diff options
| author | Mazdak Farrokhzad <twingoow@gmail.com> | 2019-08-11 19:59:27 +0200 |
|---|---|---|
| committer | Mazdak Farrokhzad <twingoow@gmail.com> | 2019-08-11 19:59:27 +0200 |
| commit | 3dbfbafe3eb1562592044a8cf134823cdc7f2f12 (patch) | |
| tree | 86c1dd2f152c75e42880197b01d2d9e098abebf4 /src/libsyntax/parse/parser | |
| parent | e81347c3685dfc818fca2d502819ee0d1b692621 (diff) | |
| download | rust-3dbfbafe3eb1562592044a8cf134823cdc7f2f12.tar.gz rust-3dbfbafe3eb1562592044a8cf134823cdc7f2f12.zip | |
parser: split into {ty, path}.rs
Diffstat (limited to 'src/libsyntax/parse/parser')
| -rw-r--r-- | src/libsyntax/parse/parser/path.rs | 474 | ||||
| -rw-r--r-- | src/libsyntax/parse/parser/ty.rs | 447 |
2 files changed, 921 insertions, 0 deletions
diff --git a/src/libsyntax/parse/parser/path.rs b/src/libsyntax/parse/parser/path.rs new file mode 100644 index 00000000000..2760cd38cab --- /dev/null +++ b/src/libsyntax/parse/parser/path.rs @@ -0,0 +1,474 @@ +use super::{Parser, PResult, TokenType, BlockCheckMode}; + +use crate::{maybe_whole, ThinVec}; +use crate::ast::{self, QSelf, Path, PathSegment, Ident, ParenthesizedArgs, AngleBracketedArgs}; +use crate::ast::{AnonConst, GenericArg, AssocTyConstraint, AssocTyConstraintKind}; +use crate::parse::token::{self, Token}; +use crate::source_map::{Span, BytePos}; +use crate::symbol::{kw}; + +use std::mem; +use log::debug; +use errors::{Applicability}; + +/// Specifies how to parse a path. +#[derive(Copy, Clone, PartialEq)] +pub enum PathStyle { + /// In some contexts, notably in expressions, paths with generic arguments are ambiguous + /// with something else. For example, in expressions `segment < ....` can be interpreted + /// as a comparison and `segment ( ....` can be interpreted as a function call. + /// In all such contexts the non-path interpretation is preferred by default for practical + /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g. + /// `x<y>` - comparisons, `x::<y>` - unambiguously a path. + Expr, + /// In other contexts, notably in types, no ambiguity exists and paths can be written + /// without the disambiguator, e.g., `x<y>` - unambiguously a path. + /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too. + Type, + /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports, + /// visibilities or attributes. + /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead + /// (paths in "mod" contexts have to be checked later for absence of generic arguments + /// anyway, due to macros), but it is used to avoid weird suggestions about expected + /// tokens when something goes wrong. + Mod, +} + +impl<'a> Parser<'a> { + /// Parses a qualified path. + /// Assumes that the leading `<` has been parsed already. + /// + /// `qualified_path = <type [as trait_ref]>::path` + /// + /// # Examples + /// `<T>::default` + /// `<T as U>::a` + /// `<T as U>::F::a<S>` (without disambiguator) + /// `<T as U>::F::a::<S>` (with disambiguator) + pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> { + let lo = self.prev_span; + let ty = self.parse_ty()?; + + // `path` will contain the prefix of the path up to the `>`, + // if any (e.g., `U` in the `<T as U>::*` examples + // above). `path_span` has the span of that path, or an empty + // span in the case of something like `<T>::Bar`. + let (mut path, path_span); + if self.eat_keyword(kw::As) { + let path_lo = self.token.span; + path = self.parse_path(PathStyle::Type)?; + path_span = path_lo.to(self.prev_span); + } else { + path_span = self.token.span.to(self.token.span); + path = ast::Path { segments: Vec::new(), span: path_span }; + } + + // See doc comment for `unmatched_angle_bracket_count`. + self.expect(&token::Gt)?; + if self.unmatched_angle_bracket_count > 0 { + self.unmatched_angle_bracket_count -= 1; + debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count); + } + + self.expect(&token::ModSep)?; + + let qself = QSelf { ty, path_span, position: path.segments.len() }; + self.parse_path_segments(&mut path.segments, style)?; + + Ok((qself, Path { segments: path.segments, span: lo.to(self.prev_span) })) + } + + /// Parses simple paths. + /// + /// `path = [::] segment+` + /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]` + /// + /// # Examples + /// `a::b::C<D>` (without disambiguator) + /// `a::b::C::<D>` (with disambiguator) + /// `Fn(Args)` (without disambiguator) + /// `Fn::(Args)` (with disambiguator) + pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> { + maybe_whole!