about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/check_match.rs4
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs (renamed from compiler/rustc_mir_build/src/thir/pattern/_match.rs)2298
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/mod.rs3
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/usefulness.rs992
4 files changed, 1661 insertions, 1636 deletions
diff --git a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
index f9fe261bcee..97edbd83b89 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
+++ b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
@@ -1,5 +1,5 @@
-use super::_match::Usefulness::*;
-use super::_match::{
+use super::usefulness::Usefulness::*;
+use super::usefulness::{
     compute_match_usefulness, expand_pattern, MatchArm, MatchCheckCtxt, UsefulnessReport,
 };
 use super::{PatCtxt, PatKind, PatternError};
diff --git a/compiler/rustc_mir_build/src/thir/pattern/_match.rs b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
index f299663f679..62b4468eeb3 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/_match.rs
+++ b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
@@ -1,322 +1,16 @@
-//! Note: tests specific to this file can be found in:
-//!
-//!   - `ui/pattern/usefulness`
-//!   - `ui/or-patterns`
-//!   - `ui/consts/const_in_pattern`
-//!   - `ui/rfc-2008-non-exhaustive`
-//!   - `ui/half-open-range-patterns`
-//!   - probably many others
-//!
-//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
-//! reason not to, for example if they depend on a particular feature like `or_patterns`.
-//!
-//! -----
-//!
-//! This file includes the logic for exhaustiveness and usefulness checking for
-//! pattern-matching. Specifically, given a list of patterns for a type, we can
-//! tell whether:
-//! (a) the patterns cover every possible constructor for the type (exhaustiveness)
-//! (b) each pattern is necessary (usefulness)
-//!
-//! The algorithm implemented here is a modified version of the one described in
-//! [this paper](http://moscova.inria.fr/~maranget/papers/warn/index.html).
-//! However, to save future implementors from reading the original paper, we
-//! summarise the algorithm here to hopefully save time and be a little clearer
-//! (without being so rigorous).
-//!
-//! # Premise
-//!
-//! The core of the algorithm revolves about a "usefulness" check. In particular, we
-//! are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
-//! a matrix). `U(P, p)` represents whether, given an existing list of patterns
-//! `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
-//! uncovered values of the type).
-//!
-//! If we have this predicate, then we can easily compute both exhaustiveness of an
-//! entire set of patterns and the individual usefulness of each one.
-//! (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
-//! match doesn't increase the number of values we're matching)
-//! (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
-//! pattern to those that have come before it doesn't increase the number of values
-//! we're matching).
-//!
-//! # Core concept
-//!
-//! The idea that powers everything that is done in this file is the following: a value is made
-//! from a constructor applied to some fields. Examples of constructors are `Some`, `None`, `(,)`
-//! (the 2-tuple constructor), `Foo {..}` (the constructor for a struct `Foo`), and `2` (the
-//! constructor for the number `2`). Fields are just a (possibly empty) list of values.
-//!
-//! Some of the constructors listed above might feel weird: `None` and `2` don't take any
-//! arguments. This is part of what makes constructors so general: we will consider plain values
-//! like numbers and string literals to be constructors that take no arguments, also called "0-ary
-//! constructors"; they are the simplest case of constructors. This allows us to see any value as
-//! made up from a tree of constructors, each having a given number of children. For example:
-//! `(None, Ok(0))` is made from 4 different constructors.
-//!
-//! This idea can be extended to patterns: a pattern captures a set of possible values, and we can
-//! describe this set using constructors. For example, `Err(_)` captures all values of the type
-//! `Result<T, E>` that start with the `Err` constructor (for some choice of `T` and `E`). The
-//! wildcard `_` captures all values of the given type starting with any of the constructors for
-//! that type.
-//!
-//! We use this to compute whether different patterns might capture a same value. Do the patterns
-//! `Ok("foo")` and `Err(_)` capture a common value? The answer is no, because the first pattern
-//! captures only values starting with the `Ok` constructor and the second only values starting
-//! with the `Err` constructor. Do the patterns `Some(42)` and `Some(1..10)` intersect? They might,
-//! since they both capture values starting with `Some`. To be certain, we need to dig under the
-//! `Some` constructor and continue asking the question. This is the main idea behind the
-//! exhaustiveness algorithm: by looking at patterns constructor-by-constructor, we can efficiently
-//! figure out if some new pattern might capture a value that hadn't been captured by previous
-//! patterns.
-//!
-//! Constructors are represented by the `Constructor` enum, and its fields by the `Fields` enum.
-//! Most of the complexity of this file resides in transforming between patterns and
-//! (`Constructor`, `Fields`) pairs, handling all the special cases correctly.
-//!
-//! Caveat: this constructors/fields distinction doesn't quite cover every Rust value. For example
-//! a value of type `Rc<u64>` doesn't fit this idea very well, nor do various other things.
-//! However, this idea covers most of the cases that are relevant to exhaustiveness checking.
-//!
-//!
-//! # Algorithm
-//!
-//! Recall that `U(P, p)` represents whether, given an existing list of patterns (aka matrix) `P`,
-//! adding a new pattern `p` will cover previously-uncovered values of the type.
-//! During the course of the algorithm, the rows of the matrix won't just be individual patterns,
-//! but rather partially-deconstructed patterns in the form of a list of fields. The paper
-//! calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
-//! new pattern `p`.
-//!
-//! For example, say we have the following:
-//!
-//! ```
-//! // x: (Option<bool>, Result<()>)
-//! match x {
-//!     (Some(true), _) => {}
-//!     (None, Err(())) => {}
-//!     (None, Err(_)) => {}
-//! }
-//! ```
-//!
-//! Here, the matrix `P` starts as:
-//!
-//! ```
-//! [
-//!     [(Some(true), _)],
-//!     [(None, Err(()))],
-//!     [(None, Err(_))],
-//! ]
-//! ```
-//!
-//! We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
-//! `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
-//! all the values it covers are already covered by row 2.
-//!
-//! A list of patterns can be thought of as a stack, because we are mainly interested in the top of
-//! the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
-//! To match the paper, the top of the stack is at the beginning / on the left.
-//!
-//! There are two important operations on pattern-stacks necessary to understand the algorithm:
-//!
-//! 1. We can pop a given constructor off the top of a stack. This operation is called
-//!    `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
-//!    `None`) and `p` a pattern-stack.
-//!    If the pattern on top of the stack can cover `c`, this removes the constructor and
-//!    pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
-//!    Otherwise the pattern-stack is discarded.
-//!    This essentially filters those pattern-stacks whose top covers the constructor `c` and
-//!    discards the others.
-//!
-//!    For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
-//!    pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
-//!    `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
-//!    nothing back.
-//!
-//!    This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
-//!    on top of the stack, and we have four cases:
-//!
-//!      1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
-//!           push onto the stack the arguments of this constructor, and return the result:
-//!              `r_1, .., r_a, p_2, .., p_n`
-//!
-//!      1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
-//!           return nothing.
-//!
-//!         1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
-//!              arguments (its arity), and return the resulting stack:
-//!                 `_, .., _, p_2, .., p_n`
-//!
-//!         1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
-//!              stack:
-//!                 - `S(c, (r_1, p_2, .., p_n))`
-//!                 - `S(c, (r_2, p_2, .., p_n))`
-//!
-//! 2. We can pop a wildcard off the top of the stack. This is called `S(_, p)`, where `p` is
-//!    a pattern-stack. Note: the paper calls this `D(p)`.
-//!    This is used when we know there are missing constructor cases, but there might be
-//!    existing wildcard patterns, so to check the usefulness of the matrix, we have to check
-//!    all its *other* components.
-//!
-//!    It is computed as follows. We look at the pattern `p_1` on top of the stack,
-//!    and we have three cases:
-//!         2.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
-//!         2.2. `p_1 = _`. We return the rest of the stack:
-//!                 p_2, .., p_n
-//!         2.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
-//!           stack.
-//!                 - `S(_, (r_1, p_2, .., p_n))`
-//!                 - `S(_, (r_2, p_2, .., p_n))`
-//!
-//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
-//! exhaustive integer matching rules, so they're written here for posterity.
-//!
-//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
-//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
-//! the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
-//!
-//!
-//! The algorithm for computing `U`
-//! -------------------------------
-//! The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
-//! That means we're going to check the components from left-to-right, so the algorithm
-//! operates principally on the first component of the matrix and new pattern-stack `p`.
-//! This algorithm is realised in the `is_useful` function.
-//!
-//! Base case. (`n = 0`, i.e., an empty tuple pattern)
-//!     - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`),
-//!       then `U(P, p)` is false.
-//!     - Otherwise, `P` must be empty, so `U(P, p)` is true.
-//!
-//! Inductive step. (`n > 0`, i.e., whether there's at least one column
-//!                  [which may then be expanded into further columns later])
-//! We're going to match on the top of the new pattern-stack, `p_1`.
-//!     - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
-//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
-//! we ignore all the patterns in the first column of `P` that involve other constructors.
-//! This is where `S(c, P)` comes in:
-//! `U(P, p) := U(S(c, P), S(c, p))`
-//!
-//! For example, if `P` is:
-//!
-//! ```
-//! [
-//!     [Some(true), _],
-//!     [None, 0],
-//! ]
-//! ```
-//!
-//! and `p` is `[Some(false), 0]`, then we don't care about row 2 since we know `p` only
-//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
-//! arguments of `Some` to know whether some new value is covered. So we compute
-//! `U([[true, _]], [false, 0])`.
-//!
-//!   - If `p_1 == _`, then we look at the list of constructors that appear in the first
-//! component of the rows of `P`:
-//!   + If there are some constructors that aren't present, then we might think that the
-//! wildcard `_` is useful, since it covers those constructors that weren't covered
-//! before.
-//! That's almost correct, but only works if there were no wildcards in those first
-//! components. So we need to check that `p` is useful with respect to the rows that
-//! start with a wildcard, if there are any. This is where `S(_, x)` comes in:
-//! `U(P, p) := U(S(_, P), S(_, p))`
-//!
-//! For example, if `P` is:
-//!
-//! ```
-//! [
-//!     [_, true, _],
-//!     [None, false, 1],
-//! ]
-//! ```
-//!
-//! and `p` is `[_, false, _]`, the `Some` constructor doesn't appear in `P`. So if we
-//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
-//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
-//!
-//!   + Otherwise, all possible constructors (for the relevant type) are present. In this
-//! case we must check whether the wildcard pattern covers any unmatched value. For
-//! that, we can think of the `_` pattern as a big OR-pattern that covers all
-//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
-//! example. The wildcard pattern is useful in this case if it is useful when
-//! specialized to one of the possible constructors. So we compute:
-//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
-//!
-//! For example, if `P` is:
-//!
-//! ```
-//! [
-//!     [Some(true), _],
-//!     [None, false],
-//! ]
-//! ```
-//!
-//! and `p` is `[_, false]`, both `None` and `Some` constructors appear in the first
-//! components of `P`. We will therefore try popping both constructors in turn: we
-//! compute `U([[true, _]], [_, false])` for the `Some` constructor, and `U([[false]],
-//! [false])` for the `None` constructor. The first case returns true, so we know that
-//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
-//! before.
-//!
-//!   - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
-//! `U(P, p) := U(P, (r_1, p_2, .., p_n))
-//!  || U(P, (r_2, p_2, .., p_n))`
-//!
-//! Modifications to the algorithm
-//! ------------------------------
-//! The algorithm in the paper doesn't cover some of the special cases that arise in Rust, for
-//! example uninhabited types and variable-length slice patterns. These are drawn attention to
-//! throughout the code below. I'll make a quick note here about how exhaustive integer matching is
-//! accounted for, though.
-//!
-//! Exhaustive integer matching
-//! ---------------------------
-//! An integer type can be thought of as a (huge) sum type: 1 | 2 | 3 | ...
-//! So to support exhaustive integer matching, we can make use of the logic in the paper for
-//! OR-patterns. However, we obviously can't just treat ranges x..=y as individual sums, because
-//! they are likely gigantic. So we instead treat ranges as constructors of the integers. This means
-//! that we have a constructor *of* constructors (the integers themselves). We then need to work
-//! through all the inductive step rules above, deriving how the ranges would be treated as
-//! OR-patterns, and making sure that they're treated in the same way even when they're ranges.
-//! There are really only four special cases here:
-//! - When we match on a constructor that's actually a range, we have to treat it as if we would
-//!   an OR-pattern.
-//!     + It turns out that we can simply extend the case for single-value patterns in
-//!      `specialize` to either be *equal* to a value constructor, or *contained within* a range
-//!      constructor.
-//!     + When the pattern itself is a range, you just want to tell whether any of the values in
-//!       the pattern range coincide with values in the constructor range, which is precisely
-//!       intersection.
-//!   Since when encountering a range pattern for a value constructor, we also use inclusion, it
-//!   means that whenever the constructor is a value/range and the pattern is also a value/range,
-//!   we can simply use intersection to test usefulness.
-//! - When we're testing for usefulness of a pattern and the pattern's first component is a
-//!   wildcard.
-//!     + If all the constructors appear in the matrix, we have a slight complication. By default,
-//!       the behaviour (i.e., a disjunction over specialised matrices for each constructor) is
-//!       invalid, because we want a disjunction over every *integer* in each range, not just a
-//!       disjunction over every range. This is a bit more tricky to deal with: essentially we need
-//!       to form equivalence classes of subranges of the constructor range for which the behaviour
-//!       of the matrix `P` and new pattern `p` are the same. This is described in more
-//!       detail in `Constructor::split`.
-//!     + If some constructors are missing from the matrix, it turns out we don't need to do
-//!       anything special (because we know none of the integers are actually wildcards: i.e., we
-//!       can't span wildcards using ranges).
-
+//! This module provides functions to deconstruct and reconstruct patterns into a constructor
+//! applied to some fields. This is used by the `_match` module to compute pattern
+//! usefulness/exhaustiveness.
 use self::Constructor::*;
 use self::SliceKind::*;
-use self::Usefulness::*;
-use self::WitnessPreference::*;
+
+use super::compare_const_vals;
+use super::usefulness::{MatchCheckCtxt, PatCtxt};
+use super::{FieldPat, Pat, PatKind, PatRange};
 
 use rustc_data_structures::captures::Captures;
-use rustc_data_structures::fx::FxHashSet;
-use rustc_data_structures::sync::OnceCell;
 use rustc_index::vec::Idx;
 
-use super::{compare_const_vals, PatternFoldable, PatternFolder};
-use super::{FieldPat, Pat, PatKind, PatRange};
-
-use rustc_arena::TypedArena;
 use rustc_attr::{SignedInt, UnsignedInt};
 use rustc_hir::def_id::DefId;
 use rustc_hir::{HirId, RangeEnd};
@@ -330,281 +24,344 @@ use rustc_target::abi::{Integer, Size, VariantIdx};
 
 use smallvec::{smallvec, SmallVec};
 use std::cmp::{self, max, min, Ordering};
-use std::fmt;
-use std::iter::{FromIterator, IntoIterator};
+use std::iter::IntoIterator;
 use std::ops::RangeInclusive;
 
-crate fn expand_pattern<'tcx>(pat: Pat<'tcx>) -> Pat<'tcx> {
-    LiteralExpander.fold_pattern(&pat)
-}
-
-struct LiteralExpander;
-
-impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
-    fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
-        debug!("fold_pattern {:?} {:?} {:?}", pat, pat.ty.kind(), pat.kind);
-        match (pat.ty.kind(), pat.kind.as_ref()) {
-            (_, PatKind::Binding { subpattern: Some(s), .. }) => s.fold_with(self),
-            (_, PatKind::AscribeUserType { subpattern: s, .. }) => s.fold_with(self),
-            (ty::Ref(_, t, _), PatKind::Constant { .. }) if t.is_str() => {
-                // Treat string literal patterns as deref patterns to a `str` constant, i.e.
-                // `&CONST`. This expands them like other const patterns. This could have been done
-                // in `const_to_pat`, but that causes issues with the rest of the matching code.
-                let mut new_pat = pat.super_fold_with(self);
-                // Make a fake const pattern of type `str` (instead of `&str`). That the carried
-                // constant value still knows it is of type `&str`.
-                new_pat.ty = t;
-                Pat {
-                    kind: Box::new(PatKind::Deref { subpattern: new_pat }),
-                    span: pat.span,
-                    ty: pat.ty,
-                }
-            }
-            _ => pat.super_fold_with(self),
-        }
-    }
-}
-
-impl<'tcx> Pat<'tcx> {
-    pub(super) fn is_wildcard(&self) -> bool {
-        matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
-    }
-}
-
-/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
-/// works well.
-#[derive(Debug, Clone)]
-struct PatStack<'p, 'tcx> {
-    pats: SmallVec<[&'p Pat<'tcx>; 2]>,
-    /// Cache for the constructor of the head
-    head_ctor: OnceCell<Constructor<'tcx>>,
+/// An inclusive interval, used for precise integer exhaustiveness checking.
+/// `IntRange`s always store a contiguous range. This means that values are
+/// encoded such that `0` encodes the minimum value for the integer,
+/// regardless of the signedness.
+/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
+/// This makes comparisons and arithmetic on interval endpoints much more
+/// straightforward. See `signed_bias` for details.
+///
+/// `IntRange` is never used to encode an empty range or a "range" that wraps
+/// around the (offset) space: i.e., `range.lo <= range.hi`.
+#[derive(Clone, Debug)]
+pub(super) struct IntRange<'tcx> {
+    range: RangeInclusive<u128>,
+    ty: Ty<'tcx>,
+    span: Span,
 }
 
