about summary refs log tree commit diff
path: root/src/libcore
diff options
context:
space:
mode:
authorSimon Sapin <simon.sapin@exyr.org>2018-04-07 19:38:35 +0200
committerSimon Sapin <simon.sapin@exyr.org>2018-04-21 09:45:18 +0200
commit90f29fbdb105b65e8ddb2b5c8b834b8db32ef9ef (patch)
tree8ff3cc541de803e5f82194332ff1c48abe8bf210 /src/libcore
parentde8ed6a1d6ae3b2f2c7f1035ef3b71abda7a6a84 (diff)
downloadrust-90f29fbdb105b65e8ddb2b5c8b834b8db32ef9ef.tar.gz
rust-90f29fbdb105b65e8ddb2b5c8b834b8db32ef9ef.zip
Replace SliceExt with inherent [T] methods in libcore
Diffstat (limited to 'src/libcore')
-rw-r--r--src/libcore/lib.rs2
-rw-r--r--src/libcore/prelude/v1.rs1
-rw-r--r--src/libcore/slice/mod.rs1404
3 files changed, 1406 insertions, 1 deletions
diff --git a/src/libcore/lib.rs b/src/libcore/lib.rs
index 88bd0444233..f4fafe304c0 100644
--- a/src/libcore/lib.rs
+++ b/src/libcore/lib.rs
@@ -229,7 +229,7 @@ macro_rules! test_v512 { ($item:item) => {}; }
 #[allow(unused_macros)]
 macro_rules! vector_impl { ($([$f:ident, $($args:tt)*]),*) => { $($f!($($args)*);)* } }
 #[path = "../stdsimd/coresimd/mod.rs"]
-#[allow(missing_docs, missing_debug_implementations, dead_code)]
+#[allow(missing_docs, missing_debug_implementations, dead_code, unused_imports)]
 #[unstable(feature = "stdsimd", issue = "48556")]
 #[cfg(not(stage0))] // allow changes to how stdsimd works in stage0
 mod coresimd;
diff --git a/src/libcore/prelude/v1.rs b/src/libcore/prelude/v1.rs
index cc3ad71117a..32c1531bdc0 100644
--- a/src/libcore/prelude/v1.rs
+++ b/src/libcore/prelude/v1.rs
@@ -58,6 +58,7 @@ pub use result::Result::{self, Ok, Err};
 // Re-exported extension traits for primitive types
 #[stable(feature = "core_prelude", since = "1.4.0")]
 #[doc(no_inline)]
+#[cfg(stage0)]
 pub use slice::SliceExt;
 #[stable(feature = "core_prelude", since = "1.4.0")]
 #[doc(no_inline)]
diff --git a/src/libcore/slice/mod.rs b/src/libcore/slice/mod.rs
index 4cda1c8778a..0a260c663c2 100644
--- a/src/libcore/slice/mod.rs
+++ b/src/libcore/slice/mod.rs
@@ -755,6 +755,1410 @@ impl<T> SliceExt for [T] {
     }
 }
 
+// FIXME: remove (inline) this macro and the SliceExt trait
+// when updating to a bootstrap compiler that has the new lang items.