(self, NtPath, |path| { + if style == PathStyle::Mod && + path.segments.iter().any(|segment| segment.args.is_some()) { + self.diagnostic().span_err(path.span, "unexpected generic arguments in path"); + } + path + }); + + let lo = self.meta_var_span.unwrap_or(self.token.span); + let mut segments = Vec::new(); + let mod_sep_ctxt = self.token.span.ctxt(); + if self.eat(&token::ModSep) { + segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt))); + } + self.parse_path_segments(&mut segments, style)?; + + Ok(Path { segments, span: lo.to(self.prev_span) }) + } + + /// Like `parse_path`, but also supports parsing `Word` meta items into paths for + /// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]` + /// attributes. + pub fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, Path> { + let meta_ident = match self.token.kind { + token::Interpolated(ref nt) => match **nt { + token::NtMeta(ref meta) => match meta.node { + ast::MetaItemKind::Word => Some(meta.path.clone()), + _ => None, + }, + _ => None, + }, + _ => None, + }; + if let Some(path) = meta_ident { + self.bump(); + return Ok(path); + } + self.parse_path(style) + } + + crate fn parse_path_segments(&mut self, + segments: &mut Vec<PathSegment>, + style: PathStyle) + -> PResult<'a, ()> { + loop { + let segment = self.parse_path_segment(style)?; + if style == PathStyle::Expr { + // In order to check for trailing angle brackets, we must have finished + // recursing (`parse_path_segment` can indirectly call this function), + // that is, the next token must be the highlighted part of the below example: + // + // `Foo::<Bar as Baz<T>>::Qux` + // ^ here + // + // As opposed to the below highlight (if we had only finished the first + // recursion): + // + // `Foo::<Bar as Baz<T>>::Qux` + // ^ here + // + // `PathStyle::Expr` is only provided at the root invocation and never in + // `parse_path_segment` to recurse and therefore can be checked to maintain + // this invariant. + self.check_trailing_angle_brackets(&segment, token::ModSep); + } + segments.push(segment); + + if self.is_import_coupler() || !self.eat(&token::ModSep) { + return Ok(()); + } + } + } + + pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> { + let ident = self.parse_path_segment_ident()?; + + let is_args_start = |token: &Token| match token.kind { + token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren) + | token::LArrow => true, + _ => false, + }; + let check_args_start = |this: &mut Self| { + this.expected_tokens.extend_from_slice( + &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))] + ); + is_args_start(&this.token) + }; + + Ok(if style == PathStyle::Type && check_args_start(self) || + style != PathStyle::Mod && self.check(&token::ModSep) + && self.look_ahead(1, |t| is_args_start(t)) { + // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If + // it isn't, then we reset the unmatched angle bracket count as we're about to start + // parsing a new path. + if style == PathStyle::Expr { + self.unmatched_angle_bracket_count = 0; + self.max_angle_bracket_count = 0; + } + + // Generic arguments are found - `<`, `(`, `::<` or `::(`. + self.eat(&token::ModSep); + let lo = self.token.span; + let args = if self.eat_lt() { + // `<'a, T, A = U>` + let (args, constraints) = + self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?; + self.expect_gt()?; + let span = lo.to(self.prev_span); + AngleBracketedArgs { args, constraints, span }.into() + } else { + // `(T, U) -> R` + let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?; + let span = lo.to(self.prev_span); + let output = if self.eat(&token::RArrow) { + Some(self.parse_ty_common(false, false, false)?) + } else { + None + }; + ParenthesizedArgs { inputs, output, span }.into() + }; + + PathSegment { ident, args, id: ast::DUMMY_NODE_ID } + } else { + // Generic arguments are not found. + PathSegment::from_ident(ident) + }) + } + + pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> { + match self.token.kind { + token::Ident(name, _) if name.is_path_segment_keyword() => { + let span = self.token.span; + self.bump(); + Ok(Ident::new(name, span)) + } + _ => self.parse_ident(), + } + } + + /// Parses generic args (within a path segment) with recovery for extra leading angle brackets. + /// For the purposes of understanding the parsing logic of generic arguments, this function + /// can be thought of being the same as just calling `self.parse_generic_args()` if the source + /// had the correct amount of leading angle brackets. + /// + /// ```ignore (diagnostics) + /// bar::<<<<T as Foo>::Output>(); + /// ^^ help: remove extra angle brackets + /// ``` + fn parse_generic_args_with_leaning_angle_bracket_recovery( + &mut self, + style: PathStyle, + lo: Span, + ) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> { + // We need to detect whether there are extra leading left angle brackets and produce an + // appropriate error and suggestion. This cannot be implemented by looking ahead at + // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens + // then there won't be matching `>` tokens to find. + // + // To explain how this detection works, consider the following example: + // + // ```ignore (diagnostics) + // bar::<<<<T as Foo>::Output>(); + // ^^ help: remove extra angle brackets + // ``` + // + // Parsing of the left angle brackets starts in this function. We start by parsing the + // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via + // `eat_lt`): + // + // *Upcoming tokens:* `<<<<T as Foo>::Output>;` + // *Unmatched count:* 1 + // *`parse_path_segment` calls deep:* 0 + // + // This has the effect of recursing as this function is called if a `<` character + // is found within the expected generic arguments: + // + // *Upcoming tokens:* `<<<T as Foo>::Output>;` + // *Unmatched count:* 2 + // *`parse_path_segment` calls deep:* 1 + // + // Eventually we will have recursed until having consumed all of the `<` tokens and + // this will be reflected in the count: + // + // *Upcoming tokens:* `T as Foo>::Output>;` + // *Unmatched count:* 4 + // `parse_path_segment` calls deep:* 3 + // + // The parser will continue until reaching the first `>` - this will decrement the + // unmatched angle bracket count and return to the parent invocation of this function + // having succeeded in parsing: + // + // *Upcoming tokens:* `::Output>;` + // *Unmatched count:* 3 + // *`parse_path_segment` calls deep:* 2 + // + // This will continue until the next `>` character which will also return successfully + // to the parent invocation of this function and decrement the count: + // + // *Upcoming tokens:* `;` + // *Unmatched count:* 2 + // *`parse_path_segment` calls deep:* 1 + // + // At this point, this function will expect to find another matching `>` character but + // won't be able to and will return an error. This will continue all the way up the + // call stack until the first invocation: + // + // *Upcoming tokens:* `;` + // *Unmatched count:* 2 + // *`parse_path_segment` calls deep:* 0 + // + // In doing this, we have managed to work out how many unmatched leading left angle + // brackets there are, but we cannot recover as the unmatched angle brackets have + // already been consumed. To remedy this, we keep a snapshot of the parser state + // before we do the above. We can then inspect whether we ended up with a parsing error + // and unmatched left angle brackets and if so, restore the