-impl<'p, 'tcx> PatStack<'p, 'tcx> {
-    fn from_pattern(pat: &'p Pat<'tcx>) -> Self {
-        Self::from_vec(smallvec![pat])
-    }
-
-    fn from_vec(vec: SmallVec<[&'p Pat<'tcx>; 2]>) -> Self {
-        PatStack { pats: vec, head_ctor: OnceCell::new() }
+impl<'tcx> IntRange<'tcx> {
+    #[inline]
+    fn is_integral(ty: Ty<'_>) -> bool {
+        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
     }
 
-    fn is_empty(&self) -> bool {
-        self.pats.is_empty()
+    fn is_singleton(&self) -> bool {
+        self.range.start() == self.range.end()
     }
 
-    fn len(&self) -> usize {
-        self.pats.len()
+    fn boundaries(&self) -> (u128, u128) {
+        (*self.range.start(), *self.range.end())
     }
 
-    fn head(&self) -> &'p Pat<'tcx> {
-        self.pats[0]
+    /// Don't treat `usize`/`isize` exhaustively unless the `precise_pointer_size_matching` feature
+    /// is enabled.
+    fn treat_exhaustively(&self, tcx: TyCtxt<'tcx>) -> bool {
+        !self.ty.is_ptr_sized_integral() || tcx.features().precise_pointer_size_matching
     }
 
-    fn head_ctor<'a>(&'a self, cx: &MatchCheckCtxt<'p, 'tcx>) -> &'a Constructor<'tcx> {
-        self.head_ctor.get_or_init(|| pat_constructor(cx, self.head()))
+    #[inline]
+    fn integral_size_and_signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'_>) -> Option<(Size, u128)> {
+        match *ty.kind() {
+            ty::Bool => Some((Size::from_bytes(1), 0)),
+            ty::Char => Some((Size::from_bytes(4), 0)),
+            ty::Int(ity) => {
+                let size = Integer::from_attr(&tcx, SignedInt(ity)).size();
+                Some((size, 1u128 << (size.bits() as u128 - 1)))
+            }
+            ty::Uint(uty) => Some((Integer::from_attr(&tcx, UnsignedInt(uty)).size(), 0)),
+            _ => None,
+        }
     }
 
-    fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
-        self.pats.iter().copied()
+    #[inline]
+    fn from_const(
+        tcx: TyCtxt<'tcx>,
+        param_env: ty::ParamEnv<'tcx>,
+        value: &Const<'tcx>,
+        span: Span,
+    ) -> Option<IntRange<'tcx>> {
+        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
+            let ty = value.ty;
+            let val = (|| {
+                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
+                    // For this specific pattern we can skip a lot of effort and go
+                    // straight to the result, after doing a bit of checking. (We
+                    // could remove this branch and just fall through, which
+                    // is more general but much slower.)
+                    if let Ok(bits) = scalar.to_bits_or_ptr(target_size, &tcx) {
+                        return Some(bits);
+                    }
+                }
+                // This is a more general form of the previous case.
+                value.try_eval_bits(tcx, param_env, ty)
+            })()?;
+            let val = val ^ bias;
+            Some(IntRange { range: val..=val, ty, span })
+        } else {
+            None
+        }
     }
 
-    // If the first pattern is an or-pattern, expand this pattern. Otherwise, return `None`.
-    fn expand_or_pat(&self) -> Option<Vec<Self>> {
-        if self.is_empty() {
-            None
-        } else if let PatKind::Or { pats } = &*self.head().kind {
-            Some(
-                pats.iter()
-                    .map(|pat| {
-                        let mut new_patstack = PatStack::from_pattern(pat);
-                        new_patstack.pats.extend_from_slice(&self.pats[1..]);
-                        new_patstack
-                    })
-                    .collect(),
-            )
+    #[inline]
+    fn from_range(
+        tcx: TyCtxt<'tcx>,
+        lo: u128,
+        hi: u128,
+        ty: Ty<'tcx>,
+        end: &RangeEnd,
+        span: Span,
+    ) -> Option<IntRange<'tcx>> {
+        if Self::is_integral(ty) {
+            // Perform a shift if the underlying types are signed,
+            // which makes the interval arithmetic simpler.
+            let bias = IntRange::signed_bias(tcx, ty);
+            let (lo, hi) = (lo ^ bias, hi ^ bias);
+            let offset = (*end == RangeEnd::Excluded) as u128;
+            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
+                // This should have been caught earlier by E0030.
+                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
+            }
+            Some(IntRange { range: lo..=(hi - offset), ty, span })
         } else {
             None
         }
     }
 
-    /// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
-    ///
-    /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
-    /// fields filled with wild patterns.
-    ///
-    /// This is roughly the inverse of `Constructor::apply`.
-    fn pop_head_constructor(&self, ctor_wild_subpatterns: &Fields<'p, 'tcx>) -> PatStack<'p, 'tcx> {
-        // We pop the head pattern and push the new fields extracted from the arguments of
-        // `self.head()`.
-        let new_fields = ctor_wild_subpatterns.replace_with_pattern_arguments(self.head());
-        new_fields.push_on_patstack(&self.pats[1..])
+    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
+    fn signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> u128 {
+        match *ty.kind() {
+            ty::Int(ity) => {
+                let bits = Integer::from_attr(&tcx, SignedInt(ity)).size().bits() as u128;
+                1u128 << (bits - 1)
+            }
+            _ => 0,
+        }
     }
-}
 
-impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
-    fn default() -> Self {
-        Self::from_vec(smallvec![])
+    fn is_subrange(&self, other: &Self) -> bool {
+        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
     }
-}
 
-impl<'p, 'tcx> PartialEq for PatStack<'p, 'tcx> {
-    fn eq(&self, other: &Self) -> bool {
-        self.pats == other.pats
+    fn intersection(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Option<Self> {
+        let ty = self.ty;
+        let (lo, hi) = self.boundaries();
+        let (other_lo, other_hi) = other.boundaries();
+        if self.treat_exhaustively(tcx) {
+            if lo <= other_hi && other_lo <= hi {
+                let span = other.span;
+                Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), ty, span })
+            } else {
+                None
+            }
+        } else {
+            // If the range should not be treated exhaustively, fallback to checking for inclusion.
+            if self.is_subrange(other) { Some(self.clone()) } else { None }
+        }
     }
-}
 
-impl<'p, 'tcx> FromIterator<&'p Pat<'tcx>> for PatStack<'p, 'tcx> {
-    fn from_iter<T>(iter: T) -> Self
-    where
-        T: IntoIterator<Item = &'p Pat<'tcx>>,
-    {
-        Self::from_vec(iter.into_iter().collect())
+    fn suspicious_intersection(&self, other: &Self) -> bool {
+        // `false` in the following cases:
+        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
+        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
+        //
+        // The following are currently `false`, but could be `true` in the future (#64007):
+        // 1 ---------       // 1     ---------
+        // 2     ----------  // 2 ----------
+        //
+        // `true` in the following cases:
+        // 1 -------          // 1       -------
+        // 2       --------   // 2 -------
+        let (lo, hi) = self.boundaries();
+        let (other_lo, other_hi) = other.boundaries();
+        lo == other_hi || hi == other_lo
     }
-}
 
-/// A 2D matrix.
-#[derive(Clone, PartialEq)]
-struct Matrix<'p, 'tcx> {
-    patterns: Vec<PatStack<'p, 'tcx>>,
-}
+    fn to_pat(&self, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
+        let (lo, hi) = self.boundaries();
 
-impl<'p, 'tcx> Matrix<'p, 'tcx> {
-    fn empty() -> Self {
-        Matrix { patterns: vec![] }
-    }
+        let bias = IntRange::signed_bias(tcx, self.ty);
+        let (lo, hi) = (lo ^ bias, hi ^ bias);
 
-    /// Pushes a new row to the matrix. If the row starts with an or-pattern, this expands it.
-    fn push(&mut self, row: PatStack<'p, 'tcx>) {
-        if let Some(rows) = row.expand_or_pat() {
-            for row in rows {
-                // We recursively expand the or-patterns of the new rows.
-                // This is necessary as we might have `0 | (1 | 2)` or e.g., `x @ 0 | x @ (1 | 2)`.
-                self.push(row)
-            }
-        } else {
-            self.patterns.push(row);
-        }
-    }
+        let ty = ty::ParamEnv::empty().and(self.ty);
+        let lo_const = ty::Const::from_bits(tcx, lo, ty);
+        let hi_const = ty::Const::from_bits(tcx, hi, ty);
 
-    /// Iterate over the first component of each row
-    fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
-        self.patterns.iter().map(|r| r.head())
-    }
+        let kind = if lo == hi {
+            PatKind::Constant { value: lo_const }
+        } else {
+            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
+        };
 
-    /// Iterate over the first constructor of each row
-    fn head_ctors<'a>(
-        &'a self,
-        cx: &'a MatchCheckCtxt<'p, 'tcx>,
-    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'a> + Captures<'p> {
-        self.patterns.iter().map(move |r| r.head_ctor(cx))
+        // This is a brand new pattern, so we don't reuse `self.span`.
+        Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(kind) }
     }
 
-    /// This computes `S(constructor, self)`. See top of the file for explanations.
-    fn specialize_constructor(
+    /// For exhaustive integer matching, some constructors are grouped within other constructors
+    /// (namely integer typed values are grouped within ranges). However, when specialising these
+    /// constructors, we want to be specialising for the underlying constructors (the integers), not
+    /// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
+    /// mean creating a separate constructor for every single value in the range, which is clearly
+    /// impractical. However, observe that for some ranges of integers, the specialisation will be
+    /// identical across all values in that range (i.e., there are equivalence classes of ranges of
+    /// constructors based on their `U(S(c, P), S(c, p))` outcome). These classes are grouped by
+    /// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
+    /// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
+    /// change.
+    /// Our solution, therefore, is to split the range constructor into subranges at every single point
+    /// the group of intersecting patterns changes (using the method described below).
+    /// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
+    /// on actual integers. The nice thing about this is that the number of subranges is linear in the
+    /// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
+    /// need to be worried about matching over gargantuan ranges.
+    ///
+    /// Essentially, given the first column of a matrix representing ranges, looking like the following:
+    ///
+    /// |------|  |----------| |-------|    ||
+    ///    |-------| |-------|            |----| ||
+    ///       |---------|
+    ///
+    /// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
+    ///
+    /// |--|--|||-||||--||---|||-------|  |-|||| ||
+    ///
+    /// The logic for determining how to split the ranges is fairly straightforward: we calculate
+    /// boundaries for each interval range, sort them, then create constructors for each new interval
+    /// between every pair of boundary points. (This essentially sums up to performing the intuitive
+    /// merging operation depicted above.)
+    fn split<'p>(
         &self,
         pcx: PatCtxt<'_, 'p, 'tcx>,
-        ctor: &Constructor<'tcx>,
-        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
-    ) -> Matrix<'p, 'tcx> {
-        self.patterns
-            .iter()
-            .filter(|r| ctor.is_covered_by(pcx, r.head_ctor(pcx.cx)))
-            .map(|r| r.pop_head_constructor(ctor_wild_subpatterns))
-            .collect()
-    }
-}
+        hir_id: Option<HirId>,
+    ) -> SmallVec<[Constructor<'tcx>; 1]> {
+        let ty = pcx.ty;
 
-/// Pretty-printer for matrices of patterns, example:
-///
-/// ```text
-/// +++++++++++++++++++++++++++++
-/// + _     + []                +
-/// +++++++++++++++++++++++++++++
-/// + true  + [First]           +
-/// +++++++++++++++++++++++++++++
-/// + true  + [Second(true)]    +
-/// +++++++++++++++++++++++++++++
-/// + false + [_]               +
-/// +++++++++++++++++++++++++++++
-/// + _     + [_, _, tail @ ..] +
-/// +++++++++++++++++++++++++++++
-/// ```
-impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        write!(f, "\n")?;
-
-        let Matrix { patterns: m, .. } = self;
-        let pretty_printed_matrix: Vec<Vec<String>> =
-            m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
-
-        let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
-        assert!(m.iter().all(|row| row.len() == column_count));
-        let column_widths: Vec<usize> = (0..column_count)
-            .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
-            .collect();
-
-        let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
-        let br = "+".repeat(total_width);
-        write!(f, "{}\n", br)?;
-        for row in pretty_printed_matrix {
-            write!(f, "+")?;
-            for (column, pat_str) in row.into_iter().enumerate() {
-                write!(f, " ")?;
-                write!(f, "{:1$}", pat_str, column_widths[column])?;
-                write!(f, " +")?;
-            }
-            write!(f, "\n")?;
-            write!(f, "{}\n", br)?;
+        /// Represents a border between 2 integers. Because the intervals spanning borders
+        /// must be able to cover every integer, we need to be able to represent
+        /// 2^128 + 1 such borders.
+        #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
+        enum Border {
+            JustBefore(u128),
+            AfterMax,
         }
-        Ok(())
-    }
-}
 
-impl<'p, 'tcx> FromIterator<PatStack<'p, 'tcx>> for Matrix<'p, 'tcx> {
-    fn from_iter<T>(iter: T) -> Self
-    where
-        T: IntoIterator<Item = PatStack<'p, 'tcx>>,
-    {
-        let mut matrix = Matrix::empty();
-        for x in iter {
-            // Using `push` ensures we correctly expand or-patterns.
-            matrix.push(x);
+        // A function for extracting the borders of an integer interval.
+        fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
+            let (lo, hi) = r.range.into_inner();
+            let from = Border::JustBefore(lo);
+            let to = match hi.checked_add(1) {
+                Some(m) => Border::JustBefore(m),
+                None => Border::AfterMax,
+            };
+            vec![from, to].into_iter()
         }
-        matrix
+
+        // Collect the span and range of all the intersecting ranges to lint on likely
+        // incorrect range patterns. (#63987)
+        let mut overlaps = vec![];
+        let row_len = pcx.matrix.column_count().unwrap_or(0);
+        // `borders` is the set of borders between equivalence classes: each equivalence
+        // class lies between 2 borders.
+        let row_borders = pcx
+            .matrix
+            .head_ctors(pcx.cx)
+            .filter_map(|ctor| ctor.as_int_range())
+            .filter_map(|range| {
+                let intersection = self.intersection(pcx.cx.tcx, &range);
+                let should_lint = self.suspicious_intersection(&range);
+                if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
+                    // FIXME: for now, only check for overlapping ranges on simple range
+                    // patterns. Otherwise with the current logic the following is detected
+                    // as overlapping:
+                    //   match (10u8, true) {
+                    //    (0 ..= 125, false) => {}
+                    //    (126 ..= 255, false) => {}
+                    //    (0 ..= 255, true) => {}
+                    //  }
+                    overlaps.push(range.clone());
+                }
+                intersection
+            })
+            .flat_map(range_borders);
+        let self_borders = range_borders(self.clone());
+        let mut borders: Vec<_> = row_borders.chain(self_borders).collect();
+        borders.sort_unstable();
+
+        self.lint_overlapping_patterns(pcx.cx.tcx, hir_id, ty, overlaps);
+
+        // We're going to iterate through every adjacent pair of borders, making sure that
+        // each represents an interval of nonnegative length, and convert each such
+        // interval into a constructor.
+        borders
+            .array_windows()
+            .filter_map(|&pair| match pair {
+                [Border::JustBefore(n), Border::JustBefore(m)] => {
+                    if n < m {
+                        Some(n..=(m - 1))
+                    } else {
+                        None
+                    }
+                }
+                [Border::JustBefore(n), Border::AfterMax] => Some(n..=u128::MAX),
+                [Border::AfterMax, _] => None,
+            })
+            .map(|range| IntRange { range, ty, span: pcx.span })
+            .map(IntRange)
+            .collect()
     }
-}
 
