about summary refs log tree commit diff
path: root/src/libnum
diff options
context:
space:
mode:
authorBrendan Zabarauskas <bjzaba@yahoo.com.au>2014-02-17 07:20:01 +1100
committerBrendan Zabarauskas <bjzaba@yahoo.com.au>2014-02-22 01:45:29 +1100
commit3a9eca3a7be3ea156147fb8ed00a6447112e74d7 (patch)
tree9d1d53b859766fcb40a293ab43fb5d235bc981ea /src/libnum
parent2fa7d6b44fcc329e849f4dd43e11c6fdd43ebd76 (diff)
downloadrust-3a9eca3a7be3ea156147fb8ed00a6447112e74d7.tar.gz
rust-3a9eca3a7be3ea156147fb8ed00a6447112e74d7.zip
Move std::num::Integer to libnum
Diffstat (limited to 'src/libnum')
-rw-r--r--src/libnum/bigint.rs8
-rw-r--r--src/libnum/lib.rs400
-rw-r--r--src/libnum/rational.rs2
3 files changed, 408 insertions, 2 deletions
diff --git a/src/libnum/bigint.rs b/src/libnum/bigint.rs
index 21726d28e0c..0418c61d361 100644
--- a/src/libnum/bigint.rs
+++ b/src/libnum/bigint.rs
@@ -16,6 +16,8 @@ A `BigUint` is represented as an array of `BigDigit`s.
 A `BigInt` is a combination of `BigUint` and `Sign`.
 */
 
+use Integer;
+
 use std::cmp;
 use std::cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Less, Equal, Greater};
 use std::num::{Zero, One, ToStrRadix, FromStrRadix};
@@ -461,7 +463,7 @@ impl Integer for BigUint {
 
     /// Returns `true` if the number can be divided by `other` without leaving a remainder
     #[inline]
-    fn is_multiple_of(&self, other: &BigUint) -> bool { (*self % *other).is_zero() }
+    fn divides(&self, other: &BigUint) -> bool { (*self % *other).is_zero() }
 
     /// Returns `true` if the number is divisible by `2`
     #[inline]
@@ -1118,7 +1120,7 @@ impl Integer for BigInt {
 
     /// Returns `true` if the number can be divided by `other` without leaving a remainder
     #[inline]
-    fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) }
+    fn divides(&self, other: &BigInt) -> bool { self.data.divides(&other.data) }
 
     /// Returns `true` if the number is divisible by `2`
     #[inline]
@@ -1388,6 +1390,7 @@ impl BigInt {
 
 #[cfg(test)]
 mod biguint_tests {
+    use Integer;
     use super::{BigDigit, BigUint, ToBigUint};
     use super::{Plus, BigInt, RandBigInt, ToBigInt};
 
@@ -2045,6 +2048,7 @@ mod biguint_tests {
 
 #[cfg(test)]
 mod bigint_tests {
+    use Integer;
     use super::{BigDigit, BigUint, ToBigUint};
     use super::{Sign, Minus, Zero, Plus, BigInt, RandBigInt, ToBigInt};
 
