about summary refs log tree commit diff
path: root/compiler/rustc_ast/src/tokenstream.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_ast/src/tokenstream.rs')
-rw-r--r--compiler/rustc_ast/src/tokenstream.rs433
1 files changed, 433 insertions, 0 deletions
diff --git a/compiler/rustc_ast/src/tokenstream.rs b/compiler/rustc_ast/src/tokenstream.rs
new file mode 100644
index 00000000000..151acddae84
--- /dev/null
+++ b/compiler/rustc_ast/src/tokenstream.rs
@@ -0,0 +1,433 @@
+//! # Token Streams
+//!
+//! `TokenStream`s represent syntactic objects before they are converted into ASTs.
+//! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s,
+//! which are themselves a single `Token` or a `Delimited` subsequence of tokens.
+//!
+//! ## Ownership
+//!
+//! `TokenStream`s are persistent data structures constructed as ropes with reference
+//! counted-children. In general, this means that calling an operation on a `TokenStream`
+//! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to
+//! the original. This essentially coerces `TokenStream`s into 'views' of their subparts,
+//! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking
+//! ownership of the original.
+
+use crate::token::{self, DelimToken, Token, TokenKind};
+
+use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
+use rustc_data_structures::sync::Lrc;
+use rustc_macros::HashStable_Generic;
+use rustc_span::{Span, DUMMY_SP};
+use smallvec::{smallvec, SmallVec};
+
+use std::{iter, mem};
+
+/// When the main rust parser encounters a syntax-extension invocation, it
+/// parses the arguments to the invocation as a token-tree. This is a very
+/// loose structure, such that all sorts of different AST-fragments can
+/// be passed to syntax extensions using a uniform type.
+///
+/// If the syntax extension is an MBE macro, it will attempt to match its
+/// LHS token tree against the provided token tree, and if it finds a
+/// match, will transcribe the RHS token tree, splicing in any captured
+/// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds.
+///
+/// The RHS of an MBE macro is the only place `SubstNt`s are substituted.
+/// Nothing special happens to misnamed or misplaced `SubstNt`s.
+#[derive(Debug, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
+pub enum TokenTree {
+    /// A single token
+    Token(Token),
+    /// A delimited sequence of token trees
+    Delimited(DelimSpan, DelimToken, TokenStream),
+}
+
+// Ensure all fields of `TokenTree` is `Send` and `Sync`.
+#[cfg(parallel_compiler)]
+fn _dummy()
+where
+    Token: Send + Sync,
+    DelimSpan: Send + Sync,
+    DelimToken: Send + Sync,
+    TokenStream: Send + Sync,
+{
+}
+
+impl TokenTree {
+    /// Checks if this TokenTree is equal to the other, regardless of span information.
+    pub fn eq_unspanned(&self, other: &TokenTree) -> bool {
+        match (self, other) {
+            (TokenTree::Token(token), TokenTree::Token(token2)) => token.kind == token2.kind,
+            (TokenTree::Delimited(_, delim, tts), TokenTree::Delimited(_, delim2, tts2)) => {
+                delim == delim2 && tts.eq_unspanned(&tts2)
+            }
+            _ => false,
+        }
+    }
+
+    /// Retrieves the TokenTree's span.
+    pub fn span(&self) -> Span {
+        match self {
+            TokenTree::Token(token) => token.span,
+            TokenTree::Delimited(sp, ..) => sp.entire(),
+        }
+    }
+
+    /// Modify the `TokenTree`'s span in-place.
+    pub fn set_span(&mut self, span: Span) {
+        match self {
+            TokenTree::Token(token) => token.span = span,
+            TokenTree::Delimited(dspan, ..) => *dspan = DelimSpan::from_single(span),
+        }
+    }
+
+    pub fn joint(self) -> TokenStream {
+        TokenStream::new(vec![(self, Joint)])
+    }
+
+    pub fn token(kind: TokenKind, span: Span) -> TokenTree {
+        TokenTree::Token(Token::new(kind, span))
+    }
+
+    /// Returns the opening delimiter as a token tree.