-crate struct MatchCheckCtxt<'a, 'tcx> {
-    crate tcx: TyCtxt<'tcx>,
-    /// The module in which the match occurs. This is necessary for
-    /// checking inhabited-ness of types because whether a type is (visibly)
-    /// inhabited can depend on whether it was defined in the current module or
-    /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
-    /// outside it's module and should not be matchable with an empty match
-    /// statement.
-    crate module: DefId,
-    crate param_env: ty::ParamEnv<'tcx>,
-    crate pattern_arena: &'a TypedArena<Pat<'tcx>>,
-}
+    fn lint_overlapping_patterns(
+        &self,
+        tcx: TyCtxt<'tcx>,
+        hir_id: Option<HirId>,
+        ty: Ty<'tcx>,
+        overlaps: Vec<IntRange<'tcx>>,
+    ) {
+        if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
+            tcx.struct_span_lint_hir(
+                lint::builtin::OVERLAPPING_PATTERNS,
+                hir_id,
+                self.span,
+                |lint| {
+                    let mut err = lint.build("multiple patterns covering the same range");
+                    err.span_label(self.span, "overlapping patterns");
+                    for int_range in overlaps {
+                        // Use the real type for user display of the ranges:
+                        err.span_label(
+                            int_range.span,
+                            &format!(
+                                "this range overlaps on `{}`",
+                                IntRange { range: int_range.range, ty, span: DUMMY_SP }.to_pat(tcx),
+                            ),
+                        );
+                    }
+                    err.emit();
+                },
+            );
+        }
+    }
 
-impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
-    fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
-        if self.tcx.features().exhaustive_patterns {
-            self.tcx.is_ty_uninhabited_from(self.module, ty, self.param_env)
+    /// See `Constructor::is_covered_by`
+    fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
+        if self.intersection(pcx.cx.tcx, other).is_some() {
+            // Constructor splitting should ensure that all intersections we encounter are actually
+            // inclusions.
+            assert!(self.is_subrange(other));
+            true
         } else {
             false
         }
     }
+}
 
-    /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
-    fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
-        match ty.kind() {
-            ty::Adt(def, ..) => {
-                def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did.is_local()
-            }
-            _ => false,
-        }
+/// Ignore spans when comparing, they don't carry semantic information as they are only for lints.
+impl<'tcx> std::cmp::PartialEq for IntRange<'tcx> {
+    fn eq(&self, other: &Self) -> bool {
+        self.range == other.range && self.ty == other.ty
     }
 }
 
@@ -639,7 +396,7 @@ impl SliceKind {
 
 /// A constructor for array and slice patterns.
 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
-struct Slice {
+pub(super) struct Slice {
     /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
     array_len: Option<u64>,
     /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
@@ -794,7 +551,7 @@ impl Slice {
 /// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
 /// `Fields`.
 #[derive(Clone, Debug, PartialEq)]
-enum Constructor<'tcx> {
+pub(super) enum Constructor<'tcx> {
     /// The constructor for patterns that have a single constructor, like tuples, struct patterns
     /// and fixed-length arrays.
     Single,
@@ -820,7 +577,7 @@ enum Constructor<'tcx> {
 }
 
 impl<'tcx> Constructor<'tcx> {
-    fn is_wildcard(&self) -> bool {
+    pub(super) fn is_wildcard(&self) -> bool {
         matches!(self, Wildcard)
     }
 
@@ -849,6 +606,67 @@ impl<'tcx> Constructor<'tcx> {
         }
     }
 
+    /// Determines the constructor that the given pattern can be specialized to.
+    pub(super) fn from_pat<'p>(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &'p Pat<'tcx>) -> Self {
+        match pat.kind.as_ref() {
+            PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
+            PatKind::Binding { .. } | PatKind::Wild => Wildcard,
+            PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
+            &PatKind::Variant { adt_def, variant_index, .. } => {
+                Variant(adt_def.variants[variant_index].def_id)
+            }
+            PatKind::Constant { value } => {
+                if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value, pat.span)
+                {
+                    IntRange(int_range)
+                } else {
+                    match pat.ty.kind() {
+                        ty::Float(_) => FloatRange(value, value, RangeEnd::Included),
+                        // In `expand_pattern`, we convert string literals to `&CONST` patterns with
+                        // `CONST` a pattern of type `str`. In truth this contains a constant of type
+                        // `&str`.
+                        ty::Str => Str(value),
+                        // All constants that can be structurally matched have already been expanded
+                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
+                        // opaque.
+                        _ => Opaque,
+                    }
+                }
+            }
+            &PatKind::Range(PatRange { lo, hi, end }) => {
+                let ty = lo.ty;
+                if let Some(int_range) = IntRange::from_range(
+                    cx.tcx,
+                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
+                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
+                    ty,
+                    &end,
+                    pat.span,
+                ) {
+                    IntRange(int_range)
+                } else {
+                    FloatRange(lo, hi, end)
+                }
+            }
+            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
+                let array_len = match pat.ty.kind() {
+                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env)),
+                    ty::Slice(_) => None,
+                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
+                };
+                let prefix = prefix.len() as u64;
+                let suffix = suffix.len() as u64;
+                let kind = if slice.is_some() {
+                    VarLen(prefix, suffix)
+                } else {
+                    FixedLen(prefix + suffix)
+                };
+                Slice(Slice::new(array_len, kind))
+            }
+            PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
+        }
+    }
+
     /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
     /// constructors (like variants, integers or fixed-sized slices). When specializing for these
     /// constructors, we want to be specialising for the actual underlying constructors.
@@ -865,7 +683,11 @@ impl<'tcx> Constructor<'tcx> {
     ///
     /// `hir_id` is `None` when we're evaluating the wildcard pattern. In that case we do not want
     /// to lint for overlapping ranges.
-    fn split<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, hir_id: Option<HirId>) -> SmallVec<[Self; 1]> {
+    pub(super) fn split<'p>(
+        &self,
+        pcx: PatCtxt<'_, 'p, 'tcx>,
+        hir_id: Option<HirId>,
+    ) -> SmallVec<[Self; 1]> {
         debug!("Constructor::split({:#?}, {:#?})", self, pcx.matrix);
 
         match self {
@@ -907,7 +729,7 @@ impl<'tcx> Constructor<'tcx> {
     /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
     /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
     /// this checks for inclusion.
-    fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
+    pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
         // This must be kept in sync with `is_covered_by_any`.
         match (self, other) {
             // Wildcards cover anything
@@ -993,92 +815,204 @@ impl<'tcx> Constructor<'tcx> {
             }
         }
     }
+}
 
-    /// Apply a constructor to a list of patterns, yielding a new pattern. `pats`
-    /// must have as many elements as this constructor's arity.
-    ///
-    /// This is roughly the inverse of `specialize_constructor`.
-    ///
-    /// Examples:
-    /// `self`: `Constructor::Single`
-    /// `ty`: `(u32, u32, u32)`
-    /// `pats`: `[10, 20, _]`
-    /// returns `(10, 20, _)`
-    ///
-    /// `self`: `Constructor::Variant(Option::Some)`
-    /// `ty`: `Option<bool>`
-    /// `pats`: `[false]`
-    /// returns `Some(false)`
-    fn apply<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, fields: Fields<'p, 'tcx>) -> Pat<'tcx> {
-        let mut subpatterns = fields.all_patterns();
+/// This determines the set of all possible constructors of a pattern matching
+/// values of type `left_ty`. For vectors, this would normally be an infinite set
+/// but is instead bounded by the maximum fixed length of slice patterns in
+/// the column of patterns being analyzed.
+///
+/// We make sure to omit constructors that are statically impossible. E.g., for
+/// `Option<!>`, we do not include `Some(_)` in the returned list of constructors.
+/// Invariant: this returns an empty `Vec` if and only if the type is uninhabited (as determined by
+/// `cx.is_uninhabited()`).
+fn all_constructors<'p, 'tcx>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Vec<Constructor<'tcx>> {
+    debug!("all_constructors({:?})", pcx.ty);
+    let cx = pcx.cx;
+    let make_range = |start, end| {
+        IntRange(
+            // `unwrap()` is ok because we know the type is an integer.
+            IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included, pcx.span)
+                .unwrap(),
+        )
+    };
+    match pcx.ty.kind() {
+        ty::Bool => vec![make_range(0, 1)],
+        ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
+            let len = len.eval_usize(cx.tcx, cx.param_env);
+            if len != 0 && cx.is_uninhabited(sub_ty) {
+                vec![]
+            } else {
+                vec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
+            }
+        }
+        // Treat arrays of a constant but unknown length like slices.
+        ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
+            let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
+            vec![Slice(Slice::new(None, kind))]
+        }
+        ty::Adt(def, substs) if def.is_enum() => {
+            // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
+            // additional "unknown" constructor.
+            // There is no point in enumerating all possible variants, because the user can't
+            // actually match against them all themselves. So we always return only the fictitious
+            // constructor.
+            // E.g., in an example like:
+            //
+            // ```
+            //     let err: io::ErrorKind = ...;
+            //     match err {
+            //         io::ErrorKind::NotFound => {},
+            //     }
+            // ```
+            //
+            // we don't want to show every possible IO error, but instead have only `_` as the
+            // witness.
+            let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
 
-        let pat = match self {
-            Single | Variant(_) => match pcx.ty.kind() {
-                ty::Adt(..) | ty::Tuple(..) => {
-                    let subpatterns = subpatterns
-                        .enumerate()
-                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
-                        .collect();
+            // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
+            // as though it had an "unknown" constructor to avoid exposing its emptiness. The
+            // exception is if the pattern is at the top level, because we want empty matches to be
+            // considered exhaustive.
+            let is_secretly_empty = def.variants.is_empty()
+                && !cx.tcx.features().exhaustive_patterns
+                && !pcx.is_top_level;
 
-                    if let ty::Adt(adt, substs) = pcx.ty.kind() {
-                        if adt.is_enum() {
-                            PatKind::Variant {
-                                adt_def: adt,
-                                substs,
-                                variant_index: self.variant_index_for_adt(adt),
-                                subpatterns,
-                            }
-                        } else {
-                            PatKind::Leaf { subpatterns }
-                        }
-                    } else {
-                        PatKind::Leaf { subpatterns }
-                    }
-                }
-                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
-                // be careful to reconstruct the correct constant pattern here. However a string
-                // literal pattern will never be reported as a non-exhaustiveness witness, so we
-                // can ignore this issue.
-                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
-                ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, pcx.ty),
-                _ => PatKind::Wild,
-            },
-            Slice(slice) => match slice.kind {
-                FixedLen(_) => {
-                    PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
-                }
-                VarLen(prefix, _) => {
-                    let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix as usize).collect();
-                    if slice.array_len.is_some() {
-                        // Improves diagnostics a bit: if the type is a known-size array, instead
-                        // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
-                        // This is incorrect if the size is not known, since `[_, ..]` captures
-                        // arrays of lengths `>= 1` whereas `[..]` captures any length.
-                        while !prefix.is_empty() && prefix.last().unwrap().is_wildcard() {
-                            prefix.pop();
-                        }
-                    }
-                    let suffix: Vec<_> = if slice.array_len.is_some() {
-                        // Same as above.
-                        subpatterns.skip_while(Pat::is_wildcard).collect()
-                    } else {
-                        subpatterns.collect()
-                    };
-                    let wild = Pat::wildcard_from_ty(pcx.ty);
-                    PatKind::Slice { prefix, slice: Some(wild), suffix }
-                }
-            },
-            &Str(value) => PatKind::Constant { value },
-            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
-            IntRange(range) => return range.to_pat(pcx.cx.tcx),
-            NonExhaustive => PatKind::Wild,
-            Opaque => bug!("we should not try to apply an opaque constructor"),
-            Wildcard => bug!(
-                "trying to apply a wildcard constructor; this should have been done in `apply_constructors`"
-            ),
-        };
+            if is_secretly_empty || is_declared_nonexhaustive {
+                vec![NonExhaustive]
+            } else if cx.tcx.features().exhaustive_patterns {
+                // If `exhaustive_patterns` is enabled, we exclude variants known to be
+                // uninhabited.
+                def.variants
+                    .iter()
+                    .filter(|v| {
+                        !v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
+                            .contains(cx.tcx, cx.module)
+                    })
+                    .map(|v| Variant(v.def_id))
+                    .collect()
+            } else {
+                def.variants.iter().map(|v| Variant(v.def_id)).collect()
+            }
+        }
+        ty::Char => {
+            vec![
+                // The valid Unicode Scalar Value ranges.
+                make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
+                make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
+            ]
+        }
+        ty::Int(_) | ty::Uint(_)
+            if pcx.ty.is_ptr_sized_integral()
+                && !cx.tcx.features().precise_pointer_size_matching =>
+        {
+            // `usize`/`isize` are not allowed to be matched exhaustively unless the
+            // `precise_pointer_size_matching` feature is enabled. So we treat those types like
+            // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
+            vec![NonExhaustive]
+        }
+        &ty::Int(ity) => {
+            let bits = Integer::from_attr(&cx.tcx, SignedInt(ity)).size().bits() as u128;
+            let min = 1u128 << (bits - 1);
+            let max = min - 1;
+            vec![make_range(min, max)]
+        }
+        &ty::Uint(uty) => {
+            let size = Integer::from_attr(&cx.tcx, UnsignedInt(uty)).size();
+            let max = size.truncate(u128::MAX);
+            vec![make_range(0, max)]
+        }
+        // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
+        // expose its emptiness. The exception is if the pattern is at the top level, because we
+        // want empty matches to be considered exhaustive.
+        ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
+            vec![NonExhaustive]
+        }
+        ty::Never => vec![],
+        _ if cx.is_uninhabited(pcx.ty) => vec![],
+        ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => vec![Single],
+        // This type is one for which we cannot list constructors, like `str` or `f64`.
+        _ => vec![NonExhaustive],
+    }
+}
 
-        Pat { ty: pcx.ty, span: DUMMY_SP, kind: Box::new(pat) }
+// A struct to compute a set of constructors equivalent to `all_ctors \ used_ctors`.
+#[derive(Debug)]
+pub(super) struct MissingConstructors<'tcx> {
+    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
+    used_ctors: Vec<Constructor<'tcx>>,
+}
+
+impl<'tcx> MissingConstructors<'tcx> {
+    pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
+        let used_ctors: Vec<Constructor<'_>> =
+            pcx.matrix.head_ctors(pcx.cx).cloned().filter(|c| !c.is_wildcard()).collect();
+        // Since `all_ctors` never contains wildcards, this won't recurse further.
+        let all_ctors =
+            all_constructors(pcx).into_iter().flat_map(|ctor| ctor.split(pcx, None)).collect();
+
+        MissingConstructors { all_ctors, used_ctors }
+    }
+
+    fn is_empty<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>) -> bool {
+        self.iter(pcx).next().is_none()
+    }
+
+    /// Iterate over all_ctors \ used_ctors
+    fn iter<'a, 'p>(
+        &'a self,
+        pcx: PatCtxt<'a, 'p, 'tcx>,
+    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
+        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.used_ctors))
+    }
+
+    /// List the patterns corresponding to the missing constructors. In some cases, instead of
+    /// listing all constructors of a given type, we prefer to simply report a wildcard.
+    pub(super) fn report_patterns<'p>(
+        &self,
+        pcx: PatCtxt<'_, 'p, 'tcx>,
+    ) -> SmallVec<[Pat<'tcx>; 1]> {
+        // There are 2 ways we can report a witness here.
+        // Commonly, we can report all the "free"
+        // constructors as witnesses, e.g., if we have:
+        //
+        // ```
+        //     enum Direction { N, S, E, W }
+        //     let Direction::N = ...;
+        // ```
+        //
+        // we can report 3 witnesses: `S`, `E`, and `W`.
+        //
+        // However, there is a case where we don't want
+        // to do this and instead report a single `_` witness:
+        // if the user didn't actually specify a constructor
+        // in this arm, e.g., in
+        //
+        // ```
+        //     let x: (Direction, Direction, bool) = ...;
+        //     let (_, _, false) = x;
+        // ```
+        //
+        // we don't want to show all 16 possible witnesses
+        // `(<direction-1>, <direction-2>, true)` - we are
+        // satisfied with `(_, _, true)`. In this case,
+        // `used_ctors` is empty.
+        // The exception is: if we are at the top-level, for example in an empty match, we
+        // sometimes prefer reporting the list of constructors instead of just `_`.
+        let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
+        if self.used_ctors.is_empty() && !report_when_all_missing {
+            // All constructors are unused. Report only a wildcard
+            // rather than each individual constructor.
+            smallvec![Pat::wildcard_from_ty(pcx.ty)]
+        } else {
+            // Construct for each missing constructor a "wild" version of this
+            // constructor, that matches everything that can be built with
+            // it. For example, if `ctor` is a `Constructor::Variant` for
+            // `Option::Some`, we get the pattern `Some(_)`.
+            self.iter(pcx)
+                .map(|missing_ctor| Fields::wildcards(pcx, &missing_ctor).apply(pcx, missing_ctor))
+                .collect()
+        }
     }
 }
 