diff --git a/src/libnum/lib.rs b/src/libnum/lib.rs
index 8d5338451bd..e9e93cc29d6 100644
--- a/src/libnum/lib.rs
+++ b/src/libnum/lib.rs
@@ -20,3 +20,403 @@ extern crate extra;
 pub mod bigint;
 pub mod rational;
 pub mod complex;
+
+pub trait Integer: Num + Ord
+                 + Div<Self, Self>
+                 + Rem<Self, Self> {
+    /// Simultaneous truncated integer division and modulus
+    #[inline]
+    fn div_rem(&self, other: &Self) -> (Self, Self) {
+        (*self / *other, *self % *other)
+    }
+
+    /// Floored integer division
+    ///
+    /// # Examples
+    ///
+    /// ~~~
+    /// # use num::Integer;
+    /// assert!(( 8i).div_floor(& 3) ==  2);
+    /// assert!(( 8i).div_floor(&-3) == -3);
+    /// assert!((-8i).div_floor(& 3) == -3);
+    /// assert!((-8i).div_floor(&-3) ==  2);
+    ///
+    /// assert!(( 1i).div_floor(& 2) ==  0);
+    /// assert!(( 1i).div_floor(&-2) == -1);
+    /// assert!((-1i).div_floor(& 2) == -1);
+    /// assert!((-1i).div_floor(&-2) ==  0);
+    /// ~~~
+    fn div_floor(&self, other: &Self) -> Self;
+
+    /// Floored integer modulo, satisfying:
+    ///
+    /// ~~~
+    /// # use num::Integer;
+    /// # let n = 1i; let d = 1i;
+    /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
+    /// ~~~
+    ///
+    /// # Examples
+    ///
+    /// ~~~
+    /// # use num::Integer;
+    /// assert!(( 8i).mod_floor(& 3) ==  2);
+    /// assert!(( 8i).mod_floor(&-3) == -1);
+    /// assert!((-8i).mod_floor(& 3) ==  1);
+    /// assert!((-8i).mod_floor(&-3) == -2);
+    ///
+    /// assert!(( 1i).mod_floor(& 2) ==  1);
+    /// assert!(( 1i).mod_floor(&-2) == -1);
+    /// assert!((-1i).mod_floor(& 2) ==  1);
+    /// assert!((-1i).mod_floor(&-2) == -1);
+    /// ~~~
+    fn mod_floor(&self, other: &Self) -> Self;
+
+    /// Simultaneous floored integer division and modulus
+    fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
+        (self.div_floor(other), self.mod_floor(other))
+    }
+
+    /// Greatest Common Divisor (GCD)
+    fn gcd(&self, other: &Self) -> Self;
+
+    /// Lowest Common Multiple (LCM)
+    fn lcm(&self, other: &Self) -> Self;
+
+    /// Returns `true` if `other` divides evenly into `self`
+    fn divides(&self, other: &Self) -> bool;
+
+    /// Returns `true` if the number is even
+    fn is_even(&self) -> bool;
+
+    /// Returns `true` if the number is odd
+    fn is_odd(&self) -> bool;
+}
+
+/// Simultaneous integer division and modulus
+#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
+/// Floored integer division
+#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
+/// Floored integer modulus
+#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
+/// Simultaneous floored integer division and modulus
+#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
+
+/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
+/// result is always positive.
+#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
+/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
+#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
+
+macro_rules! impl_integer_for_int {
+    ($T:ty, $test_mod:ident) => (
+        impl Integer for $T {
+            /// Floored integer division
+            #[inline]
+            fn div_floor(&self, other: &$T) -> $T {
+                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+                match self.div_rem(other) {
+                    (d, r) if (r > 0 && *other < 0)
+                           || (r < 0 && *other > 0) => d - 1,
+                    (d, _)                          => d,
+                }
+            }
+
+            /// Floored integer modulo
+            #[inline]
+            fn mod_floor(&self, other: &$T) -> $T {
+                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+                match *self % *other {
+                    r if (r > 0 && *other < 0)
+                      || (r < 0 && *other > 0) => r + *other,
+                    r                          => r,
+                }
+            }
+
+            /// Calculates `div_floor` and `mod_floor` simultaneously
+            #[inline]
+            fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
+                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+                match self.div_rem(other) {
+                    (d, r) if (r > 0 && *other < 0)
+                           || (r < 0 && *other > 0) => (d - 1, r + *other),
+                    (d, r)                          => (d, r),
+                }
+            }
+
+            /// Calculates the Greatest Common Divisor (GCD) of the number and
+            /// `other`. The result is always positive.
+            #[inline]
+            fn gcd(&self, other: &$T) -> $T {
+                // Use Euclid's algorithm
+                let mut m = *self;
+                let mut n = *other;
+                while m != 0 {
+                    let temp = m;
+                    m = n % temp;
+                    n = temp;
+                }
+                n.abs()
+            }
+
+            /// Calculates the Lowest Common Multiple (LCM) of the number and
+            /// `other`.
