_, Some(exact_len))`. + { + let iter = (0..SHARED_ITER_MAX).map(Box::new); + assert_trusted_len(&iter); + + // Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference: + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + assert_eq!(mem::size_of::<Box<u16>>() * SHARED_ITER_MAX as usize, mem::size_of_val(&*rc)); + + // Clone a bit and let these get dropped. + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } // Drop what hasn't been here. + + // Try a ZST to make sure it is handled well. + { + let iter = (0..SHARED_ITER_MAX).map(|_| ()); + let vec = iter.clone().collect::<Vec<_>>(); + let rc = iter.collect::<Rc<[_]>>(); + assert_eq!(&*vec, &*rc); + assert_eq!(0, mem::size_of_val(&*rc)); + { + let _rc_2 = rc.clone(); + let _rc_3 = rc.clone(); + let _rc_4 = Rc::downgrade(&_rc_3); + } + } +} + +#[test] +#[should_panic = "I've almost got 99 problems."] +fn shared_from_iter_trustedlen_panic() { + // Exercise the `TrustedLen` implementation when `size_hint()` matches + // `(_, Some(exact_len))` but where `.next()` drops before the last iteration. + let iter = (0..SHARED_ITER_MAX) + .map(|val| { + match val { + 98 => panic!("I've almost got 99 problems."), + _ => Box::new(val), + } + }); + assert_trusted_len(&iter); + let _ = iter.collect::<Rc<[_]>>(); + + panic!("I am unreachable."); +} + +#[test] +fn shared_from_iter_trustedlen_no_fuse() { + // Exercise the `TrustedLen` implementation when `size_hint()` matches + // `(_, Some(exact_len))` but where the iterator does not behave in a fused manner. + struct Iter(std::vec::IntoIter<Option<Box<u8>>>); + + unsafe impl TrustedLen for Iter {} + + impl Iterator for Iter { + fn size_hint(&self) -> (usize, Option<usize>) { + (2, Some(2)) + } + + type Item = Box<u8>; + + fn next(&mut self) -> Option<Self::Item> { + self.0.next().flatten() + } + } + + let vec = vec![ + Some(Box::new(42)), + Some(Box::new(24)), + None, + Some(Box::new(12)), + ]; + let iter = Iter(vec.into_iter()); + assert_trusted_len(&iter); + assert_eq!( + &[Box::new(42), Box::new(24)], + &*iter.collect::<Rc<[_]>>() + ); +} |