@@ -1086,7 +1020,7 @@ impl<'tcx> Constructor<'tcx> {
 /// `Fields` struct. This struct represents such a potentially-hidden field. When a field is hidden
 /// we still keep its type around.
 #[derive(Debug, Copy, Clone)]
-enum FilteredField<'p, 'tcx> {
+pub(super) enum FilteredField<'p, 'tcx> {
     Kept(&'p Pat<'tcx>),
     Hidden(Ty<'tcx>),
 }
@@ -1119,7 +1053,7 @@ impl<'p, 'tcx> FilteredField<'p, 'tcx> {
 /// This filtering is uncommon in practice, because uninhabited fields are rarely used, so we avoid
 /// it when possible to preserve performance.
 #[derive(Debug, Clone)]
-enum Fields<'p, 'tcx> {
+pub(super) enum Fields<'p, 'tcx> {
     /// Lists of patterns that don't contain any filtered fields.
     /// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
     /// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
@@ -1156,7 +1090,7 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
     }
 
     /// Creates a new list of wildcard fields for a given constructor.
-    fn wildcards(pcx: PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
+    pub(super) fn wildcards(pcx: PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
         let ty = pcx.ty;
         let cx = pcx.cx;
         let wildcard_from_ty = |ty| &*cx.pattern_arena.alloc(Pat::wildcard_from_ty(ty));
@@ -1228,10 +1162,97 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
         ret
     }
 
+    /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
+    /// must have as many elements as this constructor's arity.
+    ///
+    /// This is roughly the inverse of `specialize_constructor`.
+    ///
+    /// Examples:
+    /// `ctor`: `Constructor::Single`
+    /// `ty`: `Foo(u32, u32, u32)`
+    /// `self`: `[10, 20, _]`
+    /// returns `Foo(10, 20, _)`
+    ///
+    /// `ctor`: `Constructor::Variant(Option::Some)`
+    /// `ty`: `Option<bool>`
+    /// `self`: `[false]`
+    /// returns `Some(false)`
+    pub(super) fn apply(self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Pat<'tcx> {
+        let mut subpatterns = self.all_patterns();
+
+        let pat = match ctor {
+            Single | Variant(_) => match pcx.ty.kind() {
+                ty::Adt(..) | ty::Tuple(..) => {
+                    let subpatterns = subpatterns
+                        .enumerate()
+                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
+                        .collect();
+
+                    if let ty::Adt(adt, substs) = pcx.ty.kind() {
+                        if adt.is_enum() {
+                            PatKind::Variant {
+                                adt_def: adt,
+                                substs,
+                                variant_index: ctor.variant_index_for_adt(adt),
+                                subpatterns,
+                            }
+                        } else {
+                            PatKind::Leaf { subpatterns }
+                        }
+                    } else {
+                        PatKind::Leaf { subpatterns }
+                    }
+                }
+                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+                // be careful to reconstruct the correct constant pattern here. However a string
+                // literal pattern will never be reported as a non-exhaustiveness witness, so we
+                // can ignore this issue.
+                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
+                ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", ctor, pcx.ty),
+                _ => PatKind::Wild,
+            },
+            Slice(slice) => match slice.kind {
+                FixedLen(_) => {
+                    PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
+                }
+                VarLen(prefix, _) => {
+                    let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix as usize).collect();
+                    if slice.array_len.is_some() {
+                        // Improves diagnostics a bit: if the type is a known-size array, instead
+                        // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
+                        // This is incorrect if the size is not known, since `[_, ..]` captures
+                        // arrays of lengths `>= 1` whereas `[..]` captures any length.
+                        while !prefix.is_empty() && prefix.last().unwrap().is_wildcard() {
+                            prefix.pop();
+                        }
+                    }
+                    let suffix: Vec<_> = if slice.array_len.is_some() {
+                        // Same as above.
+                        subpatterns.skip_while(Pat::is_wildcard).collect()
+                    } else {
+                        subpatterns.collect()
+                    };
+                    let wild = Pat::wildcard_from_ty(pcx.ty);
+                    PatKind::Slice { prefix, slice: Some(wild), suffix }
+                }
+            },
+            &Str(value) => PatKind::Constant { value },
+            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
+            IntRange(range) => return range.to_pat(pcx.cx.tcx),
+            NonExhaustive => PatKind::Wild,
+            Opaque => bug!("we should not try to apply an opaque constructor"),
+            Wildcard => bug!(
+                "trying to apply a wildcard constructor; this should have been done in `apply_constructors`"
+            ),
+        };
+
+        Pat { ty: pcx.ty, span: DUMMY_SP, kind: Box::new(pat) }
+    }
+
     /// Returns the number of patterns from the viewpoint of match-checking, i.e. excluding hidden
     /// fields. This is what we want in most cases in this file, the only exception being
     /// conversion to/from `Pat`.
-    fn len(&self) -> usize {
+    pub(super) fn len(&self) -> usize {
         match self {
             Fields::Slice(pats) => pats.len(),
             Fields::Vec(pats) => pats.len(),
@@ -1252,6 +1273,18 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
         pats.into_iter()
     }
 
+    /// Returns the filtered list of patterns, not including hidden fields.
+    pub(super) fn filtered_patterns(self) -> SmallVec<[&'p Pat<'tcx>; 2]> {
+        match self {
+            Fields::Slice(pats) => pats.iter().collect(),
+            Fields::Vec(pats) => pats,
+            Fields::Filtered { fields, .. } => {
+                // We skip hidden fields here
+                fields.into_iter().filter_map(|p| p.kept()).collect()
+            }
+        }
+    }
+
     /// Overrides some of the fields with the provided patterns. Exactly like
     /// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
     fn replace_with_fieldpats(
@@ -1297,7 +1330,7 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
 