+            #[inline]
+            fn lcm(&self, other: &$T) -> $T {
+                // should not have to recaluculate abs
+                ((*self * *other) / self.gcd(other)).abs()
+            }
+
+            /// Returns `true` if the number can be divided by `other` without
+            /// leaving a remainder
+            #[inline]
+            fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
+
+            /// Returns `true` if the number is divisible by `2`
+            #[inline]
+            fn is_even(&self) -> bool { self & 1 == 0 }
+
+            /// Returns `true` if the number is not divisible by `2`
+            #[inline]
+            fn is_odd(&self) -> bool { !self.is_even() }
+        }
+
+        #[cfg(test)]
+        mod $test_mod {
+            use Integer;
+
+            /// Checks that the division rule holds for:
+            ///
+            /// - `n`: numerator (dividend)
+            /// - `d`: denominator (divisor)
+            /// - `qr`: quotient and remainder
+            #[cfg(test)]
+            fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
+                assert_eq!(d * q + r, n);
+            }
+
+            #[test]
+            fn test_div_rem() {
+                fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
+                    let (n,d) = nd;
+                    let separate_div_rem = (n / d, n % d);
+                    let combined_div_rem = n.div_rem(&d);
+
+                    assert_eq!(separate_div_rem, qr);
+                    assert_eq!(combined_div_rem, qr);
+
+                    test_division_rule(nd, separate_div_rem);
+                    test_division_rule(nd, combined_div_rem);
+                }
+
+                test_nd_dr(( 8,  3), ( 2,  2));
+                test_nd_dr(( 8, -3), (-2,  2));
+                test_nd_dr((-8,  3), (-2, -2));
+                test_nd_dr((-8, -3), ( 2, -2));
+
+                test_nd_dr(( 1,  2), ( 0,  1));
+                test_nd_dr(( 1, -2), ( 0,  1));
+                test_nd_dr((-1,  2), ( 0, -1));
+                test_nd_dr((-1, -2), ( 0, -1));
+            }
+
+            #[test]
+            fn test_div_mod_floor() {
+                fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
+                    let (n,d) = nd;
+                    let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
+                    let combined_div_mod_floor = n.div_mod_floor(&d);
+
+                    assert_eq!(separate_div_mod_floor, dm);
+                    assert_eq!(combined_div_mod_floor, dm);
+
+                    test_division_rule(nd, separate_div_mod_floor);
+                    test_division_rule(nd, combined_div_mod_floor);
+                }
+
+                test_nd_dm(( 8,  3), ( 2,  2));
+                test_nd_dm(( 8, -3), (-3, -1));
+                test_nd_dm((-8,  3), (-3,  1));
+                test_nd_dm((-8, -3), ( 2, -2));
+
+                test_nd_dm(( 1,  2), ( 0,  1));
+                test_nd_dm(( 1, -2), (-1, -1));
+                test_nd_dm((-1,  2), (-1,  1));
+                test_nd_dm((-1, -2), ( 0, -1));
+            }
+
+            #[test]
+            fn test_gcd() {
+                assert_eq!((10 as $T).gcd(&2), 2 as $T);
+                assert_eq!((10 as $T).gcd(&3), 1 as $T);
+                assert_eq!((0 as $T).gcd(&3), 3 as $T);
+                assert_eq!((3 as $T).gcd(&3), 3 as $T);
+                assert_eq!((56 as $T).gcd(&42), 14 as $T);
+                assert_eq!((3 as $T).gcd(&-3), 3 as $T);
+                assert_eq!((-6 as $T).gcd(&3), 3 as $T);
+                assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
+            }
+
+            #[test]
+            fn test_lcm() {
+                assert_eq!((1 as $T).lcm(&0), 0 as $T);
+                assert_eq!((0 as $T).lcm(&1), 0 as $T);
+                assert_eq!((1 as $T).lcm(&1), 1 as $T);
+                assert_eq!((-1 as $T).lcm(&1), 1 as $T);
+                assert_eq!((1 as $T).lcm(&-1), 1 as $T);
+                assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
+                assert_eq!((8 as $T).lcm(&9), 72 as $T);
+                assert_eq!((11 as $T).lcm(&5), 55 as $T);
+            }
+
+            #[test]
+            fn test_even() {
+                assert_eq!((-4 as $T).is_even(), true);
+                assert_eq!((-3 as $T).is_even(), false);
+                assert_eq!((-2 as $T).is_even(), true);
+                assert_eq!((-1 as $T).is_even(), false);
+                assert_eq!((0 as $T).is_even(), true);
+                assert_eq!((1 as $T).is_even(), false);
+                assert_eq!((2 as $T).is_even(), true);
+                assert_eq!((3 as $T).is_even(), false);
+                assert_eq!((4 as $T).is_even(), true);
+            }
+
+            #[test]
+            fn test_odd() {
+                assert_eq!((-4 as $T).is_odd(), false);
+                assert_eq!((-3 as $T).is_odd(), true);
+                assert_eq!((-2 as $T).is_odd(), false);
+                assert_eq!((-1 as $T).is_odd(), true);
+                assert_eq!((0 as $T).is_odd(), false);
+                assert_eq!((1 as $T).is_odd(), true);