+    pub fn open_tt(span: DelimSpan, delim: DelimToken) -> TokenTree {
+        TokenTree::token(token::OpenDelim(delim), span.open)
+    }
+
+    /// Returns the closing delimiter as a token tree.
+    pub fn close_tt(span: DelimSpan, delim: DelimToken) -> TokenTree {
+        TokenTree::token(token::CloseDelim(delim), span.close)
+    }
+
+    pub fn uninterpolate(self) -> TokenTree {
+        match self {
+            TokenTree::Token(token) => TokenTree::Token(token.uninterpolate().into_owned()),
+            tt => tt,
+        }
+    }
+}
+
+impl<CTX> HashStable<CTX> for TokenStream
+where
+    CTX: crate::HashStableContext,
+{
+    fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
+        for sub_tt in self.trees() {
+            sub_tt.hash_stable(hcx, hasher);
+        }
+    }
+}
+
+/// A `TokenStream` is an abstract sequence of tokens, organized into `TokenTree`s.
+///
+/// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s
+/// instead of a representation of the abstract syntax tree.
+/// Today's `TokenTree`s can still contain AST via `token::Interpolated` for back-compat.
+#[derive(Clone, Debug, Default, Encodable, Decodable)]
+pub struct TokenStream(pub Lrc<Vec<TreeAndJoint>>);
+
+pub type TreeAndJoint = (TokenTree, IsJoint);
+
+// `TokenStream` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(target_arch = "x86_64")]
+rustc_data_structures::static_assert_size!(TokenStream, 8);
+
+#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable)]
+pub enum IsJoint {
+    Joint,
+    NonJoint,
+}
+
+use IsJoint::*;
+
+impl TokenStream {
+    /// Given a `TokenStream` with a `Stream` of only two arguments, return a new `TokenStream`
+    /// separating the two arguments with a comma for diagnostic suggestions.
+    pub fn add_comma(&self) -> Option<(TokenStream, Span)> {
+        // Used to suggest if a user writes `foo!(a b);`
+        let mut suggestion = None;
+        let mut iter = self.0.iter().enumerate().peekable();
+        while let Some((pos, ts)) = iter.next() {
+            if let Some((_, next)) = iter.peek() {
+                let sp = match (&ts, &next) {
+                    (_, (TokenTree::Token(Token { kind: token::Comma, .. }), _)) => continue,
+                    (
+                        (TokenTree::Token(token_left), NonJoint),
+                        (TokenTree::Token(token_right), _),
+                    ) if ((token_left.is_ident() && !token_left.is_reserved_ident())
+                        || token_left.is_lit())
+                        && ((token_right.is_ident() && !token_right.is_reserved_ident())
+                            || token_right.is_lit()) =>
+                    {
+                        token_left.span
+                    }
+                    ((TokenTree::Delimited(sp, ..), NonJoint), _) => sp.entire(),
+                    _ => continue,
+                };
+                let sp = sp.shrink_to_hi();
+                let comma = (TokenTree::token(token::Comma, sp), NonJoint);
+                suggestion = Some((pos, comma, sp));
+            }
+        }
+        if let Some((pos, comma, sp)) = suggestion {
+            let mut new_stream = vec![];
+            let parts = self.0.split_at(pos + 1);
+            new_stream.extend_from_slice(parts.0);
+            new_stream.push(comma);
+            new_stream.extend_from_slice(parts.1);
+            return Some((TokenStream::new(new_stream), sp));
+        }
+        None
+    }
+}
+
+impl From<TokenTree> for TokenStream {
+    fn from(tree: TokenTree) -> TokenStream {
+        TokenStream::new(vec![(tree, NonJoint)])
+    }
+}
+
+impl From<TokenTree> for TreeAndJoint {
+    fn from(tree: TokenTree) -> TreeAndJoint {
+        (tree, NonJoint)
+    }
+}
+
+impl iter::FromIterator<TokenTree> for TokenStream {
+    fn from_iter<I: IntoIterator<Item = TokenTree>>(iter: I) -> Self {