     /// Replaces contained fields with the given filtered list of patterns, e.g. taken from the
     /// matrix. There must be `len()` patterns in `pats`.
-    fn replace_fields(
+    pub(super) fn replace_fields(
         &self,
         cx: &MatchCheckCtxt<'p, 'tcx>,
         pats: impl IntoIterator<Item = Pat<'tcx>>,
@@ -1335,7 +1368,7 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
     /// }
     /// ```
     /// This is guaranteed to preserve the number of patterns in `self`.
-    fn replace_with_pattern_arguments(&self, pat: &'p Pat<'tcx>) -> Self {
+    pub(super) fn replace_with_pattern_arguments(&self, pat: &'p Pat<'tcx>) -> Self {
         match pat.kind.as_ref() {
             PatKind::Deref { subpattern } => {
                 assert_eq!(self.len(), 1);
@@ -1358,1005 +1391,4 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
             _ => self.clone(),
         }
     }
-
-    fn push_on_patstack(self, stack: &[&'p Pat<'tcx>]) -> PatStack<'p, 'tcx> {
-        let pats: SmallVec<_> = match self {
-            Fields::Slice(pats) => pats.iter().chain(stack.iter().copied()).collect(),
-            Fields::Vec(mut pats) => {
-                pats.extend_from_slice(stack);
-                pats
-            }
-            Fields::Filtered { fields, .. } => {
-                // We skip hidden fields here
-                fields.into_iter().filter_map(|p| p.kept()).chain(stack.iter().copied()).collect()
-            }
-        };
-        PatStack::from_vec(pats)
-    }
-}
-
-#[derive(Clone, Debug)]
-crate enum Usefulness<'tcx> {
-    /// Carries, for each column in the matrix, a set of sub-branches that have been found to be
-    /// unreachable. Used only in the presence of or-patterns, otherwise it stays empty.
-    Useful(Vec<FxHashSet<Span>>),
-    /// Carries a list of witnesses of non-exhaustiveness.
-    UsefulWithWitness(Vec<Witness<'tcx>>),
-    NotUseful,
-}
-
-impl<'tcx> Usefulness<'tcx> {
-    fn new_useful(preference: WitnessPreference) -> Self {
-        match preference {
-            ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
-            LeaveOutWitness => Useful(vec![]),
-        }
-    }
-
-    fn is_useful(&self) -> bool {
-        !matches!(*self, NotUseful)
-    }
-
-    fn apply_constructor<'p>(
-        self,
-        pcx: PatCtxt<'_, 'p, 'tcx>,
-        ctor: &Constructor<'tcx>,
-        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
-    ) -> Self {
-        match self {
-            UsefulWithWitness(witnesses) => {
-                let new_witnesses = if ctor.is_wildcard() {
-                    let missing_ctors = MissingConstructors::new(pcx);
-                    let new_patterns = missing_ctors.report_patterns(pcx);
-                    witnesses
-                        .into_iter()
-                        .flat_map(|witness| {
-                            new_patterns.iter().map(move |pat| {
-                                let mut witness = witness.clone();
-                                witness.0.push(pat.clone());
-                                witness
-                            })
-                        })
-                        .collect()
-                } else {
-                    witnesses
-                        .into_iter()
-                        .map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns))
-                        .collect()
-                };
-                UsefulWithWitness(new_witnesses)
-            }
-            Useful(mut unreachables) => {
-                if !unreachables.is_empty() {
-                    // When we apply a constructor, there are `arity` columns of the matrix that
-                    // corresponded to its arguments. All the unreachables found in these columns
-                    // will, after `apply`, come from the first column. So we take the union of all
-                    // the corresponding sets and put them in the first column.
-                    // Note that `arity` may be 0, in which case we just push a new empty set.
-                    let len = unreachables.len();
-                    let arity = ctor_wild_subpatterns.len();
-                    let mut unioned = FxHashSet::default();
-                    for set in unreachables.drain((len - arity)..) {
-                        unioned.extend(set)
-                    }
-                    unreachables.push(unioned);
-                }
-                Useful(unreachables)
-            }
-            x => x,
-        }
-    }
-}
-
-#[derive(Copy, Clone, Debug)]
-enum WitnessPreference {
-    ConstructWitness,
-    LeaveOutWitness,
-}
-
-#[derive(Copy, Clone)]
-struct PatCtxt<'a, 'p, 'tcx> {
-    cx: &'a MatchCheckCtxt<'p, 'tcx>,
-    /// Current state of the matrix.
-    matrix: &'a Matrix<'p, 'tcx>,
-    /// Type of the current column under investigation.
-    ty: Ty<'tcx>,
-    /// Span of the current pattern under investigation.
-    span: Span,
-    /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
-    /// subpattern.
-    is_top_level: bool,
-}
-
-/// A witness of non-exhaustiveness for error reporting, represented
-/// as a list of patterns (in reverse order of construction) with
-/// wildcards inside to represent elements that can take any inhabitant
-/// of the type as a value.
-///
-/// A witness against a list of patterns should have the same types
-/// and length as the pattern matched against. Because Rust `match`
-/// is always against a single pattern, at the end the witness will
-/// have length 1, but in the middle of the algorithm, it can contain
-/// multiple patterns.
-///
-/// For example, if we are constructing a witness for the match against
-///
-/// ```
-/// struct Pair(Option<(u32, u32)>, bool);
-///
-/// match (p: Pair) {
-///    Pair(None, _) => {}
-///    Pair(_, false) => {}
-/// }
-/// ```
-///
-/// We'll perform the following steps:
-/// 1. Start with an empty witness
-///     `Witness(vec![])`
-/// 2. Push a witness `Some(_)` against the `None`
-///     `Witness(vec![Some(_)])`
-/// 3. Push a witness `true` against the `false`
-///     `Witness(vec![Some(_), true])`
-/// 4. Apply the `Pair` constructor to the witnesses
-///     `Witness(vec![Pair(Some(_), true)])`
-///
-/// The final `Pair(Some(_), true)` is then the resulting witness.
-#[derive(Clone, Debug)]
-crate struct Witness<'tcx>(Vec<Pat<'tcx>>);
-
-impl<'tcx> Witness<'tcx> {
-    /// Asserts that the witness contains a single pattern, and returns it.
-    fn single_pattern(self) -> Pat<'tcx> {
-        assert_eq!(self.0.len(), 1);
-        self.0.into_iter().next().unwrap()
-    }
-
-    /// Constructs a partial witness for a pattern given a list of
-    /// patterns expanded by the specialization step.
-    ///
-    /// When a pattern P is discovered to be useful, this function is used bottom-up
-    /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
-    /// of values, V, where each value in that set is not covered by any previously
-    /// used patterns and is covered by the pattern P'. Examples:
-    ///
-    /// left_ty: tuple of 3 elements
-    /// pats: [10, 20, _]           => (10, 20, _)
-    ///
-    /// left_ty: struct X { a: (bool, &'static str), b: usize}
-    /// pats: [(false, "foo"), 42]  => X { a: (false, "foo"), b: 42 }
-    fn apply_constructor<'p>(
-        mut self,
-        pcx: PatCtxt<'_, 'p, 'tcx>,
-        ctor: &Constructor<'tcx>,
-        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
-    ) -> Self {
-        let pat = {
-            let len = self.0.len();
-            let arity = ctor_wild_subpatterns.len();
-            let pats = self.0.drain((len - arity)..).rev();
-            let fields = ctor_wild_subpatterns.replace_fields(pcx.cx, pats);
-            ctor.apply(pcx, fields)
-        };
-
-        self.0.push(pat);
-
-        self
-    }
-}
-
-/// This determines the set of all possible constructors of a pattern matching
-/// values of type `left_ty`. For vectors, this would normally be an infinite set
-/// but is instead bounded by the maximum fixed length of slice patterns in
-/// the column of patterns being analyzed.
-///
-/// We make sure to omit constructors that are statically impossible. E.g., for
-/// `Option<!>`, we do not include `Some(_)` in the returned list of constructors.
-/// Invariant: this returns an empty `Vec` if and only if the type is uninhabited (as determined by
-/// `cx.is_uninhabited()`).
-fn all_constructors<'p, 'tcx>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Vec<Constructor<'tcx>> {
-    debug!("all_constructors({:?})", pcx.ty);
-    let cx = pcx.cx;
-    let make_range = |start, end| {
-        IntRange(
-            // `unwrap()` is ok because we know the type is an integer.
-            IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included, pcx.span)
-                .unwrap(),
-        )
-    };
-    match pcx.ty.kind() {
-        ty::Bool => vec![make_range(0, 1)],
-        ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
-            let len = len.eval_usize(cx.tcx, cx.param_env);
-            if len != 0 && cx.is_uninhabited(sub_ty) {
-                vec![]
-            } else {
-                vec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
-            }
-        }
-        // Treat arrays of a constant but unknown length like slices.
-        ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
-            let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
-            vec![Slice(Slice::new(None, kind))]
-        }
-        ty::Adt(def, substs) if def.is_enum() => {
-            // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
-            // additional "unknown" constructor.
-            // There is no point in enumerating all possible variants, because the user can't
-            // actually match against them all themselves. So we always return only the fictitious
-            // constructor.
-            // E.g., in an example like:
-            //
-            // ```
-            //     let err: io::ErrorKind = ...;
-            //     match err {
-            //         io::ErrorKind::NotFound => {},
-            //     }
-            // ```
-            //
-            // we don't want to show every possible IO error, but instead have only `_` as the
-            // witness.
-            let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
-
-            // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
-            // as though it had an "unknown" constructor to avoid exposing its emptiness. The
-            // exception is if the pattern is at the top level, because we want empty matches to be
-            // considered exhaustive.
-            let is_secretly_empty = def.variants.is_empty()
-                && !cx.tcx.features().exhaustive_patterns
-                && !pcx.is_top_level;
-
-            if is_secretly_empty || is_declared_nonexhaustive {
-                vec![NonExhaustive]
-            } else if cx.tcx.features().exhaustive_patterns {
-                // If `exhaustive_patterns` is enabled, we exclude variants known to be
-                // uninhabited.
-                def.variants
-                    .iter()
-                    .filter(|v| {
-                        !v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
-                            .contains(cx.tcx, cx.module)
-                    })
-                    .map(|v| Variant(v.def_id))
-                    .collect()
-            } else {
-                def.variants.iter().map(|v| Variant(v.def_id)).collect()
-            }
-        }
-        ty::Char => {
-            vec![
-                // The valid Unicode Scalar Value ranges.
-                make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
-                make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
-            ]
-        }
-        ty::Int(_) | ty::Uint(_)
-            if pcx.ty.is_ptr_sized_integral()
-                && !cx.tcx.features().precise_pointer_size_matching =>
-        {
-            // `usize`/`isize` are not allowed to be matched exhaustively unless the
-            // `precise_pointer_size_matching` feature is enabled. So we treat those types like
-            // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
-            vec![NonExhaustive]
-        }
-        &ty::Int(ity) => {
-            let bits = Integer::from_attr(&cx.tcx, SignedInt(ity)).size().bits() as u128;
-            let min = 1u128 << (bits - 1);
-            let max = min - 1;
-            vec![make_range(min, max)]
-        }
-        &ty::Uint(uty) => {
-            let size = Integer::from_attr(&cx.tcx, UnsignedInt(uty)).size();
-            let max = size.truncate(u128::MAX);
-            vec![make_range(0, max)]
-        }
-        // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
-        // expose its emptiness. The exception is if the pattern is at the top level, because we
-        // want empty matches to be considered exhaustive.
-        ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
-            vec![NonExhaustive]
-        }
-        ty::Never => vec![],
-        _ if cx.is_uninhabited(pcx.ty) => vec![],
-        ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => vec![Single],
-        // This type is one for which we cannot list constructors, like `str` or `f64`.
-        _ => vec![NonExhaustive],
-    }
-}
-
-/// An inclusive interval, used for precise integer exhaustiveness checking.
-/// `IntRange`s always store a contiguous range. This means that values are
-/// encoded such that `0` encodes the minimum value for the integer,
-/// regardless of the signedness.
-/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
-/// This makes comparisons and arithmetic on interval endpoints much more
-/// straightforward. See `signed_bias` for details.
-///
-/// `IntRange` is never used to encode an empty range or a "range" that wraps
-/// around the (offset) space: i.e., `range.lo <= range.hi`.
-#[derive(Clone, Debug)]
-struct IntRange<'tcx> {
-    range: RangeInclusive<u128>,
-    ty: Ty<'tcx>,
-    span: Span,
-}
-
-impl<'tcx> IntRange<'tcx> {
-    #[inline]
-    fn is_integral(ty: Ty<'_>) -> bool {
-        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
-    }
-
-    fn is_singleton(&self) -> bool {
-        self.range.start() == self.range.end()
-    }
-
-    fn boundaries(&self) -> (u128, u128) {
-        (*self.range.start(), *self.range.end())
-    }
-
-    /// Don't treat `usize`/`isize` exhaustively unless the `precise_pointer_size_matching` feature
-    /// is enabled.
-    fn treat_exhaustively(&self, tcx: TyCtxt<'tcx>) -> bool {
-        !self.ty.is_ptr_sized_integral() || tcx.features().precise_pointer_size_matching
-    }
-
-    #[inline]
-    fn integral_size_and_signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'_>) -> Option<(Size, u128)> {
-        match *ty.kind() {
-            ty::Bool => Some((Size::from_bytes(1), 0)),
-            ty::Char => Some((Size::from_bytes(4), 0)),
-            ty::Int(ity) => {
-                let size = Integer::from_attr(&tcx, SignedInt(ity)).size();
-                Some((size, 1u128 << (size.bits() as u128 - 1)))
-            }
-            ty::Uint(uty) => Some((Integer::from_attr(&tcx, UnsignedInt(uty)).size(), 0)),
-            _ => None,
-        }
-    }
-
-    #[inline]
-    fn from_const(
-        tcx: TyCtxt<'tcx>,
-        param_env: ty::ParamEnv<'tcx>,
-        value: &Const<'tcx>,
-        span: Span,
-    ) -> Option<IntRange<'tcx>> {
-        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
-            let ty = value.ty;
-            let val = (|| {
-                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
-                    // For this specific pattern we can skip a lot of effort and go
-                    // straight to the result, after doing a bit of checking. (We
-                    // could remove this branch and just fall through, which
-                    // is more general but much slower.)
-                    if let Ok(bits) = scalar.to_bits_or_ptr(target_size, &tcx) {
-                        return Some(bits);
-                    }
-                }
-                // This is a more general form of the previous case.
-                value.try_eval_bits(tcx, param_env, ty)
-            })()?;
-            let val = val ^ bias;
-            Some(IntRange { range: val..=val, ty, span })
-        } else {
-            None
-        }
-    }
-
-    #[inline]
-    fn from_range(
-        tcx: TyCtxt<'tcx>,
-        lo: u128,
-        hi: u128,
-        ty: Ty<'tcx>,
-        end: &RangeEnd,
-        span: Span,
-    ) -> Option<IntRange<'tcx>> {
-        if Self::is_integral(ty) {
-            // Perform a shift if the underlying types are signed,
-            // which makes the interval arithmetic simpler.
-            let bias = IntRange::signed_bias(tcx, ty);
-            let (lo, hi) = (lo ^ bias, hi ^ bias);
-            let offset = (*end == RangeEnd::Excluded) as u128;
-            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
-                // This should have been caught earlier by E0030.
-                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
-            }
-            Some(IntRange { range: lo..=(hi - offset), ty, span })
-        } else {
-            None
-        }
-    }
-
-    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
-    fn signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> u128 {
-        match *ty.kind() {
-            ty::Int(ity) => {
-                let bits = Integer::from_attr(&tcx, SignedInt(ity)).size().bits() as u128;
-                1u128 << (bits - 1)
-            }
-            _ => 0,
-        }
-    }
-
-    fn is_subrange(&self, other: &Self) -> bool {
-        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
-    }
-
-    fn intersection(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Option<Self> {
-        let ty = self.ty;
-        let (lo, hi) = self.boundaries();
-        let (other_lo, other_hi) = other.boundaries();
-        if self.treat_exhaustively(tcx) {
-            if lo <= other_hi && other_lo <= hi {
-                let span = other.span;
-                Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), ty, span })
-            } else {
-                None
-            }
-        } else {
-            // If the range should not be treated exhaustively, fallback to checking for inclusion.
-            if self.is_subrange(other) { Some(self.clone()) } else { None }
-        }
-    }
-
-    fn suspicious_intersection(&self, other: &Self) -> bool {
-        // `false` in the following cases:
-        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
-        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
-        //
-        // The following are currently `false`, but could be `true` in the future (#64007):
-        // 1 ---------       // 1     ---------
-        // 2     ----------  // 2 ----------
-        //
-        // `true` in the following cases:
-        // 1 -------          // 1       -------
-        // 2       --------   // 2 -------
-        let (lo, hi) = self.boundaries();
-        let (other_lo, other_hi) = other.boundaries();
-        lo == other_hi || hi == other_lo
-    }
-
-    fn to_pat(&self, tcx: TyCtxt<'tcx>) -> Pat<'tcx> {
-        let (lo, hi) = self.boundaries();
-
-        let bias = IntRange::signed_bias(tcx, self.ty);
-        let (lo, hi) = (lo ^ bias, hi ^ bias);
-
-        let ty = ty::ParamEnv::empty().and(self.ty);
-        let lo_const = ty::Const::from_bits(tcx, lo, ty);
-        let hi_const = ty::Const::from_bits(tcx, hi, ty);
-
-        let kind = if lo == hi {
-            PatKind::Constant { value: lo_const }
-        } else {
-            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
-        };
-
-        // This is a brand new pattern, so we don't reuse `self.span`.
-        Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(kind) }
-    }
-
-    /// For exhaustive integer matching, some constructors are grouped within other constructors
-    /// (namely integer typed values are grouped within ranges). However, when specialising these
-    /// constructors, we want to be specialising for the underlying constructors (the integers), not
-    /// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
-    /// mean creating a separate constructor for every single value in the range, which is clearly
-    /// impractical. However, observe that for some ranges of integers, the specialisation will be
-    /// identical across all values in that range (i.e., there are equivalence classes of ranges of
-    /// constructors based on their `U(S(c, P), S(c, p))` outcome). These classes are grouped by
-    /// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
-    /// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
-    /// change.
-    /// Our solution, therefore, is to split the range constructor into subranges at every single point
-    /// the group of intersecting patterns changes (using the method described below).
-    /// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
-    /// on actual integers. The nice thing about this is that the number of subranges is linear in the
-    /// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
-    /// need to be worried about matching over gargantuan ranges.
-    ///
-    /// Essentially, given the first column of a matrix representing ranges, looking like the following:
-    ///
-    /// |------|  |----------| |-------|    ||
-    ///    |-------| |-------|            |----| ||
-    ///       |---------|
-    ///