+#[cfg_attr(stage0, macro_export)]
+#[unstable(feature = "core_slice_ext", issue = "32110")]
+macro_rules! slice_core_methods { () => {
+    /// Returns the number of elements in the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert_eq!(a.len(), 3);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn len(&self) -> usize {
+        SliceExt::len(self)
+    }
+
+    /// Returns `true` if the slice has a length of 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let a = [1, 2, 3];
+    /// assert!(!a.is_empty());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn is_empty(&self) -> bool {
+        SliceExt::is_empty(self)
+    }
+
+    /// Returns the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&10), v.first());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.first());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first(&self) -> Option<&T> {
+        SliceExt::first(self)
+    }
+
+    /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(first) = x.first_mut() {
+    ///     *first = 5;
+    /// }
+    /// assert_eq!(x, &[5, 1, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn first_mut(&mut self) -> Option<&mut T> {
+        SliceExt::first_mut(self)
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first() {
+    ///     assert_eq!(first, &0);
+    ///     assert_eq!(elements, &[1, 2]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first(&self) -> Option<(&T, &[T])> {
+        SliceExt::split_first(self)
+    }
+
+    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((first, elements)) = x.split_first_mut() {
+    ///     *first = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[3, 4, 5]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        SliceExt::split_first_mut(self)
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last() {
+    ///     assert_eq!(last, &2);
+    ///     assert_eq!(elements, &[0, 1]);
+    /// }
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last(&self) -> Option<(&T, &[T])> {
+        SliceExt::split_last(self)
+
+    }
+
+    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some((last, elements)) = x.split_last_mut() {
+    ///     *last = 3;
+    ///     elements[0] = 4;
+    ///     elements[1] = 5;
+    /// }
+    /// assert_eq!(x, &[4, 5, 3]);
+    /// ```
+    #[stable(feature = "slice_splits", since = "1.5.0")]
+    #[inline]
+    pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+        SliceExt::split_last_mut(self)
+    }
+
+    /// Returns the last element of the slice, or `None` if it is empty.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&30), v.last());
+    ///
+    /// let w: &[i32] = &[];
+    /// assert_eq!(None, w.last());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last(&self) -> Option<&T> {
+        SliceExt::last(self)
+    }
+
+    /// Returns a mutable pointer to the last item in the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(last) = x.last_mut() {
+    ///     *last = 10;
+    /// }
+    /// assert_eq!(x, &[0, 1, 10]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn last_mut(&mut self) -> Option<&mut T> {
+        SliceExt::last_mut(self)
+    }
+
+    /// Returns a reference to an element or subslice depending on the type of
+    /// index.
+    ///
+    /// - If given a position, returns a reference to the element at that
+    ///   position or `None` if out of bounds.
+    /// - If given a range, returns the subslice corresponding to that range,
+    ///   or `None` if out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert_eq!(Some(&40), v.get(1));
+    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
+    /// assert_eq!(None, v.get(3));
+    /// assert_eq!(None, v.get(0..4));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get<I>(&self, index: I) -> Option<&I::Output>
+        where I: SliceIndex<Self>
+    {
+        SliceExt::get(self, index)
+    }
+
+    /// Returns a mutable reference to an element or subslice depending on the
+    /// type of index (see [`get`]) or `None` if the index is out of bounds.
+    ///
+    /// [`get`]: #method.get
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [0, 1, 2];
+    ///
+    /// if let Some(elem) = x.get_mut(1) {
+    ///     *elem = 42;
+    /// }
+    /// assert_eq!(x, &[0, 42, 2]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
+        where I: SliceIndex<Self>
+    {
+        SliceExt::get_mut(self, index)
+    }
+
+    /// Returns a reference to an element or subslice, without doing bounds
+    /// checking.
+    ///
+    /// This is generally not recommended, use with caution! For a safe
+    /// alternative see [`get`].
+    ///
+    /// [`get`]: #method.get
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    ///
+    /// unsafe {
+    ///     assert_eq!(x.get_unchecked(1), &2);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
+        where I: SliceIndex<Self>
+    {
+        SliceExt::get_unchecked(self, index)
+    }
+
+    /// Returns a mutable reference to an element or subslice, without doing
+    /// bounds checking.
+    ///
+    /// This is generally not recommended, use with caution! For a safe
+    /// alternative see [`get_mut`].
+    ///
+    /// [`get_mut`]: #method.get_mut
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    ///
+    /// unsafe {
+    ///     let elem = x.get_unchecked_mut(1);
+    ///     *elem = 13;
+    /// }
+    /// assert_eq!(x, &[1, 13, 4]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
+        where I: SliceIndex<Self>
+    {
+        SliceExt::get_unchecked_mut(self, index)
+    }
+
+    /// Returns a raw pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let x_ptr = x.as_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
+    ///     }
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn as_ptr(&self) -> *const T {
+        SliceExt::as_ptr(self)
+    }
+
+    /// Returns an unsafe mutable pointer to the slice's buffer.
+    ///
+    /// The caller must ensure that the slice outlives the pointer this
+    /// function returns, or else it will end up pointing to garbage.
+    ///
+    /// Modifying the container referenced by this slice may cause its buffer
+    /// to be reallocated, which would also make any pointers to it invalid.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// let x_ptr = x.as_mut_ptr();
+    ///
+    /// unsafe {
+    ///     for i in 0..x.len() {
+    ///         *x_ptr.offset(i as isize) += 2;
+    ///     }
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn as_mut_ptr(&mut self) -> *mut T {
+        SliceExt::as_mut_ptr(self)
+    }
+
+    /// Swaps two elements in the slice.