+        TokenStream::new(iter.into_iter().map(Into::into).collect::<Vec<TreeAndJoint>>())
+    }
+}
+
+impl Eq for TokenStream {}
+
+impl PartialEq<TokenStream> for TokenStream {
+    fn eq(&self, other: &TokenStream) -> bool {
+        self.trees().eq(other.trees())
+    }
+}
+
+impl TokenStream {
+    pub fn new(streams: Vec<TreeAndJoint>) -> TokenStream {
+        TokenStream(Lrc::new(streams))
+    }
+
+    pub fn is_empty(&self) -> bool {
+        self.0.is_empty()
+    }
+
+    pub fn len(&self) -> usize {
+        self.0.len()
+    }
+
+    pub fn span(&self) -> Option<Span> {
+        match &**self.0 {
+            [] => None,
+            [(tt, _)] => Some(tt.span()),
+            [(tt_start, _), .., (tt_end, _)] => Some(tt_start.span().to(tt_end.span())),
+        }
+    }
+
+    pub fn from_streams(mut streams: SmallVec<[TokenStream; 2]>) -> TokenStream {
+        match streams.len() {
+            0 => TokenStream::default(),
+            1 => streams.pop().unwrap(),
+            _ => {
+                // We are going to extend the first stream in `streams` with
+                // the elements from the subsequent streams. This requires
+                // using `make_mut()` on the first stream, and in practice this
+                // doesn't cause cloning 99.9% of the time.
+                //
+                // One very common use case is when `streams` has two elements,
+                // where the first stream has any number of elements within
+                // (often 1, but sometimes many more) and the second stream has
+                // a single element within.
+
+                // Determine how much the first stream will be extended.
+                // Needed to avoid quadratic blow up from on-the-fly
+                // reallocations (#57735).
+                let num_appends = streams.iter().skip(1).map(|ts| ts.len()).sum();
+
+                // Get the first stream. If it's `None`, create an empty
+                // stream.
+                let mut iter = streams.drain(..);
+                let mut first_stream_lrc = iter.next().unwrap().0;
+
+                // Append the elements to the first stream, after reserving
+                // space for them.
+                let first_vec_mut = Lrc::make_mut(&mut first_stream_lrc);
+                first_vec_mut.reserve(num_appends);
+                for stream in iter {
+                    first_vec_mut.extend(stream.0.iter().cloned());
+                }
+
+                // Create the final `TokenStream`.
+                TokenStream(first_stream_lrc)
+            }
+        }
+    }
+
+    pub fn trees(&self) -> Cursor {
+        self.clone().into_trees()
+    }
+
+    pub fn into_trees(self) -> Cursor {
+        Cursor::new(self)
+    }
+
+    /// Compares two `TokenStream`s, checking equality without regarding span information.
+    pub fn eq_unspanned(&self, other: &TokenStream) -> bool {
+        let mut t1 = self.trees();
+        let mut t2 = other.trees();
+        for (t1, t2) in t1.by_ref().zip(t2.by_ref()) {
+            if !t1.eq_unspanned(&t2) {
+                return false;
+            }
+        }
+        t1.next().is_none() && t2.next().is_none()
+    }
+
+    pub fn map_enumerated<F: FnMut(usize, TokenTree) -> TokenTree>(self, mut f: F) -> TokenStream {
+        TokenStream(Lrc::new(
+            self.0
+                .iter()
+                .enumerate()
+                .map(|(i, (tree, is_joint))| (f(i, tree.clone()), *is_joint))
+                .collect(),
+        ))
+    }
+
+    pub fn map<F: FnMut(TokenTree) -> TokenTree>(self, mut f: F) -> TokenStream {
+        TokenStream(Lrc::new(
+            self.0.iter().map(|(tree, is_joint)| (f(tree.clone()), *is_joint)).collect(),
+        ))
+    }
+}
+
+// 99.5%+ of the time we have 1 or 2 elements in this vector.