-    /// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
-    ///
-    /// |--|--|||-||||--||---|||-------|  |-|||| ||
-    ///
-    /// The logic for determining how to split the ranges is fairly straightforward: we calculate
-    /// boundaries for each interval range, sort them, then create constructors for each new interval
-    /// between every pair of boundary points. (This essentially sums up to performing the intuitive
-    /// merging operation depicted above.)
-    fn split<'p>(
-        &self,
-        pcx: PatCtxt<'_, 'p, 'tcx>,
-        hir_id: Option<HirId>,
-    ) -> SmallVec<[Constructor<'tcx>; 1]> {
-        let ty = pcx.ty;
-
-        /// Represents a border between 2 integers. Because the intervals spanning borders
-        /// must be able to cover every integer, we need to be able to represent
-        /// 2^128 + 1 such borders.
-        #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
-        enum Border {
-            JustBefore(u128),
-            AfterMax,
-        }
-
-        // A function for extracting the borders of an integer interval.
-        fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
-            let (lo, hi) = r.range.into_inner();
-            let from = Border::JustBefore(lo);
-            let to = match hi.checked_add(1) {
-                Some(m) => Border::JustBefore(m),
-                None => Border::AfterMax,
-            };
-            vec![from, to].into_iter()
-        }
-
-        // Collect the span and range of all the intersecting ranges to lint on likely
-        // incorrect range patterns. (#63987)
-        let mut overlaps = vec![];
-        let row_len = pcx.matrix.patterns.get(0).map(|r| r.len()).unwrap_or(0);
-        // `borders` is the set of borders between equivalence classes: each equivalence
-        // class lies between 2 borders.
-        let row_borders = pcx
-            .matrix
-            .head_ctors(pcx.cx)
-            .filter_map(|ctor| ctor.as_int_range())
-            .filter_map(|range| {
-                let intersection = self.intersection(pcx.cx.tcx, &range);
-                let should_lint = self.suspicious_intersection(&range);
-                if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
-                    // FIXME: for now, only check for overlapping ranges on simple range
-                    // patterns. Otherwise with the current logic the following is detected
-                    // as overlapping:
-                    //   match (10u8, true) {
-                    //    (0 ..= 125, false) => {}
-                    //    (126 ..= 255, false) => {}
-                    //    (0 ..= 255, true) => {}
-                    //  }
-                    overlaps.push(range.clone());
-                }
-                intersection
-            })
-            .flat_map(range_borders);
-        let self_borders = range_borders(self.clone());
-        let mut borders: Vec<_> = row_borders.chain(self_borders).collect();
-        borders.sort_unstable();
-
-        self.lint_overlapping_patterns(pcx.cx.tcx, hir_id, ty, overlaps);
-
-        // We're going to iterate through every adjacent pair of borders, making sure that
-        // each represents an interval of nonnegative length, and convert each such
-        // interval into a constructor.
-        borders
-            .array_windows()
-            .filter_map(|&pair| match pair {
-                [Border::JustBefore(n), Border::JustBefore(m)] => {
-                    if n < m {
-                        Some(n..=(m - 1))
-                    } else {
-                        None
-                    }
-                }
-                [Border::JustBefore(n), Border::AfterMax] => Some(n..=u128::MAX),
-                [Border::AfterMax, _] => None,
-            })
-            .map(|range| IntRange { range, ty, span: pcx.span })
-            .map(IntRange)
-            .collect()
-    }
-
-    fn lint_overlapping_patterns(
-        &self,
-        tcx: TyCtxt<'tcx>,
-        hir_id: Option<HirId>,
-        ty: Ty<'tcx>,
-        overlaps: Vec<IntRange<'tcx>>,
-    ) {
-        if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
-            tcx.struct_span_lint_hir(
-                lint::builtin::OVERLAPPING_PATTERNS,
-                hir_id,
-                self.span,
-                |lint| {
-                    let mut err = lint.build("multiple patterns covering the same range");
-                    err.span_label(self.span, "overlapping patterns");
-                    for int_range in overlaps {
-                        // Use the real type for user display of the ranges:
-                        err.span_label(
-                            int_range.span,
-                            &format!(
-                                "this range overlaps on `{}`",
-                                IntRange { range: int_range.range, ty, span: DUMMY_SP }.to_pat(tcx),
-                            ),
-                        );
-                    }
-                    err.emit();
-                },
-            );
-        }
-    }
-
-    /// See `Constructor::is_covered_by`
-    fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
-        if self.intersection(pcx.cx.tcx, other).is_some() {
-            // Constructor splitting should ensure that all intersections we encounter are actually
-            // inclusions.
-            assert!(self.is_subrange(other));
-            true
-        } else {
-            false
-        }
-    }
-}
-
-/// Ignore spans when comparing, they don't carry semantic information as they are only for lints.
-impl<'tcx> std::cmp::PartialEq for IntRange<'tcx> {
-    fn eq(&self, other: &Self) -> bool {
-        self.range == other.range && self.ty == other.ty
-    }
-}
-
-// A struct to compute a set of constructors equivalent to `all_ctors \ used_ctors`.
-#[derive(Debug)]
-struct MissingConstructors<'tcx> {
-    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
-    used_ctors: Vec<Constructor<'tcx>>,
-}
-
-impl<'tcx> MissingConstructors<'tcx> {
-    fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
-        let used_ctors: Vec<Constructor<'_>> =
-            pcx.matrix.head_ctors(pcx.cx).cloned().filter(|c| !c.is_wildcard()).collect();
-        // Since `all_ctors` never contains wildcards, this won't recurse further.
-        let all_ctors =
-            all_constructors(pcx).into_iter().flat_map(|ctor| ctor.split(pcx, None)).collect();
-
-        MissingConstructors { all_ctors, used_ctors }
-    }
-
-    fn is_empty<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>) -> bool {
-        self.iter(pcx).next().is_none()
-    }
-
-    /// Iterate over all_ctors \ used_ctors
-    fn iter<'a, 'p>(
-        &'a self,
-        pcx: PatCtxt<'a, 'p, 'tcx>,
-    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
-        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.used_ctors))
-    }
-
-    /// List the patterns corresponding to the missing constructors. In some cases, instead of
-    /// listing all constructors of a given type, we prefer to simply report a wildcard.
-    fn report_patterns<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>) -> SmallVec<[Pat<'tcx>; 1]> {
-        // There are 2 ways we can report a witness here.
-        // Commonly, we can report all the "free"
-        // constructors as witnesses, e.g., if we have:
-        //
-        // ```
-        //     enum Direction { N, S, E, W }
-        //     let Direction::N = ...;
-        // ```
-        //
-        // we can report 3 witnesses: `S`, `E`, and `W`.
-        //
-        // However, there is a case where we don't want
-        // to do this and instead report a single `_` witness:
-        // if the user didn't actually specify a constructor
-        // in this arm, e.g., in
-        //
-        // ```
-        //     let x: (Direction, Direction, bool) = ...;
-        //     let (_, _, false) = x;
-        // ```
-        //
-        // we don't want to show all 16 possible witnesses
-        // `(<direction-1>, <direction-2>, true)` - we are
-        // satisfied with `(_, _, true)`. In this case,
-        // `used_ctors` is empty.
-        // The exception is: if we are at the top-level, for example in an empty match, we
-        // sometimes prefer reporting the list of constructors instead of just `_`.
-        let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
-        if self.used_ctors.is_empty() && !report_when_all_missing {
-            // All constructors are unused. Report only a wildcard
-            // rather than each individual constructor.
-            smallvec![Pat::wildcard_from_ty(pcx.ty)]
-        } else {
-            // Construct for each missing constructor a "wild" version of this
-            // constructor, that matches everything that can be built with
-            // it. For example, if `ctor` is a `Constructor::Variant` for
-            // `Option::Some`, we get the pattern `Some(_)`.
-            self.iter(pcx)
-                .map(|missing_ctor| {
-                    let fields = Fields::wildcards(pcx, &missing_ctor);
-                    missing_ctor.apply(pcx, fields)
-                })
-                .collect()
-        }
-    }
-}
-
-/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
-/// The algorithm from the paper has been modified to correctly handle empty
-/// types. The changes are:
-///   (0) We don't exit early if the pattern matrix has zero rows. We just
-///       continue to recurse over columns.
-///   (1) all_constructors will only return constructors that are statically
-///       possible. E.g., it will only return `Ok` for `Result<T, !>`.
-///
-/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
-/// to a set of such vectors `m` - this is defined as there being a set of
-/// inputs that will match `v` but not any of the sets in `m`.
-///
-/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
-///
-/// This is used both for reachability checking (if a pattern isn't useful in
-/// relation to preceding patterns, it is not reachable) and exhaustiveness
-/// checking (if a wildcard pattern is useful in relation to a matrix, the
-/// matrix isn't exhaustive).
-///
-/// `is_under_guard` is used to inform if the pattern has a guard. If it
-/// has one it must not be inserted into the matrix. This shouldn't be
-/// relied on for soundness.
-fn is_useful<'p, 'tcx>(
-    cx: &MatchCheckCtxt<'p, 'tcx>,
-    matrix: &Matrix<'p, 'tcx>,
-    v: &PatStack<'p, 'tcx>,
-    witness_preference: WitnessPreference,
-    hir_id: HirId,
-    is_under_guard: bool,
-    is_top_level: bool,
-) -> Usefulness<'tcx> {
-    let Matrix { patterns: rows, .. } = matrix;
-    debug!("is_useful({:#?}, {:#?})", matrix, v);
-
-    // The base case. We are pattern-matching on () and the return value is
-    // based on whether our matrix has a row or not.
-    // NOTE: This could potentially be optimized by checking rows.is_empty()
-    // first and then, if v is non-empty, the return value is based on whether
-    // the type of the tuple we're checking is inhabited or not.
-    if v.is_empty() {
-        return if rows.is_empty() {
-            Usefulness::new_useful(witness_preference)
-        } else {
-            NotUseful
-        };
-    };
-
-    assert!(rows.iter().all(|r| r.len() == v.len()));
-
-    // If the first pattern is an or-pattern, expand it.
-    if let Some(vs) = v.expand_or_pat() {
-        // We expand the or pattern, trying each of its branches in turn and keeping careful track
-        // of possible unreachable sub-branches.
-        //
-        // If two branches have detected some unreachable sub-branches, we need to be careful. If
-        // they were detected in columns that are not the current one, we want to keep only the
-        // sub-branches that were unreachable in _all_ branches. Eg. in the following, the last
-        // `true` is unreachable in the second branch of the first or-pattern, but not otherwise.
-        // Therefore we don't want to lint that it is unreachable.
-        //
-        // ```
-        // match (true, true) {
-        //     (true, true) => {}
-        //     (false | true, false | true) => {}
-        // }
-        // ```
-        // If however the sub-branches come from the current column, they come from the inside of
-        // the current or-pattern, and we want to keep them all. Eg. in the following, we _do_ want
-        // to lint that the last `false` is unreachable.
-        // ```
-        // match None {
-        //     Some(false) => {}
-        //     None | Some(true | false) => {}
-        // }
-        // ```
-
-        let mut matrix = matrix.clone();
-        // We keep track of sub-branches separately depending on whether they come from this column
-        // or from others.
-        let mut unreachables_this_column: FxHashSet<Span> = FxHashSet::default();
-        let mut unreachables_other_columns: Vec<FxHashSet<Span>> = Vec::default();
-        // Whether at least one branch is reachable.
-        let mut any_is_useful = false;
-
-        for v in vs {
-            let res = is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
-            match res {
-                Useful(unreachables) => {
-                    if let Some((this_column, other_columns)) = unreachables.split_last() {
-                        // We keep the union of unreachables found in the first column.
-                        unreachables_this_column.extend(this_column);
-                        // We keep the intersection of unreachables found in other columns.
-                        if unreachables_other_columns.is_empty() {
-                            unreachables_other_columns = other_columns.to_vec();
-                        } else {
-                            unreachables_other_columns = unreachables_other_columns
-                                .into_iter()
-                                .zip(other_columns)
-                                .map(|(x, y)| x.intersection(&y).copied().collect())
-                                .collect();
-                        }
-                    }
-                    any_is_useful = true;
-                }
-                NotUseful => {
-                    unreachables_this_column.insert(v.head().span);
-                }
-                UsefulWithWitness(_) => bug!(
-                    "encountered or-pat in the expansion of `_` during exhaustiveness checking"
-                ),
-            }
-
-            // If pattern has a guard don't add it to the matrix.
-            if !is_under_guard {
-                // We push the already-seen patterns into the matrix in order to detect redundant
-                // branches like `Some(_) | Some(0)`.
-                matrix.push(v);
-            }
-        }
-
-        return if any_is_useful {
-            let mut unreachables = if unreachables_other_columns.is_empty() {
-                let n_columns = v.len();
-                (0..n_columns - 1).map(|_| FxHashSet::default()).collect()
-            } else {
-                unreachables_other_columns
-            };
-            unreachables.push(unreachables_this_column);
-            Useful(unreachables)
-        } else {
-            NotUseful
-        };
-    }
-
-    // FIXME(Nadrieril): Hack to work around type normalization issues (see #72476).
-    let ty = matrix.heads().next().map(|r| r.ty).unwrap_or(v.head().ty);
-    let pcx = PatCtxt { cx, matrix, ty, span: v.head().span, is_top_level };
-
-    debug!("is_useful_expand_first_col: ty={:#?}, expanding {:#?}", pcx.ty, v.head());
-
-    let ret = v
-        .head_ctor(cx)
-        .split(pcx, Some(hir_id))
-        .into_iter()
-        .map(|ctor| {
-            // We cache the result of `Fields::wildcards` because it is used a lot.
-            let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
-            let matrix = pcx.matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
-            let v = v.pop_head_constructor(&ctor_wild_subpatterns);
-            let usefulness =
-                is_useful(pcx.cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
-            usefulness.apply_constructor(pcx, &ctor, &ctor_wild_subpatterns)
-        })
-        .find(|result| result.is_useful())
-        .unwrap_or(NotUseful);
-    debug!("is_useful::returns({:#?}, {:#?}) = {:?}", matrix, v, ret);
-    ret
-}
-
-/// Determines the constructor that the given pattern can be specialized to.
-/// Returns `None` in case of a catch-all, which can't be specialized.
-fn pat_constructor<'p, 'tcx>(
-    cx: &MatchCheckCtxt<'p, 'tcx>,
-    pat: &'p Pat<'tcx>,
-) -> Constructor<'tcx> {
-    match pat.kind.as_ref() {
-        PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
-        PatKind::Binding { .. } | PatKind::Wild => Wildcard,
-        PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
-        &PatKind::Variant { adt_def, variant_index, .. } => {
-            Variant(adt_def.variants[variant_index].def_id)
-        }
-        PatKind::Constant { value } => {
-            if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value, pat.span) {
-                IntRange(int_range)
-            } else {
-                match pat.ty.kind() {
-                    ty::Float(_) => FloatRange(value, value, RangeEnd::Included),
-                    // In `expand_pattern`, we convert string literals to `&CONST` patterns with
-                    // `CONST` a pattern of type `str`. In truth this contains a constant of type
-                    // `&str`.
-                    ty::Str => Str(value),
-                    // All constants that can be structurally matched have already been expanded
-                    // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
-                    // opaque.
-                    _ => Opaque,
-                }
-            }
-        }
-        &PatKind::Range(PatRange { lo, hi, end }) => {
-            let ty = lo.ty;
-            if let Some(int_range) = IntRange::from_range(
-                cx.tcx,
-                lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
-                hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
-                ty,
-                &end,
-                pat.span,
-            ) {
-                IntRange(int_range)
-            } else {
-                FloatRange(lo, hi, end)
-            }
-        }
-        PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
-            let array_len = match pat.ty.kind() {
-                ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env)),
-                ty::Slice(_) => None,
-                _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
-            };
-            let prefix = prefix.len() as u64;
-            let suffix = suffix.len() as u64;
-            let kind =
-                if slice.is_some() { VarLen(prefix, suffix) } else { FixedLen(prefix + suffix) };
-            Slice(Slice::new(array_len, kind))
-        }
-        PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
-    }
-}
-
-/// The arm of a match expression.
-#[derive(Clone, Copy)]
-crate struct MatchArm<'p, 'tcx> {
-    /// The pattern must have been lowered through `MatchVisitor::lower_pattern`.
-    crate pat: &'p super::Pat<'tcx>,
-    crate hir_id: HirId,
-    crate has_guard: bool,
-}
-
-/// The output of checking a match for exhaustiveness and arm reachability.
-crate struct UsefulnessReport<'p, 'tcx> {
-    /// For each arm of the input, whether that arm is reachable after the arms above it.
-    crate arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness<'tcx>)>,
-    /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
-    /// exhaustiveness.
-    crate non_exhaustiveness_witnesses: Vec<super::Pat<'tcx>>,
-}
-
-/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
-/// of its arms are reachable.
-///
-/// Note: the input patterns must have been lowered through `MatchVisitor::lower_pattern`.
-crate fn compute_match_usefulness<'p, 'tcx>(
-    cx: &MatchCheckCtxt<'p, 'tcx>,
-    arms: &[MatchArm<'p, 'tcx>],
-    scrut_hir_id: HirId,
-    scrut_ty: Ty<'tcx>,
-) -> UsefulnessReport<'p, 'tcx> {
-    let mut matrix = Matrix::empty();
-    let arm_usefulness: Vec<_> = arms
-        .iter()
-        .copied()
-        .map(|arm| {
-            let v = PatStack::from_pattern(arm.pat);
-            let usefulness =
-                is_useful(cx, &matrix, &v, LeaveOutWitness, arm.hir_id, arm.has_guard, true);
-            if !arm.has_guard {
-                matrix.push(v);
-            }
-            (arm, usefulness)
-        })
-        .collect();
-
-    let wild_pattern = cx.pattern_arena.alloc(super::Pat::wildcard_from_ty(scrut_ty));
-    let v = PatStack::from_pattern(wild_pattern);
-    let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, scrut_hir_id, false, true);
-    let non_exhaustiveness_witnesses = match usefulness {
-        NotUseful => vec![], // Wildcard pattern isn't useful, so the match is exhaustive.
-        UsefulWithWitness(pats) => {
-            if pats.is_empty() {
-                bug!("Exhaustiveness check returned no witnesses")
-            } else {
-                pats.into_iter().map(|w| w.single_pattern()).collect()
-            }
-        }
-        Useful(_) => bug!(),
-    };
-    UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
 }
diff --git a/compiler/rustc_mir_build/src/thir/pattern/mod.rs b/compiler/rustc_mir_build/src/thir/pattern/mod.rs
index db0ecd701bc..7e9a3a37278 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/mod.rs
+++ b/compiler/rustc_mir_build/src/thir/pattern/mod.rs
@@ -1,8 +1,9 @@
 //! Validation of patterns/matches.
 