+    ///
+    /// # Arguments
+    ///
+    /// * a - The index of the first element
+    /// * b - The index of the second element
+    ///
+    /// # Panics
+    ///
+    /// Panics if `a` or `b` are out of bounds.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = ["a", "b", "c", "d"];
+    /// v.swap(1, 3);
+    /// assert!(v == ["a", "d", "c", "b"]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn swap(&mut self, a: usize, b: usize) {
+        SliceExt::swap(self, a, b)
+    }
+
+    /// Reverses the order of elements in the slice, in place.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [1, 2, 3];
+    /// v.reverse();
+    /// assert!(v == [3, 2, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn reverse(&mut self) {
+        SliceExt::reverse(self)
+    }
+
+    /// Returns an iterator over the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &[1, 2, 4];
+    /// let mut iterator = x.iter();
+    ///
+    /// assert_eq!(iterator.next(), Some(&1));
+    /// assert_eq!(iterator.next(), Some(&2));
+    /// assert_eq!(iterator.next(), Some(&4));
+    /// assert_eq!(iterator.next(), None);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter(&self) -> Iter<T> {
+        SliceExt::iter(self)
+    }
+
+    /// Returns an iterator that allows modifying each value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let x = &mut [1, 2, 4];
+    /// for elem in x.iter_mut() {
+    ///     *elem += 2;
+    /// }
+    /// assert_eq!(x, &[3, 4, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn iter_mut(&mut self) -> IterMut<T> {
+        SliceExt::iter_mut(self)
+    }
+
+    /// Returns an iterator over all contiguous windows of length
+    /// `size`. The windows overlap. If the slice is shorter than
+    /// `size`, the iterator returns no values.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['r', 'u', 's', 't'];
+    /// let mut iter = slice.windows(2);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
+    /// assert_eq!(iter.next().unwrap(), &['u', 's']);
+    /// assert_eq!(iter.next().unwrap(), &['s', 't']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the slice is shorter than `size`:
+    ///
+    /// ```
+    /// let slice = ['f', 'o', 'o'];
+    /// let mut iter = slice.windows(4);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn windows(&self, size: usize) -> Windows<T> {
+        SliceExt::windows(self, size)
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a
+    /// time. The chunks are slices and do not overlap. If `chunk_size` does
+    /// not divide the length of the slice, then the last chunk will
+    /// not have length `chunk_size`.
+    ///
+    /// See [`exact_chunks`] for a variant of this iterator that returns chunks
+    /// of always exactly `chunk_size` elements.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.chunks(2);
+    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+    /// assert_eq!(iter.next().unwrap(), &['m']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// [`exact_chunks`]: #method.exact_chunks
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks(&self, chunk_size: usize) -> Chunks<T> {
+        SliceExt::chunks(self, chunk_size)
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a
+    /// time. The chunks are slices and do not overlap. If `chunk_size` does
+    /// not divide the length of the slice, then the last up to `chunk_size-1`
+    /// elements will be omitted.
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler
+    /// can often optimize the resulting code better than in the case of
+    /// [`chunks`].
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(exact_chunks)]
+    ///
+    /// let slice = ['l', 'o', 'r', 'e', 'm'];
+    /// let mut iter = slice.exact_chunks(2);
+    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// [`chunks`]: #method.chunks
+    #[unstable(feature = "exact_chunks", issue = "47115")]
+    #[inline]
+    pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T> {
+        SliceExt::exact_chunks(self, chunk_size)
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time.
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does
+    /// not divide the length of the slice, then the last chunk will not
+    /// have length `chunk_size`.
+    ///
+    /// See [`exact_chunks_mut`] for a variant of this iterator that returns chunks
+    /// of always exactly `chunk_size` elements.
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.chunks_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
+    /// ```
+    ///
+    /// [`exact_chunks_mut`]: #method.exact_chunks_mut
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> {
+        SliceExt::chunks_mut(self, chunk_size)
+    }
+
+    /// Returns an iterator over `chunk_size` elements of the slice at a time.
+    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does
+    /// not divide the length of the slice, then the last up to `chunk_size-1`
+    /// elements will be omitted.
+    ///
+    ///
+    /// Due to each chunk having exactly `chunk_size` elements, the compiler
+    /// can often optimize the resulting code better than in the case of
+    /// [`chunks_mut`].