parser state before we + // consumed any `<` characters to emit an error and consume the erroneous tokens to + // recover by attempting to parse again. + // + // In practice, the recursion of this function is indirect and there will be other + // locations that consume some `<` characters - as long as we update the count when + // this happens, it isn't an issue. + + let is_first_invocation = style == PathStyle::Expr; + // Take a snapshot before attempting to parse - we can restore this later. + let snapshot = if is_first_invocation { + Some(self.clone()) + } else { + None + }; + + debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)"); + match self.parse_generic_args() { + Ok(value) => Ok(value), + Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => { + // Cancel error from being unable to find `>`. We know the error + // must have been this due to a non-zero unmatched angle bracket + // count. + e.cancel(); + + // Swap `self` with our backup of the parser state before attempting to parse + // generic arguments. + let snapshot = mem::replace(self, snapshot.unwrap()); + + debug!( + "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \ + snapshot.count={:?}", + snapshot.unmatched_angle_bracket_count, + ); + + // Eat the unmatched angle brackets. + for _ in 0..snapshot.unmatched_angle_bracket_count { + self.eat_lt(); + } + + // Make a span over ${unmatched angle bracket count} characters. + let span = lo.with_hi( + lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count) + ); + let plural = snapshot.unmatched_angle_bracket_count > 1; + self.diagnostic() + .struct_span_err( + span, + &format!( + "unmatched angle bracket{}", + if plural { "s" } else { "" } + ), + ) + .span_suggestion( + span, + &format!( + "remove extra angle bracket{}", + if plural { "s" } else { "" } + ), + String::new(), + Applicability::MachineApplicable, + ) + .emit(); + + // Try again without unmatched angle bracket characters. + self.parse_generic_args() + }, + Err(e) => Err(e), + } + } + + /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings, + /// possibly including trailing comma. + fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<AssocTyConstraint>)> { + let mut args = Vec::new(); + let mut constraints = Vec::new(); + let mut misplaced_assoc_ty_constraints: Vec<Span> = Vec::new(); + let mut assoc_ty_constraints: Vec<Span> = Vec::new(); + + let args_lo = self.token.span; + + loop { + if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) { + // Parse lifetime argument. + args.push(GenericArg::Lifetime(self.expect_lifetime())); + misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints); + } else if self.check_ident() && self.look_ahead(1, + |t| t == &token::Eq || t == &token::Colon) { + // Parse associated type constraint. + let lo = self.token.span; + let ident = self.parse_ident()?; + let kind = if self.eat(&token::Eq) { + AssocTyConstraintKind::Equality { + ty: self.parse_ty()?, + } + } else if self.eat(&token::Colon) { + AssocTyConstraintKind::Bound { + bounds: self.parse_generic_bounds(Some(self.prev_span))?, + } + } else { + unreachable!(); + }; + let span = lo.to(self.prev_span); + constraints.push(AssocTyConstraint { + id: ast::DUMMY_NODE_ID, + ident, + kind, + span, + }); + assoc_ty_constraints.push(span); + } else if self.check_const_arg() { + // Parse const argument. + let expr = if let token::OpenDelim(token::Brace) = self.token.kind { + self.parse_block_expr( + None, self.token.span, BlockCheckMode::Default, ThinVec::new() + )? + } else if self.token.is_ident() { + // FIXME(const_generics): to distinguish between idents for types and consts, + // we should introduce a GenericArg::Ident in the AST and distinguish when + // lowering to the HIR. For now, idents for const args are not permitted. + if self.token.is_keyword(kw::True) || self.token.is_keyword(kw::False) { + self.parse_literal_maybe_minus()? + } else { + return Err( + self.fatal("identifiers may currently not be used for const