-mod _match;
 mod check_match;
 mod const_to_pat;
+mod deconstruct_pat;
+mod usefulness;
 
 pub(crate) use self::check_match::check_match;
 
diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
new file mode 100644
index 00000000000..be96d5ae816
--- /dev/null
+++ b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
@@ -0,0 +1,992 @@
+//! Note: tests specific to this file can be found in:
+//!
+//!   - `ui/pattern/usefulness`
+//!   - `ui/or-patterns`
+//!   - `ui/consts/const_in_pattern`
+//!   - `ui/rfc-2008-non-exhaustive`
+//!   - `ui/half-open-range-patterns`
+//!   - probably many others
+//!
+//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
+//! reason not to, for example if they depend on a particular feature like `or_patterns`.
+//!
+//! -----
+//!
+//! This file includes the logic for exhaustiveness and usefulness checking for
+//! pattern-matching. Specifically, given a list of patterns for a type, we can
+//! tell whether:
+//! (a) the patterns cover every possible constructor for the type (exhaustiveness)
+//! (b) each pattern is necessary (usefulness)
+//!
+//! The algorithm implemented here is a modified version of the one described in
+//! [this paper](http://moscova.inria.fr/~maranget/papers/warn/index.html).
+//! However, to save future implementors from reading the original paper, we
+//! summarise the algorithm here to hopefully save time and be a little clearer
+//! (without being so rigorous).
+//!
+//! # Premise
+//!
+//! The core of the algorithm revolves about a "usefulness" check. In particular, we
+//! are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
+//! a matrix). `U(P, p)` represents whether, given an existing list of patterns
+//! `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
+//! uncovered values of the type).
+//!
+//! If we have this predicate, then we can easily compute both exhaustiveness of an
+//! entire set of patterns and the individual usefulness of each one.
+//! (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
+//! match doesn't increase the number of values we're matching)
+//! (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
+//! pattern to those that have come before it doesn't increase the number of values
+//! we're matching).
+//!
+//! # Core concept
+//!
+//! The idea that powers everything that is done in this file is the following: a value is made
+//! from a constructor applied to some fields. Examples of constructors are `Some`, `None`, `(,)`
+//! (the 2-tuple constructor), `Foo {..}` (the constructor for a struct `Foo`), and `2` (the
+//! constructor for the number `2`). Fields are just a (possibly empty) list of values.
+//!
+//! Some of the constructors listed above might feel weird: `None` and `2` don't take any
+//! arguments. This is part of what makes constructors so general: we will consider plain values
+//! like numbers and string literals to be constructors that take no arguments, also called "0-ary
+//! constructors"; they are the simplest case of constructors. This allows us to see any value as
+//! made up from a tree of constructors, each having a given number of children. For example:
+//! `(None, Ok(0))` is made from 4 different constructors.
+//!
+//! This idea can be extended to patterns: a pattern captures a set of possible values, and we can
+//! describe this set using constructors. For example, `Err(_)` captures all values of the type
+//! `Result<T, E>` that start with the `Err` constructor (for some choice of `T` and `E`). The
+//! wildcard `_` captures all values of the given type starting with any of the constructors for
+//! that type.
+//!
+//! We use this to compute whether different patterns might capture a same value. Do the patterns
+//! `Ok("foo")` and `Err(_)` capture a common value? The answer is no, because the first pattern
+//! captures only values starting with the `Ok` constructor and the second only values starting
+//! with the `Err` constructor. Do the patterns `Some(42)` and `Some(1..10)` intersect? They might,
+//! since they both capture values starting with `Some`. To be certain, we need to dig under the
+//! `Some` constructor and continue asking the question. This is the main idea behind the
+//! exhaustiveness algorithm: by looking at patterns constructor-by-constructor, we can efficiently
+//! figure out if some new pattern might capture a value that hadn't been captured by previous
+//! patterns.
+//!
+//! Constructors are represented by the `Constructor` enum, and its fields by the `Fields` enum.
+//! Most of the complexity of this file resides in transforming between patterns and
+//! (`Constructor`, `Fields`) pairs, handling all the special cases correctly.
+//!
+//! Caveat: this constructors/fields distinction doesn't quite cover every Rust value. For example
+//! a value of type `Rc<u64>` doesn't fit this idea very well, nor do various other things.
+//! However, this idea covers most of the cases that are relevant to exhaustiveness checking.
+//!
+//!
+//! # Algorithm
+//!
+//! Recall that `U(P, p)` represents whether, given an existing list of patterns (aka matrix) `P`,
+//! adding a new pattern `p` will cover previously-uncovered values of the type.
+//! During the course of the algorithm, the rows of the matrix won't just be individual patterns,
+//! but rather partially-deconstructed patterns in the form of a list of fields. The paper
+//! calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
+//! new pattern `p`.
+//!
+//! For example, say we have the following:
+//!
+//! ```
+//! // x: (Option<bool>, Result<()>)
+//! match x {
+//!     (Some(true), _) => {}
+//!     (None, Err(())) => {}
+//!     (None, Err(_)) => {}
+//! }
+//! ```
+//!
+//! Here, the matrix `P` starts as:
+//!
+//! ```
+//! [
+//!     [(Some(true), _)],
+//!     [(None, Err(()))],
+//!     [(None, Err(_))],
+//! ]
+//! ```
+//!
+//! We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
+//! `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
+//! all the values it covers are already covered by row 2.
+//!
+//! A list of patterns can be thought of as a stack, because we are mainly interested in the top of
+//! the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
+//! To match the paper, the top of the stack is at the beginning / on the left.
+//!
+//! There are two important operations on pattern-stacks necessary to understand the algorithm:
+//!
+//! 1. We can pop a given constructor off the top of a stack. This operation is called
+//!    `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
+//!    `None`) and `p` a pattern-stack.
+//!    If the pattern on top of the stack can cover `c`, this removes the constructor and
+//!    pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
+//!    Otherwise the pattern-stack is discarded.
+//!    This essentially filters those pattern-stacks whose top covers the constructor `c` and
+//!    discards the others.
+//!
+//!    For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
+//!    pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
+//!    `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
+//!    nothing back.
+//!
+//!    This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
+//!    on top of the stack, and we have four cases:
+//!
+//!      1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
+//!           push onto the stack the arguments of this constructor, and return the result:
+//!              `r_1, .., r_a, p_2, .., p_n`
+//!
+//!      1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
+//!           return nothing.
+//!
+//!         1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
+//!              arguments (its arity), and return the resulting stack:
+//!                 `_, .., _, p_2, .., p_n`
+//!
+//!         1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
+//!              stack:
+//!                 - `S(c, (r_1, p_2, .., p_n))`
+//!                 - `S(c, (r_2, p_2, .., p_n))`
+//!
+//! 2. We can pop a wildcard off the top of the stack. This is called `S(_, p)`, where `p` is
+//!    a pattern-stack. Note: the paper calls this `D(p)`.
+//!    This is used when we know there are missing constructor cases, but there might be
+//!    existing wildcard patterns, so to check the usefulness of the matrix, we have to check
+//!    all its *other* components.
+//!
+//!    It is computed as follows. We look at the pattern `p_1` on top of the stack,
+//!    and we have three cases:
+//!         2.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
+//!         2.2. `p_1 = _`. We return the rest of the stack:
+//!                 p_2, .., p_n
+//!         2.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
+//!           stack.
+//!                 - `S(_, (r_1, p_2, .., p_n))`
+//!                 - `S(_, (r_2, p_2, .., p_n))`
+//!
+//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
+//! exhaustive integer matching rules, so they're written here for posterity.
+//!
+//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
+//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
+//! the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
+//!
+//!
+//! The algorithm for computing `U`
+//! -------------------------------
+//! The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
+//! That means we're going to check the components from left-to-right, so the algorithm
+//! operates principally on the first component of the matrix and new pattern-stack `p`.
+//! This algorithm is realised in the `is_useful` function.
+//!
+//! Base case. (`n = 0`, i.e., an empty tuple pattern)
+//!     - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`),
+//!       then `U(P, p)` is false.
+//!     - Otherwise, `P` must be empty, so `U(P, p)` is true.
+//!
+//! Inductive step. (`n > 0`, i.e., whether there's at least one column
+//!                  [which may then be expanded into further columns later])
+//! We're going to match on the top of the new pattern-stack, `p_1`.
+//!     - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
+//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
+//! we ignore all the patterns in the first column of `P` that involve other constructors.
+//! This is where `S(c, P)` comes in:
+//! `U(P, p) := U(S(c, P), S(c, p))`
+//!
+//! For example, if `P` is:
+//!
+//! ```
+//! [
+//!     [Some(true), _],
+//!     [None, 0],
+//! ]
+//! ```
+//!
+//! and `p` is `[Some(false), 0]`, then we don't care about row 2 since we know `p` only
+//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
+//! arguments of `Some` to know whether some new value is covered. So we compute
+//! `U([[true, _]], [false, 0])`.
+//!
+//!   - If `p_1 == _`, then we look at the list of constructors that appear in the first
+//! component of the rows of `P`:
+//!   + If there are some constructors that aren't present, then we might think that the
+//! wildcard `_` is useful, since it covers those constructors that weren't covered
+//! before.
+//! That's almost correct, but only works if there were no wildcards in those first
+//! components. So we need to check that `p` is useful with respect to the rows that
+//! start with a wildcard, if there are any. This is where `S(_, x)` comes in:
+//! `U(P, p) := U(S(_, P), S(_, p))`
+//!
+//! For example, if `P` is:
+//!
+//! ```
+//! [
+//!     [_, true, _],
+//!     [None, false, 1],
+//! ]
+//! ```
+//!
+//! and `p` is `[_, false, _]`, the `Some` constructor doesn't appear in `P`. So if we
+//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
+//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
+//!
+//!   + Otherwise, all possible constructors (for the relevant type) are present. In this
+//! case we must check whether the wildcard pattern covers any unmatched value. For
+//! that, we can think of the `_` pattern as a big OR-pattern that covers all
+//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
+//! example. The wildcard pattern is useful in this case if it is useful when
+//! specialized to one of the possible constructors. So we compute:
+//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
+//!
+//! For example, if `P` is:
+//!
+//! ```
+//! [
+//!     [Some(true), _],
+//!     [None, false],
+//! ]
+//! ```
+//!
+//! and `p` is `[_, false]`, both `None` and `Some` constructors appear in the first
+//! components of `P`. We will therefore try popping both constructors in turn: we
+//! compute `U([[true, _]], [_, false])` for the `Some` constructor, and `U([[false]],
+//! [false])` for the `None` constructor. The first case returns true, so we know that
+//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
+//! before.
+//!
+//!   - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
+//! `U(P, p) := U(P, (r_1, p_2, .., p_n))
+//!  || U(P, (r_2, p_2, .., p_n))`
+//!
+//! Modifications to the algorithm
+//! ------------------------------
+//! The algorithm in the paper doesn't cover some of the special cases that arise in Rust, for
+//! example uninhabited types and variable-length slice patterns. These are drawn attention to
+//! throughout the code below. I'll make a quick note here about how exhaustive integer matching is
+//! accounted for, though.
+//!
+//! Exhaustive integer matching
+//! ---------------------------
+//! An integer type can be thought of as a (huge) sum type: 1 | 2 | 3 | ...
+//! So to support exhaustive integer matching, we can make use of the logic in the paper for
+//! OR-patterns. However, we obviously can't just treat ranges x..=y as individual sums, because
+//! they are likely gigantic. So we instead treat ranges as constructors of the integers. This means
+//! that we have a constructor *of* constructors (the integers themselves). We then need to work
+//! through all the inductive step rules above, deriving how the ranges would be treated as
+//! OR-patterns, and making sure that they're treated in the same way even when they're ranges.
+//! There are really only four special cases here:
+//! - When we match on a constructor that's actually a range, we have to treat it as if we would
+//!   an OR-pattern.
+//!     + It turns out that we can simply extend the case for single-value patterns in
+//!      `specialize` to either be *equal* to a value constructor, or *contained within* a range
+//!      constructor.
+//!     + When the pattern itself is a range, you just want to tell whether any of the values in
+//!       the pattern range coincide with values in the constructor range, which is precisely
+//!       intersection.
+//!   Since when encountering a range pattern for a value constructor, we also use inclusion, it
+//!   means that whenever the constructor is a value/range and the pattern is also a value/range,
+//!   we can simply use intersection to test usefulness.
+//! - When we're testing for usefulness of a pattern and the pattern's first component is a
+//!   wildcard.
+//!     + If all the constructors appear in the matrix, we have a slight complication. By default,
+//!       the behaviour (i.e., a disjunction over specialised matrices for each constructor) is
+//!       invalid, because we want a disjunction over every *integer* in each range, not just a
+//!       disjunction over every range. This is a bit more tricky to deal with: essentially we need
+//!       to form equivalence classes of subranges of the constructor range for which the behaviour
+//!       of the matrix `P` and new pattern `p` are the same. This is described in more
+//!       detail in `Constructor::split`.
+//!     + If some constructors are missing from the matrix, it turns out we don't need to do
+//!       anything special (because we know none of the integers are actually wildcards: i.e., we
+//!       can't span wildcards using ranges).
+
+use self::Usefulness::*;
+use self::WitnessPreference::*;
+
+use super::deconstruct_pat::{Constructor, Fields, MissingConstructors};
+use super::{Pat, PatKind};
+use super::{PatternFoldable, PatternFolder};
+
+use rustc_data_structures::captures::Captures;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::sync::OnceCell;
+
+use rustc_arena::TypedArena;
+use rustc_hir::def_id::DefId;
+use rustc_hir::HirId;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::Span;
+
+use smallvec::{smallvec, SmallVec};
+use std::fmt;
+use std::iter::{FromIterator, IntoIterator};
+
+crate struct MatchCheckCtxt<'a, 'tcx> {
+    crate tcx: TyCtxt<'tcx>,
+    /// The module in which the match occurs. This is necessary for
+    /// checking inhabited-ness of types because whether a type is (visibly)
+    /// inhabited can depend on whether it was defined in the current module or
+    /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
+    /// outside its module and should not be matchable with an empty match statement.
+    crate module: DefId,
+    crate param_env: ty::ParamEnv<'tcx>,
+    crate pattern_arena: &'a TypedArena<Pat<'tcx>>,
+}
+
+impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
+    pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
+        if self.tcx.features().exhaustive_patterns {
+            self.tcx.is_ty_uninhabited_from(self.module, ty, self.param_env)
+        } else {
+            false
+        }
+    }
+
+    /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
+    pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
+        match ty.kind() {
+            ty::Adt(def, ..) => {
+                def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did.is_local()
+            }
+            _ => false,
+        }
+    }
+}
+
+#[derive(Copy, Clone)]
+pub(super) struct PatCtxt<'a, 'p, 'tcx> {
+    pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
+    /// Current state of the matrix.
+    pub(super) matrix: &'a Matrix<'p, 'tcx>,
+    /// Type of the current column under investigation.
+    pub(super) ty: Ty<'tcx>,
+    /// Span of the current pattern under investigation.
+    pub(super) span: Span,
+    /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
+    /// subpattern.
+    pub(super) is_top_level: bool,
+}
+
+crate fn expand_pattern<'tcx>(pat: Pat<'tcx>) -> Pat<'tcx> {
+    LiteralExpander.fold_pattern(&pat)
+}
+
+struct LiteralExpander;
+
+impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
+    fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
+        debug!("fold_pattern {:?} {:?} {:?}", pat, pat.ty.kind(), pat.kind);
+        match (pat.ty.kind(), pat.kind.as_ref()) {
+            (_, PatKind::Binding { subpattern: Some(s), .. }) => s.fold_with(self),
+            (_, PatKind::AscribeUserType { subpattern: s, .. }) => s.fold_with(self),
+            (ty::Ref(_, t, _), PatKind::Constant { .. }) if t.is_str() => {
+                // Treat string literal patterns as deref patterns to a `str` constant, i.e.
+                // `&CONST`. This expands them like other const patterns. This could have been done
+                // in `const_to_pat`, but that causes issues with the rest of the matching code.
+                let mut new_pat = pat.super_fold_with(self);
+                // Make a fake const pattern of type `str` (instead of `&str`). That the carried
+                // constant value still knows it is of type `&str`.
+                new_pat.ty = t;
+                Pat {
+                    kind: Box::new(PatKind::Deref { subpattern: new_pat }),
+                    span: pat.span,
+                    ty: pat.ty,
+                }
+            }
+            _ => pat.super_fold_with(self),
+        }
+    }
+}
+
+impl<'tcx> Pat<'tcx> {
+    pub(super) fn is_wildcard(&self) -> bool {
+        matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
+    }
+}
+
+/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
+/// works well.
+#[derive(Debug, Clone)]
+struct PatStack<'p, 'tcx> {
+    pats: SmallVec<[&'p Pat<'tcx>; 2]>,
+    /// Cache for the constructor of the head
+    head_ctor: OnceCell<Constructor<'tcx>>,
+}
+
+impl<'p, 'tcx> PatStack<'p, 'tcx> {
+    fn from_pattern(pat: &'p Pat<'tcx>) -> Self {
+        Self::from_vec(smallvec![pat])
+    }
+
+    fn from_vec(vec: SmallVec<[&'p Pat<'tcx>; 2]>) -> Self {
+        PatStack { pats: vec, head_ctor: OnceCell::new() }
+    }
+
+    fn is_empty(&self) -> bool {
+        self.pats.is_empty()
+    }
+
+    fn len(&self) -> usize {
+        self.pats.len()
+    }
+
+    fn head(&self) -> &'p Pat<'tcx> {
+        self.pats[0]
+    }
+
+    fn head_ctor<'a>(&'a self, cx: &MatchCheckCtxt<'p, 'tcx>) -> &'a Constructor<'tcx> {
+        self.head_ctor.get_or_init(|| Constructor::from_pat(cx, self.head()))
+    }
+
+    fn iter(&self) -> impl Iterator<Item = &Pat<'tcx>> {
+        self.pats.iter().copied()
+    }
+
+    // If the first pattern is an or-pattern, expand this pattern. Otherwise, return `None`.
+    fn expand_or_pat(&self) -> Option<Vec<Self>> {
+        if self.is_empty() {
+            None