+    ///
+    /// # Panics
+    ///
+    /// Panics if `chunk_size` is 0.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(exact_chunks)]
+    ///
+    /// let v = &mut [0, 0, 0, 0, 0];
+    /// let mut count = 1;
+    ///
+    /// for chunk in v.exact_chunks_mut(2) {
+    ///     for elem in chunk.iter_mut() {
+    ///         *elem += count;
+    ///     }
+    ///     count += 1;
+    /// }
+    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
+    /// ```
+    ///
+    /// [`chunks_mut`]: #method.chunks_mut
+    #[unstable(feature = "exact_chunks", issue = "47115")]
+    #[inline]
+    pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T> {
+        SliceExt::exact_chunks_mut(self, chunk_size)
+    }
+
+    /// Divides one slice into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [1, 2, 3, 4, 5, 6];
+    ///
+    /// {
+    ///    let (left, right) = v.split_at(0);
+    ///    assert!(left == []);
+    ///    assert!(right == [1, 2, 3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at(2);
+    ///     assert!(left == [1, 2]);
+    ///     assert!(right == [3, 4, 5, 6]);
+    /// }
+    ///
+    /// {
+    ///     let (left, right) = v.split_at(6);
+    ///     assert!(left == [1, 2, 3, 4, 5, 6]);
+    ///     assert!(right == []);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
+        SliceExt::split_at(self, mid)
+    }
+
+    /// Divides one mutable slice into two at an index.
+    ///
+    /// The first will contain all indices from `[0, mid)` (excluding
+    /// the index `mid` itself) and the second will contain all
+    /// indices from `[mid, len)` (excluding the index `len` itself).
+    ///
+    /// # Panics
+    ///
+    /// Panics if `mid > len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [1, 0, 3, 0, 5, 6];
+    /// // scoped to restrict the lifetime of the borrows
+    /// {
+    ///     let (left, right) = v.split_at_mut(2);
+    ///     assert!(left == [1, 0]);
+    ///     assert!(right == [3, 0, 5, 6]);
+    ///     left[1] = 2;
+    ///     right[1] = 4;
+    /// }
+    /// assert!(v == [1, 2, 3, 4, 5, 6]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
+        SliceExt::split_at_mut(self, mid)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = [10, 40, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If the first element is matched, an empty slice will be the first item
+    /// returned by the iterator. Similarly, if the last element in the slice
+    /// is matched, an empty slice will be the last item returned by the
+    /// iterator:
+    ///
+    /// ```
+    /// let slice = [10, 40, 33];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    ///
+    /// If two matched elements are directly adjacent, an empty slice will be
+    /// present between them:
+    ///
+    /// ```
+    /// let slice = [10, 6, 33, 20];
+    /// let mut iter = slice.split(|num| num % 3 == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[10]);
+    /// assert_eq!(iter.next().unwrap(), &[]);
+    /// assert_eq!(iter.next().unwrap(), &[20]);
+    /// assert!(iter.next().is_none());
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split<F>(&self, pred: F) -> Split<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::split(self, pred)
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.split_mut(|num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::split_mut(self, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, starting at the end of the slice and working backwards.
+    /// The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let slice = [11, 22, 33, 0, 44, 55];
+    /// let mut iter = slice.rsplit(|num| *num == 0);
+    ///
+    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
+    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
+    /// assert_eq!(iter.next(), None);
+    /// ```
+    ///
+    /// As with `split()`, if the first or last element is matched, an empty
+    /// slice will be the first (or last) item returned by the iterator.
+    ///
+    /// ```
+    /// let v = &[0, 1, 1, 2, 3, 5, 8];
+    /// let mut it = v.rsplit(|n| *n % 2 == 0);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next().unwrap(), &[3, 5]);
+    /// assert_eq!(it.next().unwrap(), &[1, 1]);
+    /// assert_eq!(it.next().unwrap(), &[]);
+    /// assert_eq!(it.next(), None);
+    /// ```
+    #[stable(feature = "slice_rsplit", since = "1.27.0")]
+    #[inline]
+    pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::rsplit(self, pred)
+    }
+
+    /// Returns an iterator over mutable subslices separated by elements that
+    /// match `pred`, starting at the end of the slice and working
+    /// backwards. The matched element is not contained in the subslices.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [100, 400, 300, 200, 600, 500];
+    ///
+    /// let mut count = 0;
+    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
+    ///     count += 1;
+    ///     group[0] = count;
+    /// }
+    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
+    /// ```
+    ///
+    #[stable(feature = "slice_rsplit", since = "1.27.0")]
+    #[inline]
+    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::rsplit_mut(self, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`,
+    /// `[20, 60, 50]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::splitn(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred`, limited to returning at most `n` items. The matched element is
+    /// not contained in the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::splitn_mut(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards.  The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// Print the slice split once, starting from the end, by numbers divisible
+    /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`):
+    ///
+    /// ```
+    /// let v = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
+    ///     println!("{:?}", group);
+    /// }
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::rsplitn(self, n, pred)
+    }
+
+    /// Returns an iterator over subslices separated by elements that match
+    /// `pred` limited to returning at most `n` items. This starts at the end of
+    /// the slice and works backwards. The matched element is not contained in
+    /// the subslices.
