about summary refs log tree commit diff
path: root/src/libsync/spsc_queue.rs
diff options
context:
space:
mode:
authorAlex Crichton <alex@alexcrichton.com>2014-06-07 11:13:26 -0700
committerAlex Crichton <alex@alexcrichton.com>2014-06-11 10:00:43 -0700
commitb1c9ce9c6f0eb7d4a7df1aad6b6799f4b548181c (patch)
tree219196013c141f0f2110ac1df21db05433a71e4b /src/libsync/spsc_queue.rs
parentc690191a84728c289a4b3dc17b07934a66311d9d (diff)
downloadrust-b1c9ce9c6f0eb7d4a7df1aad6b6799f4b548181c.tar.gz
rust-b1c9ce9c6f0eb7d4a7df1aad6b6799f4b548181c.zip
sync: Move underneath libstd
This commit is the final step in the libstd facade, #13851. The purpose of this
commit is to move libsync underneath the standard library, behind the facade.
This will allow core primitives like channels, queues, and atomics to all live
in the same location.

There were a few notable changes and a few breaking changes as part of this
movement:

* The `Vec` and `String` types are reexported at the top level of libcollections
* The `unreachable!()` macro was copied to libcore
* The `std::rt::thread` module was moved to librustrt, but it is still
  reexported at the same location.
* The `std::comm` module was moved to libsync
* The `sync::comm` module was moved under `sync::comm`, and renamed to `duplex`.
  It is now a private module with types/functions being reexported under
  `sync::comm`. This is a breaking change for any existing users of duplex
  streams.
* All concurrent queues/deques were moved directly under libsync. They are also
  all marked with #![experimental] for now if they are public.
* The `task_pool` and `future` modules no longer live in libsync, but rather
  live under `std::sync`. They will forever live at this location, but they may
  move to libsync if the `std::task` module moves as well.

[breaking-change]
Diffstat (limited to 'src/libsync/spsc_queue.rs')
-rw-r--r--src/libsync/spsc_queue.rs301
1 files changed, 301 insertions, 0 deletions
diff --git a/src/libsync/spsc_queue.rs b/src/libsync/spsc_queue.rs
new file mode 100644
index 00000000000..55d2f3062ba
--- /dev/null
+++ b/src/libsync/spsc_queue.rs
@@ -0,0 +1,301 @@
+/* Copyright (c) 2010-2011 Dmitry Vyukov. All rights reserved.
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ *    1. Redistributions of source code must retain the above copyright notice,
+ *       this list of conditions and the following disclaimer.
+ *
+ *    2. Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in the
+ *       documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY DMITRY VYUKOV "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
+ * SHALL DMITRY VYUKOV OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * The views and conclusions contained in the software and documentation are
+ * those of the authors and should not be interpreted as representing official
+ * policies, either expressed or implied, of Dmitry Vyukov.
+ */
+
+// http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
+
+//! A single-producer single-consumer concurrent queue
+//!
+//! This module contains the implementation of an SPSC queue which can be used
+//! concurrently between two tasks. This data structure is safe to use and
+//! enforces the semantics that there is one pusher and one popper.
+
+#![experimental]
+
+use core::prelude::*;
+
+use alloc::owned::Box;
+use core::mem;
+use core::ty::Unsafe;
+
+use atomics::{AtomicPtr, Relaxed, AtomicUint, Acquire, Release};
+
+// Node within the linked list queue of messages to send
+struct Node<T> {
+    // FIXME: this could be an uninitialized T if we're careful enough, and
+    //      that would reduce memory usage (and be a bit faster).
+    //      is it worth it?
+    value: Option<T>,           // nullable for re-use of nodes
+    next: AtomicPtr<Node<T>>,   // next node in the queue
+}
+
+/// The single-producer single-consumer queue. This structure is not cloneable,
+/// but it can be safely shared in an Arc if it is guaranteed that there
+/// is only one popper and one pusher touching the queue at any one point in
+/// time.