generics") + ); + } + } else { + self.parse_literal_maybe_minus()? + }; + let value = AnonConst { + id: ast::DUMMY_NODE_ID, + value: expr, + }; + args.push(GenericArg::Const(value)); + misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints); + } else if self.check_type() { + // Parse type argument. + args.push(GenericArg::Type(self.parse_ty()?)); + misplaced_assoc_ty_constraints.append(&mut assoc_ty_constraints); + } else { + break + } + + if !self.eat(&token::Comma) { + break + } + } + + // FIXME: we would like to report this in ast_validation instead, but we currently do not + // preserve ordering of generic parameters with respect to associated type binding, so we + // lose that information after parsing. + if misplaced_assoc_ty_constraints.len() > 0 { + let mut err = self.struct_span_err( + args_lo.to(self.prev_span), + "associated type bindings must be declared after generic parameters", + ); + for span in misplaced_assoc_ty_constraints { + err.span_label( + span, + "this associated type binding should be moved after the generic parameters", + ); + } + err.emit(); + } + + Ok((args, constraints)) + } +} diff --git a/src/libsyntax/parse/parser/ty.rs b/src/libsyntax/parse/parser/ty.rs new file mode 100644 index 00000000000..a5a073c3af1 --- /dev/null +++ b/src/libsyntax/parse/parser/ty.rs @@ -0,0 +1,447 @@ +use super::{Parser, PResult, PathStyle, PrevTokenKind}; + +use crate::{maybe_whole, maybe_recover_from_interpolated_ty_qpath}; +use crate::ptr::P; +use crate::ast::{self, Ty, TyKind, MutTy, BareFnTy, FunctionRetTy, GenericParam}; +use crate::ast::{TraitBoundModifier, TraitObjectSyntax, GenericBound, GenericBounds, PolyTraitRef}; +use crate::ast::{Mutability, AnonConst, FnDecl, Mac_}; +use crate::parse::token::{self, Token}; +use crate::source_map::{respan, Span}; +use crate::symbol::{kw}; + +use rustc_target::spec::abi::Abi; + +use errors::{Applicability}; + +/// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT<u8, u8>`, +/// `IDENT<<u8 as Trait>::AssocTy>`. +/// +/// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes +/// that `IDENT` is not the ident of a fn trait. +fn can_continue_type_after_non_fn_ident(t: &Token) -> bool { + t == &token::ModSep || t == &token::Lt || + t == &token::BinOp(token::Shl) +} + +impl<'a> Parser<'a> { + /// Parses a type. + pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> { + self.parse_ty_common(true, true, false) + } + + /// Parses a type in restricted contexts where `+` is not permitted. + /// + /// Example 1: `&'a TYPE` + /// `+` is prohibited to maintain operator priority (P(+) < P(&)). + /// Example 2: `value1 as TYPE + value2` + /// `+` is prohibited to avoid interactions with expression grammar. + pub(super) fn parse_ty_no_plus(&mut self) -> PResult<'a, P<Ty>> { + self.parse_ty_common(false, true, false) + } + + /// Parses an optional return type `[ -> TY ]` in a function declaration. + pub(super) fn parse_ret_ty(&mut self, allow_plus: bool) -> PResult<'a, FunctionRetTy> { + if self.eat(&token::RArrow) { + Ok(FunctionRetTy::Ty(self.parse_ty_common(allow_plus, true, false)?)) + } else { + Ok(FunctionRetTy::Default(self.token.span.shrink_to_lo())) + } + } + + pub(super) fn parse_ty_common(&mut self, allow_plus: bool, allow_qpath_recovery: bool, + allow_c_variadic: bool) -> PResult<'a, P<Ty>> { + maybe_recover_from_interpolated_ty_qpath!(self, allow_qpath_recovery); + maybe_whole!(self, NtTy, |x| x); + + let lo = self.token.span; + let mut impl_dyn_multi = false; + let node = if self.eat(&token::OpenDelim(token::Paren)) { + // `(TYPE)` is a parenthesized type. + // `(TYPE,)` is a tuple with a single field of type TYPE. + let mut ts = vec![]; + let mut last_comma = false; + while self.token != token::CloseDelim(token::Paren) { + ts.push(self.parse_ty()?); + if self.eat(&token::Comma) { + last_comma = true; + } else { + last_comma = false; + break; + } + } + let trailing_plus = self.prev_token_kind == PrevTokenKind::Plus; + self.expect(&token::CloseDelim(token::Paren))?; + + if ts.len() == 1 && !last_comma { + let ty = ts.into_iter().nth(0).unwrap().into_inner(); + let maybe_bounds = allow_plus && self.token.is_like_plus(); + match ty.node { + // `(TY_BOUND_NOPAREN) + BOUND + ...