+    ///
+    /// The last element returned, if any, will contain the remainder of the
+    /// slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut s = [10, 40, 30, 20, 60, 50];
+    ///
+    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
+    ///     group[0] = 1;
+    /// }
+    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F>
+        where F: FnMut(&T) -> bool
+    {
+        SliceExt::rsplitn_mut(self, n, pred)
+    }
+
+    /// Returns `true` if the slice contains an element with the given value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.contains(&30));
+    /// assert!(!v.contains(&50));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn contains(&self, x: &T) -> bool
+        where T: PartialEq
+    {
+        SliceExt::contains(self, x)
+    }
+
+    /// Returns `true` if `needle` is a prefix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.starts_with(&[10]));
+    /// assert!(v.starts_with(&[10, 40]));
+    /// assert!(!v.starts_with(&[50]));
+    /// assert!(!v.starts_with(&[10, 50]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.starts_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.starts_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn starts_with(&self, needle: &[T]) -> bool
+        where T: PartialEq
+    {
+        SliceExt::starts_with(self, needle)
+    }
+
+    /// Returns `true` if `needle` is a suffix of the slice.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = [10, 40, 30];
+    /// assert!(v.ends_with(&[30]));
+    /// assert!(v.ends_with(&[40, 30]));
+    /// assert!(!v.ends_with(&[50]));
+    /// assert!(!v.ends_with(&[50, 30]));
+    /// ```
+    ///
+    /// Always returns `true` if `needle` is an empty slice:
+    ///
+    /// ```
+    /// let v = &[10, 40, 30];
+    /// assert!(v.ends_with(&[]));
+    /// let v: &[u8] = &[];
+    /// assert!(v.ends_with(&[]));
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn ends_with(&self, needle: &[T]) -> bool
+        where T: PartialEq
+    {
+        SliceExt::ends_with(self, needle)
+    }
+
+    /// Binary searches this sorted slice for a given element.
+    ///
+    /// If the value is found then `Ok` is returned, containing the
+    /// index of the matching element; if the value is not found then
+    /// `Err` is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// assert_eq!(s.binary_search(&13),  Ok(9));
+    /// assert_eq!(s.binary_search(&4),   Err(7));
+    /// assert_eq!(s.binary_search(&100), Err(13));
+    /// let r = s.binary_search(&1);
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
+        where T: Ord
+    {
+        SliceExt::binary_search(self, x)
+    }
+
+    /// Binary searches this sorted slice with a comparator function.
+    ///
+    /// The comparator function should implement an order consistent
+    /// with the sort order of the underlying slice, returning an
+    /// order code that indicates whether its argument is `Less`,
+    /// `Equal` or `Greater` the desired target.
+    ///
+    /// If a matching value is found then returns `Ok`, containing
+    /// the index for the matched element; if no match is found then
+    /// `Err` is returned, containing the index where a matching
+    /// element could be inserted while maintaining sorted order.
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements. The first is found, with a
+    /// uniquely determined position; the second and third are not
+    /// found; the fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+    ///
+    /// let seek = 13;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
+    /// let seek = 4;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
+    /// let seek = 100;
+    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
+    /// let seek = 1;
+    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[inline]
+    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
+        where F: FnMut(&'a T) -> Ordering
+    {
+        SliceExt::binary_search_by(self, f)
+    }
+
+    /// Binary searches this sorted slice with a key extraction function.
+    ///
+    /// Assumes that the slice is sorted by the key, for instance with
+    /// [`sort_by_key`] using the same key extraction function.
+    ///
+    /// If a matching value is found then returns `Ok`, containing the
+    /// index for the matched element; if no match is found then `Err`
+    /// is returned, containing the index where a matching element could
+    /// be inserted while maintaining sorted order.
