about summary refs log tree commit diff
path: root/src/test/run-pass/thinlto
diff options
context:
space:
mode:
authorbors <bors@rust-lang.org>2017-03-21 19:50:17 +0000
committerbors <bors@rust-lang.org>2017-03-21 19:50:17 +0000
commitcab4bff3de1a61472f3c2e7752ef54b87344d1c9 (patch)
tree4a0c488b1fa8fcef586b4fc81459675435134e60 /src/test/run-pass/thinlto
parent58c701f5c7dc26d9b55c631006ece52abe1ddce2 (diff)
parenta718051f63308638ecf40a7570dbd18f4fc99703 (diff)
downloadrust-cab4bff3de1a61472f3c2e7752ef54b87344d1c9.tar.gz
rust-cab4bff3de1a61472f3c2e7752ef54b87344d1c9.zip
Auto merge of #40601 - stjepang:sort-unstable, r=alexcrichton
Implement feature sort_unstable

Tracking issue for the feature: #40585

This is essentially integration of [pdqsort](https://github.com/stjepang/pdqsort) into libcore.

There's plenty of unsafe blocks to review. The heart of pdqsort is `fn partition_in_blocks` and is probably the most challenging function to understand. It requires some patience, but let me know if you find it too difficult - comments could always be improved.

#### Changes

* Added `sort_unstable` feature.
* Tweaked insertion sort constants for stable sort. Sorting integers is now up to 5% slower, but sorting big elements is much faster (in particular, `sort_large_big_random` is 35% faster). The old constants were highly optimized for sorting integers, so overall the configuration is more balanced now. A minor regression in case of integers is forgivable as we recently had performance improvements (#39538) that completely make up for it.
* Removed some uninteresting sort benchmarks.
* Added a new sort benchmark for string sorting.

#### Benchmarks

The following table compares stable and unstable sorting:
```
name                                 stable ns/iter        unstable ns/iter     diff ns/iter   diff %
slice::sort_large_ascending          7,240 (11049 MB/s)    7,380 (10840 MB/s)            140    1.93%
slice::sort_large_big_random         1,454,138 (880 MB/s)  910,269 (1406 MB/s)      -543,869  -37.40%
slice::sort_large_descending         13,450 (5947 MB/s)    10,895 (7342 MB/s)         -2,555  -19.00%
slice::sort_large_mostly_ascending   204,041 (392 MB/s)    88,639 (902 MB/s)        -115,402  -56.56%
slice::sort_large_mostly_descending  217,109 (368 MB/s)    99,009 (808 MB/s)        -118,100  -54.40%
slice::sort_large_random             477,257 (167 MB/s)    346,028 (231 MB/s)       -131,229  -27.50%
slice::sort_large_random_expensive   21,670,537 (3 MB/s)   22,710,238 (3 MB/s)     1,039,701    4.80%
slice::sort_large_strings            6,284,499 (38 MB/s)   6,410,896 (37 MB/s)       126,397    2.01%
slice::sort_medium_random            3,515 (227 MB/s)      3,327 (240 MB/s)             -188   -5.35%
slice::sort_small_ascending          42 (1904 MB/s)        41 (1951 MB/s)                 -1   -2.38%
slice::sort_small_big_random         503 (2544 MB/s)       514 (2490 MB/s)                11    2.19%
slice::sort_small_descending         72 (1111 MB/s)        69 (1159 MB/s)                 -3   -4.17%
slice::sort_small_random             369 (216 MB/s)        367 (217 MB/s)                 -2   -0.54%
```

Interesting cases:
* Expensive comparison function and string sorting - it's a really close race, but timsort performs a slightly smaller number of comparisons. This is a natural difference of bottom-up merging versus top-down partitioning.
* `large_descending` - unstable sort is faster, but both sorts should have equivalent performance. Both just check whether the slice is descending and if so, they reverse it. I blame LLVM for the discrepancy.

r? @alexcrichton
Diffstat (limited to 'src/test/run-pass/thinlto')
0 files changed, 0 insertions, 0 deletions