`. + TyKind::Path(None, ref path) if maybe_bounds => { + self.parse_remaining_bounds(Vec::new(), path.clone(), lo, true)? + } + TyKind::TraitObject(ref bounds, TraitObjectSyntax::None) + if maybe_bounds && bounds.len() == 1 && !trailing_plus => { + let path = match bounds[0] { + GenericBound::Trait(ref pt, ..) => pt.trait_ref.path.clone(), + GenericBound::Outlives(..) => self.bug("unexpected lifetime bound"), + }; + self.parse_remaining_bounds(Vec::new(), path, lo, true)? + } + // `(TYPE)` + _ => TyKind::Paren(P(ty)) + } + } else { + TyKind::Tup(ts) + } + } else if self.eat(&token::Not) { + // Never type `!` + TyKind::Never + } else if self.eat(&token::BinOp(token::Star)) { + // Raw pointer + TyKind::Ptr(self.parse_ptr()?) + } else if self.eat(&token::OpenDelim(token::Bracket)) { + // Array or slice + let t = self.parse_ty()?; + // Parse optional `; EXPR` in `[TYPE; EXPR]` + let t = match self.maybe_parse_fixed_length_of_vec()? { + None => TyKind::Slice(t), + Some(length) => TyKind::Array(t, AnonConst { + id: ast::DUMMY_NODE_ID, + value: length, + }), + }; + self.expect(&token::CloseDelim(token::Bracket))?; + t + } else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) { + // Reference + self.expect_and()?; + self.parse_borrowed_pointee()? + } else if self.eat_keyword_noexpect(kw::Typeof) { + // `typeof(EXPR)` + // In order to not be ambiguous, the type must be surrounded by parens. + self.expect(&token::OpenDelim(token::Paren))?; + let e = AnonConst { + id: ast::DUMMY_NODE_ID, + value: self.parse_expr()?, + }; + self.expect(&token::CloseDelim(token::Paren))?; + TyKind::Typeof(e) + } else if self.eat_keyword(kw::Underscore) { + // A type to be inferred `_` + TyKind::Infer + } else if self.token_is_bare_fn_keyword() { + // Function pointer type + self.parse_ty_bare_fn(Vec::new())? + } else if self.check_keyword(kw::For) { + // Function pointer type or bound list (trait object type) starting with a poly-trait. + // `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T` + // `for<'lt> Trait1<'lt> + Trait2 + 'a` + let lo = self.token.span; + let lifetime_defs = self.parse_late_bound_lifetime_defs()?; + if self.token_is_bare_fn_keyword() { + self.parse_ty_bare_fn(lifetime_defs)? + } else { + let path = self.parse_path(PathStyle::Type)?; + let parse_plus = allow_plus && self.check_plus(); + self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)? + } + } else if self.eat_keyword(kw::Impl) { + // Always parse bounds greedily for better error recovery. + let bounds = self.parse_generic_bounds(None)?; + impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus; + TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds) + } else if self.check_keyword(kw::Dyn) && + (self.token.span.rust_2018() || + self.look_ahead(1, |t| t.can_begin_bound() && + !can_continue_type_after_non_fn_ident(t))) { + self.bump(); // `dyn` + // Always parse bounds greedily for better error recovery. + let bounds = self.parse_generic_bounds(None)?; + impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus; + TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn) + } else if self.check(&token::Question) || + self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus()) { + // Bound list (trait object type) + TyKind::TraitObject(self.parse_generic_bounds_common(allow_plus, None)?, + TraitObjectSyntax::None) + } else if self.eat_lt() { + // Qualified path + let (qself, path) = self.parse_qpath(PathStyle::Type)?; + TyKind::Path(Some(qself), path) + } else if self.token.is_path_start() { + // Simple path + let path = self.parse_path(PathStyle::Type)?; + if self.eat(&token::Not) { + // Macro invocation in type position + let (delim, tts) = self.expect_delimited_token_tree()?; + let