+pub struct Queue<T> {
+    // consumer fields
+    tail: Unsafe<*mut Node<T>>, // where to pop from
+    tail_prev: AtomicPtr<Node<T>>, // where to pop from
+
+    // producer fields
+    head: Unsafe<*mut Node<T>>,      // where to push to
+    first: Unsafe<*mut Node<T>>,     // where to get new nodes from
+    tail_copy: Unsafe<*mut Node<T>>, // between first/tail
+
+    // Cache maintenance fields. Additions and subtractions are stored
+    // separately in order to allow them to use nonatomic addition/subtraction.
+    cache_bound: uint,
+    cache_additions: AtomicUint,
+    cache_subtractions: AtomicUint,
+}
+
+impl<T: Send> Node<T> {
+    fn new() -> *mut Node<T> {
+        unsafe {
+            mem::transmute(box Node {
+                value: None,
+                next: AtomicPtr::new(0 as *mut Node<T>),
+            })
+        }
+    }
+}
+
+impl<T: Send> Queue<T> {
+    /// Creates a new queue. The producer returned is connected to the consumer
+    /// to push all data to the consumer.
+    ///
+    /// # Arguments
+    ///
+    ///   * `bound` - This queue implementation is implemented with a linked
+    ///               list, and this means that a push is always a malloc. In
+    ///               order to amortize this cost, an internal cache of nodes is
+    ///               maintained to prevent a malloc from always being
+    ///               necessary. This bound is the limit on the size of the
+    ///               cache (if desired). If the value is 0, then the cache has
+    ///               no bound. Otherwise, the cache will never grow larger than
+    ///               `bound` (although the queue itself could be much larger.
+    pub fn new(bound: uint) -> Queue<T> {
+        let n1 = Node::new();
+        let n2 = Node::new();
+        unsafe { (*n1).next.store(n2, Relaxed) }
+        Queue {
+            tail: Unsafe::new(n2),
+            tail_prev: AtomicPtr::new(n1),
+            head: Unsafe::new(n2),
+            first: Unsafe::new(n1),
+            tail_copy: Unsafe::new(n1),
+            cache_bound: bound,
+            cache_additions: AtomicUint::new(0),
+            cache_subtractions: AtomicUint::new(0),
+        }
+    }
+
+    /// Pushes a new value onto this queue. Note that to use this function
+    /// safely, it must be externally guaranteed that there is only one pusher.
+    pub fn push(&self, t: T) {
+        unsafe {
+            // Acquire a node (which either uses a cached one or allocates a new
+            // one), and then append this to the 'head' node.
+            let n = self.alloc();
+            assert!((*n).value.is_none());
+            (*n).value = Some(t);
+            (*n).next.store(0 as *mut Node<T>, Relaxed);
+            (**self.head.get()).next.store(n, Release);
+            *self.head.get() = n;
+        }
+    }
+
+    unsafe fn alloc(&self) -> *mut Node<T> {
+        // First try to see if we can consume the 'first' node for our uses.
+        // We try to avoid as many atomic instructions as possible here, so
+        // the addition to cache_subtractions is not atomic (plus we're the
+        // only one subtracting from the cache).
+        if *self.first.get() != *self.tail_copy.get() {
+            if self.cache_bound > 0 {
+                let b = self.cache_subtractions.load(Relaxed);
+                self.cache_subtractions.store(b + 1, Relaxed);
+            }
+            let ret = *self.first.get();
+            *self.first.get() = (*ret).next.load(Relaxed);
+            return ret;
+        }
+        // If the above fails, then update our copy of the tail and try
+        // again.
+        *self.tail_copy.get() = self.tail_prev.load(Acquire);
+        if *self.first.get() != *self.tail_copy.get() {
+            if self.cache_bound > 0 {
+                let b = self.cache_subtractions.load(Relaxed);
+                self.cache_subtractions.store(b + 1, Relaxed);
+            }
+            let ret = *self.first.get();
+            *self.first.get() = (*ret).next.load(Relaxed);
+            return ret;
+        }
+        // If all of that fails, then we have to allocate a new node
+        // (there's nothing in the node cache).
+        Node::new()
+    }
+
+    /// Attempts to pop a value from this queue. Remember that to use this type
+    /// safely you must ensure that there is only one popper at a time.