+    ///
+    /// [`sort_by_key`]: #method.sort_by_key
+    ///
+    /// # Examples
+    ///
+    /// Looks up a series of four elements in a slice of pairs sorted by
+    /// their second elements. The first is found, with a uniquely
+    /// determined position; the second and third are not found; the
+    /// fourth could match any position in `[1, 4]`.
+    ///
+    /// ```
+    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
+    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
+    ///          (1, 21), (2, 34), (4, 55)];
+    ///
+    /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
+    /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
+    /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
+    /// let r = s.binary_search_by_key(&1, |&(a,b)| b);
+    /// assert!(match r { Ok(1...4) => true, _ => false, });
+    /// ```
+    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
+    #[inline]
+    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
+        where F: FnMut(&'a T) -> B,
+              B: Ord
+    {
+        SliceExt::binary_search_by_key(self, b, f)
+    }
+
+    /// Sorts the slice, but may not preserve the order of equal elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// It is typically faster than stable sorting, except in a few special cases, e.g. when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable();
+    /// assert!(v == [-5, -3, 1, 2, 4]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable(&mut self)
+        where T: Ord
+    {
+        SliceExt::sort_unstable(self);
+    }
+
+    /// Sorts the slice with a comparator function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(n log n)` worst-case.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// It is typically faster than stable sorting, except in a few special cases, e.g. when the
+    /// slice consists of several concatenated sorted sequences.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [5, 4, 1, 3, 2];
+    /// v.sort_unstable_by(|a, b| a.cmp(b));
+    /// assert!(v == [1, 2, 3, 4, 5]);
+    ///
+    /// // reverse sorting
+    /// v.sort_unstable_by(|a, b| b.cmp(a));
+    /// assert!(v == [5, 4, 3, 2, 1]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable_by<F>(&mut self, compare: F)
+        where F: FnMut(&T, &T) -> Ordering
+    {
+        SliceExt::sort_unstable_by(self, compare);
+    }
+
+    /// Sorts the slice with a key extraction function, but may not preserve the order of equal
+    /// elements.
+    ///
+    /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
+    /// and `O(m n log(m n))` worst-case, where the key function is `O(m)`.
+    ///
+    /// # Current implementation
+    ///
+    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+    /// which combines the fast average case of randomized quicksort with the fast worst case of
+    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+    /// deterministic behavior.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = [-5i32, 4, 1, -3, 2];
+    ///
+    /// v.sort_unstable_by_key(|k| k.abs());
+    /// assert!(v == [1, 2, -3, 4, -5]);
+    /// ```
+    ///
+    /// [pdqsort]: https://github.com/orlp/pdqsort
+    #[stable(feature = "sort_unstable", since = "1.20.0")]
+    #[inline]
+    pub fn sort_unstable_by_key<K, F>(&mut self, f: F)
+        where F: FnMut(&T) -> K, K: Ord
+    {
+        SliceExt::sort_unstable_by_key(self, f);
+    }
+
+    /// Rotates the slice in-place such that the first `mid` elements of the
+    /// slice move to the end while the last `self.len() - mid` elements move to
+    /// the front. After calling `rotate_left`, the element previously at index
+    /// `mid` will become the first element in the slice.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `mid` is greater than the length of the
+    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
+    /// rotation.
+    ///
+    /// # Complexity
+    ///
+    /// Takes linear (in `self.len()`) time.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a.rotate_left(2);
+    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
+    /// ```
+    ///
+    /// Rotating a subslice:
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a[1..5].rotate_left(1);
+    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
+   /// ```
+    #[stable(feature = "slice_rotate", since = "1.26.0")]
+    pub fn rotate_left(&mut self, mid: usize) {
+        SliceExt::rotate_left(self, mid);
+    }
+
+    /// Rotates the slice in-place such that the first `self.len() - k`
+    /// elements of the slice move to the end while the last `k` elements move
+    /// to the front. After calling `rotate_right`, the element previously at
+    /// index `self.len() - k` will become the first element in the slice.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if `k` is greater than the length of the
+    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
+    /// rotation.