+        } else if let PatKind::Or { pats } = &*self.head().kind {
+            Some(
+                pats.iter()
+                    .map(|pat| {
+                        let mut new_patstack = PatStack::from_pattern(pat);
+                        new_patstack.pats.extend_from_slice(&self.pats[1..]);
+                        new_patstack
+                    })
+                    .collect(),
+            )
+        } else {
+            None
+        }
+    }
+
+    /// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
+    ///
+    /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
+    /// fields filled with wild patterns.
+    ///
+    /// This is roughly the inverse of `Constructor::apply`.
+    fn pop_head_constructor(&self, ctor_wild_subpatterns: &Fields<'p, 'tcx>) -> PatStack<'p, 'tcx> {
+        // We pop the head pattern and push the new fields extracted from the arguments of
+        // `self.head()`.
+        let mut new_fields =
+            ctor_wild_subpatterns.replace_with_pattern_arguments(self.head()).filtered_patterns();
+        new_fields.extend_from_slice(&self.pats[1..]);
+        PatStack::from_vec(new_fields)
+    }
+}
+
+impl<'p, 'tcx> Default for PatStack<'p, 'tcx> {
+    fn default() -> Self {
+        Self::from_vec(smallvec![])
+    }
+}
+
+impl<'p, 'tcx> PartialEq for PatStack<'p, 'tcx> {
+    fn eq(&self, other: &Self) -> bool {
+        self.pats == other.pats
+    }
+}
+
+impl<'p, 'tcx> FromIterator<&'p Pat<'tcx>> for PatStack<'p, 'tcx> {
+    fn from_iter<T>(iter: T) -> Self
+    where
+        T: IntoIterator<Item = &'p Pat<'tcx>>,
+    {
+        Self::from_vec(iter.into_iter().collect())
+    }
+}
+
+/// A 2D matrix.
+#[derive(Clone, PartialEq)]
+pub(super) struct Matrix<'p, 'tcx> {
+    patterns: Vec<PatStack<'p, 'tcx>>,
+}
+
+impl<'p, 'tcx> Matrix<'p, 'tcx> {
+    fn empty() -> Self {
+        Matrix { patterns: vec![] }
+    }
+
+    /// Number of columns of this matrix. `None` is the matrix is empty.
+    pub(super) fn column_count(&self) -> Option<usize> {
+        self.patterns.get(0).map(|r| r.len())
+    }
+
+    /// Pushes a new row to the matrix. If the row starts with an or-pattern, this expands it.
+    fn push(&mut self, row: PatStack<'p, 'tcx>) {
+        if let Some(rows) = row.expand_or_pat() {
+            for row in rows {
+                // We recursively expand the or-patterns of the new rows.
+                // This is necessary as we might have `0 | (1 | 2)` or e.g., `x @ 0 | x @ (1 | 2)`.
+                self.push(row)
+            }
+        } else {
+            self.patterns.push(row);
+        }
+    }
+
+    /// Iterate over the first component of each row
+    fn heads<'a>(&'a self) -> impl Iterator<Item = &'a Pat<'tcx>> + Captures<'p> {
+        self.patterns.iter().map(|r| r.head())
+    }
+
+    /// Iterate over the first constructor of each row
+    pub(super) fn head_ctors<'a>(
+        &'a self,
+        cx: &'a MatchCheckCtxt<'p, 'tcx>,
+    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'a> + Captures<'p> {
+        self.patterns.iter().map(move |r| r.head_ctor(cx))
+    }
+
+    /// This computes `S(constructor, self)`. See top of the file for explanations.
+    fn specialize_constructor(
+        &self,
+        pcx: PatCtxt<'_, 'p, 'tcx>,
+        ctor: &Constructor<'tcx>,
+        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
+    ) -> Matrix<'p, 'tcx> {
+        self.patterns
+            .iter()
+            .filter(|r| ctor.is_covered_by(pcx, r.head_ctor(pcx.cx)))
+            .map(|r| r.pop_head_constructor(ctor_wild_subpatterns))
+            .collect()
+    }
+}
+
+/// Pretty-printer for matrices of patterns, example:
+///
+/// ```text
+/// +++++++++++++++++++++++++++++
+/// + _     + []                +
+/// +++++++++++++++++++++++++++++
+/// + true  + [First]           +
+/// +++++++++++++++++++++++++++++
+/// + true  + [Second(true)]    +
+/// +++++++++++++++++++++++++++++
+/// + false + [_]               +
+/// +++++++++++++++++++++++++++++
+/// + _     + [_, _, tail @ ..] +
+/// +++++++++++++++++++++++++++++
+/// ```
+impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        write!(f, "\n")?;
+
+        let Matrix { patterns: m, .. } = self;
+        let pretty_printed_matrix: Vec<Vec<String>> =
+            m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
+
+        let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
+        assert!(m.iter().all(|row| row.len() == column_count));
+        let column_widths: Vec<usize> = (0..column_count)
+            .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
+            .collect();
+
+        let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
+        let br = "+".repeat(total_width);
+        write!(f, "{}\n", br)?;
+        for row in pretty_printed_matrix {
+            write!(f, "+")?;
+            for (column, pat_str) in row.into_iter().enumerate() {
+                write!(f, " ")?;
+                write!(f, "{:1$}", pat_str, column_widths[column])?;
+                write!(f, " +")?;
+            }
+            write!(f, "\n")?;
+            write!(f, "{}\n", br)?;
+        }
+        Ok(())
+    }
+}
+
+impl<'p, 'tcx> FromIterator<PatStack<'p, 'tcx>> for Matrix<'p, 'tcx> {
+    fn from_iter<T>(iter: T) -> Self
+    where
+        T: IntoIterator<Item = PatStack<'p, 'tcx>>,
+    {
+        let mut matrix = Matrix::empty();
+        for x in iter {
+            // Using `push` ensures we correctly expand or-patterns.
+            matrix.push(x);
+        }
+        matrix
+    }
+}
+
+#[derive(Clone, Debug)]
+crate enum Usefulness<'tcx> {
+    /// Carries, for each column in the matrix, a set of sub-branches that have been found to be
+    /// unreachable. Used only in the presence of or-patterns, otherwise it stays empty.
+    Useful(Vec<FxHashSet<Span>>),
+    /// Carries a list of witnesses of non-exhaustiveness.
+    UsefulWithWitness(Vec<Witness<'tcx>>),
+    NotUseful,
+}
+
+impl<'tcx> Usefulness<'tcx> {
+    fn new_useful(preference: WitnessPreference) -> Self {
+        match preference {
+            ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
+            LeaveOutWitness => Useful(vec![]),
+        }
+    }
+
+    fn is_useful(&self) -> bool {
+        !matches!(*self, NotUseful)
+    }
+
+    fn apply_constructor<'p>(
+        self,
+        pcx: PatCtxt<'_, 'p, 'tcx>,
+        ctor: &Constructor<'tcx>,
+        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
+    ) -> Self {
+        match self {
+            UsefulWithWitness(witnesses) => {
+                let new_witnesses = if ctor.is_wildcard() {
+                    let missing_ctors = MissingConstructors::new(pcx);
+                    let new_patterns = missing_ctors.report_patterns(pcx);
+                    witnesses
+                        .into_iter()
+                        .flat_map(|witness| {
+                            new_patterns.iter().map(move |pat| {
+                                let mut witness = witness.clone();
+                                witness.0.push(pat.clone());
+                                witness
+                            })
+                        })
+                        .collect()
+                } else {
+                    witnesses
+                        .into_iter()
+                        .map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns))
+                        .collect()
+                };
+                UsefulWithWitness(new_witnesses)
+            }
+            Useful(mut unreachables) => {
+                if !unreachables.is_empty() {
+                    // When we apply a constructor, there are `arity` columns of the matrix that
+                    // corresponded to its arguments. All the unreachables found in these columns
+                    // will, after `apply`, come from the first column. So we take the union of all
+                    // the corresponding sets and put them in the first column.
+                    // Note that `arity` may be 0, in which case we just push a new empty set.
+                    let len = unreachables.len();
+                    let arity = ctor_wild_subpatterns.len();
+                    let mut unioned = FxHashSet::default();
+                    for set in unreachables.drain((len - arity)..) {
+                        unioned.extend(set)
+                    }
+                    unreachables.push(unioned);
+                }
+                Useful(unreachables)
+            }
+            x => x,
+        }
+    }
+}
+
+#[derive(Copy, Clone, Debug)]
+enum WitnessPreference {
+    ConstructWitness,
+    LeaveOutWitness,
+}
+
+/// A witness of non-exhaustiveness for error reporting, represented
+/// as a list of patterns (in reverse order of construction) with
+/// wildcards inside to represent elements that can take any inhabitant
+/// of the type as a value.
+///
+/// A witness against a list of patterns should have the same types
+/// and length as the pattern matched against. Because Rust `match`
+/// is always against a single pattern, at the end the witness will
+/// have length 1, but in the middle of the algorithm, it can contain
+/// multiple patterns.
+///
+/// For example, if we are constructing a witness for the match against
+///
+/// ```
+/// struct Pair(Option<(u32, u32)>, bool);
+///
+/// match (p: Pair) {
+///    Pair(None, _) => {}
+///    Pair(_, false) => {}
+/// }
+/// ```
+///
+/// We'll perform the following steps:
+/// 1. Start with an empty witness
+///     `Witness(vec![])`
+/// 2. Push a witness `Some(_)` against the `None`
+///     `Witness(vec![Some(_)])`
+/// 3. Push a witness `true` against the `false`
+///     `Witness(vec![Some(_), true])`
+/// 4. Apply the `Pair` constructor to the witnesses
+///     `Witness(vec![Pair(Some(_), true)])`
+///
+/// The final `Pair(Some(_), true)` is then the resulting witness.
+#[derive(Clone, Debug)]
+crate struct Witness<'tcx>(Vec<Pat<'tcx>>);
+
+impl<'tcx> Witness<'tcx> {
+    /// Asserts that the witness contains a single pattern, and returns it.
+    fn single_pattern(self) -> Pat<'tcx> {
+        assert_eq!(self.0.len(), 1);
+        self.0.into_iter().next().unwrap()
+    }
+
+    /// Constructs a partial witness for a pattern given a list of
+    /// patterns expanded by the specialization step.
+    ///
+    /// When a pattern P is discovered to be useful, this function is used bottom-up
+    /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
+    /// of values, V, where each value in that set is not covered by any previously
+    /// used patterns and is covered by the pattern P'. Examples:
+    ///
+    /// left_ty: tuple of 3 elements
+    /// pats: [10, 20, _]           => (10, 20, _)
+    ///
+    /// left_ty: struct X { a: (bool, &'static str), b: usize}
+    /// pats: [(false, "foo"), 42]  => X { a: (false, "foo"), b: 42 }
+    fn apply_constructor<'p>(
+        mut self,
+        pcx: PatCtxt<'_, 'p, 'tcx>,
+        ctor: &Constructor<'tcx>,
+        ctor_wild_subpatterns: &Fields<'p, 'tcx>,
+    ) -> Self {
+        let pat = {
+            let len = self.0.len();
+            let arity = ctor_wild_subpatterns.len();
+            let pats = self.0.drain((len - arity)..).rev();
+            ctor_wild_subpatterns.replace_fields(pcx.cx, pats).apply(pcx, ctor)
+        };
+
+        self.0.push(pat);
+
+        self
+    }
+}
+
+/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
+/// The algorithm from the paper has been modified to correctly handle empty
+/// types. The changes are:
+///   (0) We don't exit early if the pattern matrix has zero rows. We just
+///       continue to recurse over columns.
+///   (1) all_constructors will only return constructors that are statically
+///       possible. E.g., it will only return `Ok` for `Result<T, !>`.
+///
+/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
+/// to a set of such vectors `m` - this is defined as there being a set of
+/// inputs that will match `v` but not any of the sets in `m`.
+///
+/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
+///
+/// This is used both for reachability checking (if a pattern isn't useful in
+/// relation to preceding patterns, it is not reachable) and exhaustiveness
+/// checking (if a wildcard pattern is useful in relation to a matrix, the
+/// matrix isn't exhaustive).
+///
+/// `is_under_guard` is used to inform if the pattern has a guard. If it
+/// has one it must not be inserted into the matrix. This shouldn't be
+/// relied on for soundness.
+fn is_useful<'p, 'tcx>(
+    cx: &MatchCheckCtxt<'p, 'tcx>,
+    matrix: &Matrix<'p, 'tcx>,
+    v: &PatStack<'p, 'tcx>,
+    witness_preference: WitnessPreference,
+    hir_id: HirId,
+    is_under_guard: bool,
+    is_top_level: bool,
+) -> Usefulness<'tcx> {
+    let Matrix { patterns: rows, .. } = matrix;
+    debug!("is_useful({:#?}, {:#?})", matrix, v);
+
+    // The base case. We are pattern-matching on () and the return value is
+    // based on whether our matrix has a row or not.
+    // NOTE: This could potentially be optimized by checking rows.is_empty()
+    // first and then, if v is non-empty, the return value is based on whether
+    // the type of the tuple we're checking is inhabited or not.
+    if v.is_empty() {
+        return if rows.is_empty() {
+            Usefulness::new_useful(witness_preference)
+        } else {
+            NotUseful
+        };
+    };
+
+    assert!(rows.iter().all(|r| r.len() == v.len()));
+
+    // If the first pattern is an or-pattern, expand it.
+    if let Some(vs) = v.expand_or_pat() {
+        // We expand the or pattern, trying each of its branches in turn and keeping careful track
+        // of possible unreachable sub-branches.
+        //
+        // If two branches have detected some unreachable sub-branches, we need to be careful. If
+        // they were detected in columns that are not the current one, we want to keep only the
+        // sub-branches that were unreachable in _all_ branches. Eg. in the following, the last
+        // `true` is unreachable in the second branch of the first or-pattern, but not otherwise.
+        // Therefore we don't want to lint that it is unreachable.
+        //
+        // ```
+        // match (true, true) {
+        //     (true, true) => {}
+        //     (false | true, false | true) => {}
+        // }
+        // ```
+        // If however the sub-branches come from the current column, they come from the inside of
+        // the current or-pattern, and we want to keep them all. Eg. in the following, we _do_ want
+        // to lint that the last `false` is unreachable.
+        // ```
+        // match None {
+        //     Some(false) => {}
+        //     None | Some(true | false) => {}
+        // }
+        // ```
+
+        let mut matrix = matrix.clone();
+        // We keep track of sub-branches separately depending on whether they come from this column
+        // or from others.
+        let mut unreachables_this_column: FxHashSet<Span> = FxHashSet::default();
+        let mut unreachables_other_columns: Vec<FxHashSet<Span>> = Vec::default();
+        // Whether at least one branch is reachable.
+        let mut any_is_useful = false;
+
+        for v in vs {
+            let res = is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
+            match res {
+                Useful(unreachables) => {
+                    if let Some((this_column, other_columns)) = unreachables.split_last() {
+                        // We keep the union of unreachables found in the first column.
+                        unreachables_this_column.extend(this_column);
+                        // We keep the intersection of unreachables found in other columns.
+                        if unreachables_other_columns.is_empty() {
+                            unreachables_other_columns = other_columns.to_vec();
+                        } else {
+                            unreachables_other_columns = unreachables_other_columns
+                                .into_iter()
+                                .zip(other_columns)
+                                .map(|(x, y)| x.intersection(&y).copied().collect())
+                                .collect();
+                        }
+                    }
+                    any_is_useful = true;
+                }
+                NotUseful => {
+                    unreachables_this_column.insert(v.head().span);
+                }
+                UsefulWithWitness(_) => bug!(
+                    "encountered or-pat in the expansion of `_` during exhaustiveness checking"
+                ),
+            }
+
+            // If pattern has a guard don't add it to the matrix.
+            if !is_under_guard {
+                // We push the already-seen patterns into the matrix in order to detect redundant
+                // branches like `Some(_) | Some(0)`.
+                matrix.push(v);
+            }
+        }
+
+        return if any_is_useful {
+            let mut unreachables = if unreachables_other_columns.is_empty() {
+                let n_columns = v.len();
+                (0..n_columns - 1).map(|_| FxHashSet::default()).collect()
+            } else {
+                unreachables_other_columns
+            };
+            unreachables.push(unreachables_this_column);
+            Useful(unreachables)
+        } else {
+            NotUseful
+        };
+    }
+
+    // FIXME(Nadrieril): Hack to work around type normalization issues (see #72476).
+    let ty = matrix.heads().next().map(|r| r.ty).unwrap_or(v.head().ty);
+    let pcx = PatCtxt { cx, matrix, ty, span: v.head().span, is_top_level };
+
+    debug!("is_useful_expand_first_col: ty={:#?}, expanding {:#?}", pcx.ty, v.head());
+
+    let ret = v
+        .head_ctor(cx)
+        .split(pcx, Some(hir_id))
+        .into_iter()
+        .map(|ctor| {
+            // We cache the result of `Fields::wildcards` because it is used a lot.
+            let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
+            let matrix = pcx.matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
+            let v = v.pop_head_constructor(&ctor_wild_subpatterns);
+            let usefulness =
+                is_useful(pcx.cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
+            usefulness.apply_constructor(pcx, &ctor, &ctor_wild_subpatterns)
+        })
+        .find(|result| result.is_useful())
+        .unwrap_or(NotUseful);
+    debug!("is_useful::returns({:#?}, {:#?}) = {:?}", matrix, v, ret);
+    ret
+}
+
+/// The arm of a match expression.
+#[derive(Clone, Copy)]
+crate struct MatchArm<'p, 'tcx> {
+    /// The pattern must have been lowered through `MatchVisitor::lower_pattern`.
+    crate pat: &'p super::Pat<'tcx>,
+    crate hir_id: HirId,
+    crate has_guard: bool,
+}
+
+/// The output of checking a match for exhaustiveness and arm reachability.
+crate struct UsefulnessReport<'p, 'tcx> {
+    /// For each arm of the input, whether that arm is reachable after the arms above it.
+    crate arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness<'tcx>)>,
+    /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
+    /// exhaustiveness.
+    crate non_exhaustiveness_witnesses: Vec<super::Pat<'tcx>>,
+}
+
+/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
+/// of its arms are reachable.
+///
+/// Note: the input patterns must have been lowered through `MatchVisitor::lower_pattern`.
+crate fn compute_match_usefulness<'p, 'tcx>(
+    cx: &MatchCheckCtxt<'p, 'tcx>,
+    arms: &[MatchArm<'p, 'tcx>],
+    scrut_hir_id: HirId,
+    scrut_ty: Ty<'tcx>,
+) -> UsefulnessReport<'p, 'tcx> {
+    let mut matrix = Matrix::empty();
+    let arm_usefulness: Vec<_> = arms
+        .iter()
+        .copied()
+        .map(|arm| {
+            let v = PatStack::from_pattern(arm.pat);
+            let usefulness =
+                is_useful(cx, &matrix, &v, LeaveOutWitness, arm.hir_id, arm.has_guard, true);
+            if !arm.has_guard {
+                matrix.push(v);
+            }
+            (arm, usefulness)
+        })
+        .collect();
+
+    let wild_pattern = cx.pattern_arena.alloc(super::Pat::wildcard_from_ty(scrut_ty));
+    let v = PatStack::from_pattern(wild_pattern);
+    let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, scrut_hir_id, false, true);
+    let non_exhaustiveness_witnesses = match usefulness {
+        NotUseful => vec![], // Wildcard pattern isn't useful, so the match is exhaustive.
+        UsefulWithWitness(pats) => {
+            if pats.is_empty() {
+                bug!("Exhaustiveness check returned no witnesses")
+            } else {
+                pats.into_iter().map(|w| w.single_pattern()).collect()
+            }
+        }
+        Useful(_) => bug!(),
+    };
+    UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
+}