+                assert_eq!((2 as $T).is_odd(), false);
+                assert_eq!((3 as $T).is_odd(), true);
+                assert_eq!((4 as $T).is_odd(), false);
+            }
+        }
+    )
+}
+
+impl_integer_for_int!(i8,   test_integer_i8)
+impl_integer_for_int!(i16,  test_integer_i16)
+impl_integer_for_int!(i32,  test_integer_i32)
+impl_integer_for_int!(i64,  test_integer_i64)
+impl_integer_for_int!(int,  test_integer_int)
+
+macro_rules! impl_integer_for_uint {
+    ($T:ty, $test_mod:ident) => (
+        impl Integer for $T {
+            /// Unsigned integer division. Returns the same result as `div` (`/`).
+            #[inline]
+            fn div_floor(&self, other: &$T) -> $T { *self / *other }
+
+            /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
+            #[inline]
+            fn mod_floor(&self, other: &$T) -> $T { *self % *other }
+
+            /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
+            #[inline]
+            fn gcd(&self, other: &$T) -> $T {
+                // Use Euclid's algorithm
+                let mut m = *self;
+                let mut n = *other;
+                while m != 0 {
+                    let temp = m;
+                    m = n % temp;
+                    n = temp;
+                }
+                n
+            }
+
+            /// Calculates the Lowest Common Multiple (LCM) of the number and `other`
+            #[inline]
+            fn lcm(&self, other: &$T) -> $T {
+                (*self * *other) / self.gcd(other)
+            }
+
+            /// Returns `true` if the number can be divided by `other` without leaving a remainder
+            #[inline]
+            fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
+
+            /// Returns `true` if the number is divisible by `2`
+            #[inline]
+            fn is_even(&self) -> bool { self & 1 == 0 }
+
+            /// Returns `true` if the number is not divisible by `2`
+            #[inline]
+            fn is_odd(&self) -> bool { !self.is_even() }
+        }
+
+        #[cfg(test)]
+        mod $test_mod {
+            use Integer;
+
+            #[test]
+            fn test_div_mod_floor() {
+                assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
+                assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
+                assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
+                assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
+                assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
+                assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
+                assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
+                assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
+                assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
+            }
+
+            #[test]
+            fn test_gcd() {
+                assert_eq!((10 as $T).gcd(&2), 2 as $T);
+                assert_eq!((10 as $T).gcd(&3), 1 as $T);
+                assert_eq!((0 as $T).gcd(&3), 3 as $T);
+                assert_eq!((3 as $T).gcd(&3), 3 as $T);
+                assert_eq!((56 as $T).gcd(&42), 14 as $T);
+            }
+
+            #[test]
+            fn test_lcm() {
+                assert_eq!((1 as $T).lcm(&0), 0 as $T);
+                assert_eq!((0 as $T).lcm(&1), 0 as $T);
+                assert_eq!((1 as $T).lcm(&1), 1 as $T);
+                assert_eq!((8 as $T).lcm(&9), 72 as $T);
+                assert_eq!((11 as $T).lcm(&5), 55 as $T);
+                assert_eq!((99 as $T).lcm(&17), 1683 as $T);
+            }
+
+            #[test]
+            fn test_divides() {
+                assert!((6 as $T).divides(&(6 as $T)));
+                assert!((6 as $T).divides(&(3 as $T)));
+                assert!((6 as $T).divides(&(1 as $T)));
+            }
+
+            #[test]
+            fn test_even() {
+                assert_eq!((0 as $T).is_even(), true);
+                assert_eq!((1 as $T).is_even(), false);
+                assert_eq!((2 as $T).is_even(), true);
+                assert_eq!((3 as $T).is_even(), false);
+                assert_eq!((4 as $T).is_even(), true);
+            }
+
+            #[test]
+            fn test_odd() {
+                assert_eq!((0 as $T).is_odd(), false);
+                assert_eq!((1 as $T).is_odd(), true);
+                assert_eq!((2 as $T).is_odd(), false);
+                assert_eq!((3 as $T).is_odd(), true);
+                assert_eq!((4 as $T).is_odd(), false);
+            }
+        }
+    )
+}
+
+impl_integer_for_uint!(u8,   test_integer_u8)
+impl_integer_for_uint!(u16,  test_integer_u16)
+impl_integer_for_uint!(u32,  test_integer_u32)
+impl_integer_for_uint!(u64,  test_integer_u64)
+impl_integer_for_uint!(uint, test_integer_uint)
diff --git a/src/libnum/rational.rs b/src/libnum/rational.rs
index a483946322f..5f1868b48c5 100644
--- a/src/libnum/rational.rs
+++ b/src/libnum/rational.rs
@@ -10,6 +10,8 @@
 
 //! Rational numbers
 
+use Integer;
+
 use std::cmp;
 use std::from_str::FromStr;
 use std::num::{Zero,One,ToStrRadix,FromStrRadix,Round};