+    ///
+    /// # Complexity
+    ///
+    /// Takes linear (in `self.len()`) time.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a.rotate_right(2);
+    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
+    /// ```
+    ///
+    /// Rotate a subslice:
+    ///
+    /// ```
+    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+    /// a[1..5].rotate_right(1);
+    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
+    /// ```
+    #[stable(feature = "slice_rotate", since = "1.26.0")]
+    pub fn rotate_right(&mut self, k: usize) {
+        SliceExt::rotate_right(self, k);
+    }
+
+    /// Copies the elements from `src` into `self`.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `src` implements `Copy`, it can be more performant to use
+    /// [`copy_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Examples
+    ///
+    /// Cloning two elements from a slice into another:
+    ///
+    /// ```
+    /// let src = [1, 2, 3, 4];
+    /// let mut dst = [0, 0];
+    ///
+    /// dst.clone_from_slice(&src[2..]);
+    ///
+    /// assert_eq!(src, [1, 2, 3, 4]);
+    /// assert_eq!(dst, [3, 4]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference with no
+    /// immutable references to a particular piece of data in a particular
+    /// scope. Because of this, attempting to use `clone_from_slice` on a
+    /// single slice will result in a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.clone_from_slice(&right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+    /// ```
+    ///
+    /// [`copy_from_slice`]: #method.copy_from_slice
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "clone_from_slice", since = "1.7.0")]
+    pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone {
+        SliceExt::clone_from_slice(self, src)
+    }
+
+    /// Copies all elements from `src` into `self`, using a memcpy.
+    ///
+    /// The length of `src` must be the same as `self`.
+    ///
+    /// If `src` does not implement `Copy`, use [`clone_from_slice`].
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Examples
+    ///
+    /// Copying two elements from a slice into another:
+    ///
+    /// ```
+    /// let src = [1, 2, 3, 4];
+    /// let mut dst = [0, 0];
+    ///
+    /// dst.copy_from_slice(&src[2..]);
+    ///
+    /// assert_eq!(src, [1, 2, 3, 4]);
+    /// assert_eq!(dst, [3, 4]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference with no
+    /// immutable references to a particular piece of data in a particular
+    /// scope. Because of this, attempting to use `copy_from_slice` on a
+    /// single slice will result in a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.copy_from_slice(&right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+    /// ```
+    ///
+    /// [`clone_from_slice`]: #method.clone_from_slice
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "copy_from_slice", since = "1.9.0")]
+    pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy {
+        SliceExt::copy_from_slice(self, src)
+    }
+
+    /// Swaps all elements in `self` with those in `other`.
+    ///
+    /// The length of `other` must be the same as `self`.
+    ///
+    /// # Panics
+    ///
+    /// This function will panic if the two slices have different lengths.
+    ///
+    /// # Example
+    ///
+    /// Swapping two elements across slices:
+    ///
+    /// ```
+    /// let mut slice1 = [0, 0];
+    /// let mut slice2 = [1, 2, 3, 4];
+    ///
+    /// slice1.swap_with_slice(&mut slice2[2..]);
+    ///
+    /// assert_eq!(slice1, [3, 4]);
+    /// assert_eq!(slice2, [1, 2, 0, 0]);
+    /// ```
+    ///
+    /// Rust enforces that there can only be one mutable reference to a
+    /// particular piece of data in a particular scope. Because of this,
+    /// attempting to use `swap_with_slice` on a single slice will result in
+    /// a compile failure:
+    ///
+    /// ```compile_fail
+    /// let mut slice = [1, 2, 3, 4, 5];
+    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
+    /// ```
+    ///
+    /// To work around this, we can use [`split_at_mut`] to create two distinct
+    /// mutable sub-slices from a slice:
+    ///
+    /// ```
+    /// let mut slice = [1, 2, 3, 4, 5];
+    ///
+    /// {
+    ///     let (left, right) = slice.split_at_mut(2);
+    ///     left.swap_with_slice(&mut right[1..]);
+    /// }
+    ///
+    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
+    /// ```
+    ///
+    /// [`split_at_mut`]: #method.split_at_mut
+    #[stable(feature = "swap_with_slice", since = "1.27.0")]
+    pub fn swap_with_slice(&mut self, other: &mut [T]) {
+        SliceExt::swap_with_slice(self, other)
+    }
+}}
+
+#[lang = "slice"]
+#[cfg(not(test))]
+#[cfg(not(stage0))]
+impl<T> [T] {
+    slice_core_methods!();
+}
+
+// FIXME: remove (inline) this macro
+// when updating to a bootstrap compiler that has the new lang items.
 #[cfg_attr(stage0, macro_export)]
 #[unstable(feature = "core_slice_ext", issue = "32110")]
 macro_rules! slice_u8_core_methods { () => {