node = Mac_ { + path, + tts, + delim, + prior_type_ascription: self.last_type_ascription, + }; + TyKind::Mac(respan(lo.to(self.prev_span), node)) + } else { + // Just a type path or bound list (trait object type) starting with a trait. + // `Type` + // `Trait1 + Trait2 + 'a` + if allow_plus && self.check_plus() { + self.parse_remaining_bounds(Vec::new(), path, lo, true)? + } else { + TyKind::Path(None, path) + } + } + } else if self.check(&token::DotDotDot) { + if allow_c_variadic { + self.eat(&token::DotDotDot); + TyKind::CVarArgs + } else { + return Err(self.fatal( + "only foreign functions are allowed to be C-variadic" + )); + } + } else { + let msg = format!("expected type, found {}", self.this_token_descr()); + let mut err = self.fatal(&msg); + err.span_label(self.token.span, "expected type"); + self.maybe_annotate_with_ascription(&mut err, true); + return Err(err); + }; + + let span = lo.to(self.prev_span); + let ty = P(Ty { node, span, id: ast::DUMMY_NODE_ID }); + + // Try to recover from use of `+` with incorrect priority. + self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty); + self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?; + self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery) + } + + fn parse_remaining_bounds(&mut self, generic_params: Vec<GenericParam>, path: ast::Path, + lo: Span, parse_plus: bool) -> PResult<'a, TyKind> { + let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_span)); + let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)]; + if parse_plus { + self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded + bounds.append(&mut self.parse_generic_bounds(Some(self.prev_span))?); + } + Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None)) + } + + fn parse_ptr(&mut self) -> PResult<'a, MutTy> { + let mutbl = if self.eat_keyword(kw::Mut) { + Mutability::Mutable + } else if self.eat_keyword(kw::Const) { + Mutability::Immutable + } else { + let span = self.prev_span; + let msg = "expected mut or const in raw pointer type"; + self.struct_span_err(span, msg) + .span_label(span, msg) + .help("use `*mut T` or `*const T` as appropriate") + .emit(); + Mutability::Immutable + }; + let t = self.parse_ty_no_plus()?; + Ok(MutTy { ty: t, mutbl }) + } + + fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option<P<ast::Expr>>> { + if self.eat(&token::Semi) { + Ok(Some(self.parse_expr()?)) + } else { + Ok(None) + } + } + + fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> { + let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None }; + let mutbl = self.parse_mutability(); + let ty = self.parse_ty_no_plus()?; + return Ok(TyKind::Rptr(opt_lifetime, MutTy { ty, mutbl })); + } + + /// Is the current token one of the keywords that signals a bare function type? + fn token_is_bare_fn_keyword(&mut self) -> bool { + self.check_keyword(kw::Fn) || + self.check_keyword(kw::Unsafe) || + self.check_keyword(kw::Extern) + } + + /// Parses a `TyKind::BareFn` type. + fn parse_ty_bare_fn(&mut self, generic_params: Vec<GenericParam>) -> PResult<'a, TyKind> { + /* + + [unsafe] [extern "ABI"] fn (S) -> T + ^~~~^ ^~~~^ ^~^ ^ + | | | | + | | | Return type + | | Argument types + | | + | ABI + Function Style + */ + + let unsafety = self.parse_unsafety(); + let abi = if self.eat_keyword(kw::Extern) { + self.parse_opt_abi()?.unwrap_or(Abi::C) + } else { + Abi::Rust + }; + + self.expect_keyword(kw::Fn)?; + let (inputs, c_variadic) = self.parse_fn_args(false, true)?; + let ret_ty = self.parse_ret_ty(false)?; + let decl = P(FnDecl { + inputs, + output: ret_ty, + c_variadic, + }); + Ok(TyKind::BareFn(P(BareFnTy { + abi, + unsafety, + generic_params, + decl, + }))) + } + + crate fn parse_generic_bounds(&mut self, + colon_span: Option<Span>) -> PResult<'a, GenericBounds> { + self.parse_generic_bounds_common(true, colon_span) + } + + /// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`. + /// + /// ``` + /// BOUND = TY_BOUND | LT_BOUND + /// LT_BOUND = LIFETIME (e.g., `'a`) + /// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN) + /// TY_BOUND_NOPAREN = [?] [for<LT_PARAM_DEFS>] SIMPLE_PATH (e.g., `?for<'a: 'b> m::Trait<'a>`) + /// ``` + fn parse_generic_bounds_common(&mut self, + allow_plus: bool, + colon_span: Option<Span>) -> PResult<'a, GenericBounds> { + let mut bounds = Vec::new(); + let mut negative_bounds = Vec::new(); + let mut last_plus_span = None; + let mut was_negative = false; + loop { + // This needs to be synchronized with `TokenKind::can_begin_bound`. + let is_bound_start = self.check_path() || self.check_lifetime() || + self.check(&token::Not) || // used for error reporting only + self.check(&token::Question) || + self.check_keyword(kw::For) || + self.check(&token::OpenDelim(token::Paren)); + if is_bound_start { + let lo = self.token.span; + let has_parens = self.eat(&token::OpenDelim(token::Paren)); + let inner_lo = self.token.span; + let is_negative = self.eat(&token::Not); + let question = if self.eat(&token::Question) { Some(self.prev_span) } else { None }; + if self.token.is_lifetime() { + if let Some(question_span) = question { + self.span_err(question_span, + "`?` may only modify trait bounds, not lifetime bounds"); + } + bounds.push(GenericBound::Outlives(self.expect_lifetime())); + if has_parens { + let inner_span = inner_lo.to(self.prev_span); + self.expect(&token::CloseDelim(token::Paren))?; + let mut err = self.struct_span_err( + lo.to(self.prev_span), + "parenthesized lifetime bounds are not supported" + ); + if let Ok(snippet) = self.span_to_snippet(inner_span) { + err.span_suggestion_short( + lo.to(self.prev_span), + "remove the parentheses", + snippet.to_owned(), + Applicability::MachineApplicable + ); + } + err.emit(); + } + } else { + let lifetime_defs = self.parse_late_bound_lifetime_defs()?; + let path = self.parse_path(PathStyle::Type)?; + if has_parens { + self.expect(&token::CloseDelim(token::Paren))?; + } + let poly_span = lo.to(self.prev_span); + if is_negative { + was_negative = true; + if let Some(sp) = last_plus_span.or(colon_span) { + negative_bounds.push(sp.to(poly_span)); + } + } else { + let poly_trait = PolyTraitRef::new(lifetime_defs, path, poly_span); + let modifier = if question.is_some() { + TraitBoundModifier::Maybe + } else { + TraitBoundModifier::None + }; + bounds.push(GenericBound::Trait(poly_trait, modifier)); + } + } + } else { + break + } + + if !allow_plus || !self.eat_plus() { + break + } else { + last_plus_span = Some(self.prev_span); + } + } + + if !negative_bounds.is_empty() || was_negative { + let plural = negative_bounds.len() > 1; + let last_span = negative_bounds.last().map(|sp| *sp); + let mut err = self.struct_span_err( + negative_bounds, + "negative trait bounds are not supported", + ); + if let Some(sp) = last_span { + err.span_label(sp, "negative trait bounds are not supported"); + } + if let Some(bound_list) = colon_span { + let bound_list = bound_list.to(self.prev_span); + let mut new_bound_list = String::new(); + if !bounds.is_empty() { + let mut snippets = bounds.iter().map(|bound| bound.span()) + .map(|span| self.span_to_snippet(span)); + while let Some(Ok(snippet)) = snippets.next() { + new_bound_list.push_str(" + "); + new_bound_list.push_str(&snippet); + } + new_bound_list = new_bound_list.replacen(" +", ":", 1); + } + err.span_suggestion_hidden( + bound_list, + &format!("remove the trait bound{}", if plural { "s" } else { "" }), + new_bound_list, + Applicability::MachineApplicable, + ); + } + err.emit(); + } + + return Ok(bounds); + } + + // TODO remove super below. + + pub(super) fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<GenericParam>> { + if self.eat_keyword(kw::For) { + self.expect_lt()?; + let params = self.parse_generic_params()?; + self.expect_gt()?; + // We rely on AST validation to rule out invalid cases: There must not be type + // parameters, and the lifetime parameters must not have bounds. + Ok(params) + } else { + Ok(Vec::new()) + } + } +} |