+#[derive(Clone)]
+pub struct TokenStreamBuilder(SmallVec<[TokenStream; 2]>);
+
+impl TokenStreamBuilder {
+    pub fn new() -> TokenStreamBuilder {
+        TokenStreamBuilder(SmallVec::new())
+    }
+
+    pub fn push<T: Into<TokenStream>>(&mut self, stream: T) {
+        let mut stream = stream.into();
+
+        // If `self` is not empty and the last tree within the last stream is a
+        // token tree marked with `Joint`...
+        if let Some(TokenStream(ref mut last_stream_lrc)) = self.0.last_mut() {
+            if let Some((TokenTree::Token(last_token), Joint)) = last_stream_lrc.last() {
+                // ...and `stream` is not empty and the first tree within it is
+                // a token tree...
+                let TokenStream(ref mut stream_lrc) = stream;
+                if let Some((TokenTree::Token(token), is_joint)) = stream_lrc.first() {
+                    // ...and the two tokens can be glued together...
+                    if let Some(glued_tok) = last_token.glue(&token) {
+                        // ...then do so, by overwriting the last token
+                        // tree in `self` and removing the first token tree
+                        // from `stream`. This requires using `make_mut()`
+                        // on the last stream in `self` and on `stream`,
+                        // and in practice this doesn't cause cloning 99.9%
+                        // of the time.
+
+                        // Overwrite the last token tree with the merged
+                        // token.
+                        let last_vec_mut = Lrc::make_mut(last_stream_lrc);
+                        *last_vec_mut.last_mut().unwrap() =
+                            (TokenTree::Token(glued_tok), *is_joint);
+
+                        // Remove the first token tree from `stream`. (This
+                        // is almost always the only tree in `stream`.)
+                        let stream_vec_mut = Lrc::make_mut(stream_lrc);
+                        stream_vec_mut.remove(0);
+
+                        // Don't push `stream` if it's empty -- that could
+                        // block subsequent token gluing, by getting
+                        // between two token trees that should be glued
+                        // together.
+                        if !stream.is_empty() {
+                            self.0.push(stream);
+                        }
+                        return;
+                    }
+                }
+            }
+        }
+        self.0.push(stream);
+    }
+
+    pub fn build(self) -> TokenStream {
+        TokenStream::from_streams(self.0)
+    }
+}
+
+#[derive(Clone)]
+pub struct Cursor {
+    pub stream: TokenStream,
+    index: usize,
+}
+
+impl Iterator for Cursor {
+    type Item = TokenTree;
+
+    fn next(&mut self) -> Option<TokenTree> {
+        self.next_with_joint().map(|(tree, _)| tree)
+    }
+}
+
+impl Cursor {
+    fn new(stream: TokenStream) -> Self {
+        Cursor { stream, index: 0 }
+    }
+
+    pub fn next_with_joint(&mut self) -> Option<TreeAndJoint> {
+        if self.index < self.stream.len() {
+            self.index += 1;
+            Some(self.stream.0[self.index - 1].clone())
+        } else {
+            None
+        }
+    }
+
+    pub fn append(&mut self, new_stream: TokenStream) {
+        if new_stream.is_empty() {
+            return;
+        }
+        let index = self.index;
+        let stream = mem::take(&mut self.stream);
+        *self = TokenStream::from_streams(smallvec![stream, new_stream]).into_trees();
+        self.index = index;
+    }
+
+    pub fn look_ahead(&self, n: usize) -> Option<TokenTree> {
+        self.stream.0[self.index..].get(n).map(|(tree, _)| tree.clone())
+    }
+}
+
+#[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
+pub struct DelimSpan {
+    pub open: Span,
+    pub close: Span,
+}
+
+impl DelimSpan {
+    pub fn from_single(sp: Span) -> Self {
+        DelimSpan { open: sp, close: sp }
+    }
+
+    pub fn from_pair(open: Span, close: Span) -> Self {
+        DelimSpan { open, close }
+    }
+
+    pub fn dummy() -> Self {
+        Self::from_single(DUMMY_SP)
+    }
+
+    pub fn entire(self) -> Span {
+        self.open.with_hi(self.close.hi())
+    }
+}