+    pub fn pop(&self) -> Option<T> {
+        unsafe {
+            // The `tail` node is not actually a used node, but rather a
+            // sentinel from where we should start popping from. Hence, look at
+            // tail's next field and see if we can use it. If we do a pop, then
+            // the current tail node is a candidate for going into the cache.
+            let tail = *self.tail.get();
+            let next = (*tail).next.load(Acquire);
+            if next.is_null() { return None }
+            assert!((*next).value.is_some());
+            let ret = (*next).value.take();
+
+            *self.tail.get() = next;
+            if self.cache_bound == 0 {
+                self.tail_prev.store(tail, Release);
+            } else {
+                // FIXME: this is dubious with overflow.
+                let additions = self.cache_additions.load(Relaxed);
+                let subtractions = self.cache_subtractions.load(Relaxed);
+                let size = additions - subtractions;
+
+                if size < self.cache_bound {
+                    self.tail_prev.store(tail, Release);
+                    self.cache_additions.store(additions + 1, Relaxed);
+                } else {
+                    (*self.tail_prev.load(Relaxed)).next.store(next, Relaxed);
+                    // We have successfully erased all references to 'tail', so
+                    // now we can safely drop it.
+                    let _: Box<Node<T>> = mem::transmute(tail);
+                }
+            }
+            return ret;
+        }
+    }
+
+    /// Attempts to peek at the head of the queue, returning `None` if the queue
+    /// has no data currently
+    pub fn peek<'a>(&'a self) -> Option<&'a mut T> {
+        // This is essentially the same as above with all the popping bits
+        // stripped out.
+        unsafe {
+            let tail = *self.tail.get();
+            let next = (*tail).next.load(Acquire);
+            if next.is_null() { return None }
+            return (*next).value.as_mut();
+        }
+    }
+}
+
+#[unsafe_destructor]
+impl<T: Send> Drop for Queue<T> {
+    fn drop(&mut self) {
+        unsafe {
+            let mut cur = *self.first.get();
+            while !cur.is_null() {
+                let next = (*cur).next.load(Relaxed);
+                let _n: Box<Node<T>> = mem::transmute(cur);
+                cur = next;
+            }
+        }
+    }
+}
+
+#[cfg(test)]
+mod test {
+    use std::prelude::*;
+
+    use alloc::arc::Arc;
+    use native;
+
+    use super::Queue;
+
+    #[test]
+    fn smoke() {
+        let q = Queue::new(0);
+        q.push(1);
+        q.push(2);
+        assert_eq!(q.pop(), Some(1));
+        assert_eq!(q.pop(), Some(2));
+        assert_eq!(q.pop(), None);
+        q.push(3);
+        q.push(4);
+        assert_eq!(q.pop(), Some(3));
+        assert_eq!(q.pop(), Some(4));
+        assert_eq!(q.pop(), None);
+    }
+
+    #[test]
+    fn drop_full() {
+        let q = Queue::new(0);
+        q.push(box 1);
+        q.push(box 2);
+    }
+
+    #[test]
+    fn smoke_bound() {
+        let q = Queue::new(1);
+        q.push(1);
+        q.push(2);
+        assert_eq!(q.pop(), Some(1));
+        assert_eq!(q.pop(), Some(2));
+        assert_eq!(q.pop(), None);
+        q.push(3);
+        q.push(4);
+        assert_eq!(q.pop(), Some(3));
+        assert_eq!(q.pop(), Some(4));
+        assert_eq!(q.pop(), None);
+    }
+
+    #[test]
+    fn stress() {
+        stress_bound(0);
+        stress_bound(1);
+
+        fn stress_bound(bound: uint) {
+            let a = Arc::new(Queue::new(bound));
+            let b = a.clone();
+            let (tx, rx) = channel();
+            native::task::spawn(proc() {
+                for _ in range(0, 100000) {
+                    loop {
+                        match b.pop() {
+                            Some(1) => break,
+                            Some(_) => fail!(),
+                            None => {}
+                        }
+                    }
+                }
+                tx.send(());
+            });
+            for _ in range(0, 100000) {
+                a.push(1);
+            }
+            rx.recv();
+        }
+    }
+}