about summary refs log tree commit diff
path: root/compiler/rustc_codegen_ssa/src/mir/operand.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/mir/operand.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/mir/operand.rs471
1 files changed, 471 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_ssa/src/mir/operand.rs b/compiler/rustc_codegen_ssa/src/mir/operand.rs
new file mode 100644
index 00000000000..937c7457c63
--- /dev/null
+++ b/compiler/rustc_codegen_ssa/src/mir/operand.rs
@@ -0,0 +1,471 @@
+use super::place::PlaceRef;
+use super::{FunctionCx, LocalRef};
+
+use crate::base;
+use crate::glue;
+use crate::traits::*;
+use crate::MemFlags;
+
+use rustc_errors::ErrorReported;
+use rustc_middle::mir;
+use rustc_middle::mir::interpret::{ConstValue, ErrorHandled, Pointer, Scalar};
+use rustc_middle::ty::layout::TyAndLayout;
+use rustc_middle::ty::Ty;
+use rustc_target::abi::{Abi, Align, LayoutOf, Size};
+
+use std::fmt;
+
+/// The representation of a Rust value. The enum variant is in fact
+/// uniquely determined by the value's type, but is kept as a
+/// safety check.
+#[derive(Copy, Clone, Debug)]
+pub enum OperandValue<V> {
+    /// A reference to the actual operand. The data is guaranteed
+    /// to be valid for the operand's lifetime.
+    /// The second value, if any, is the extra data (vtable or length)
+    /// which indicates that it refers to an unsized rvalue.
+    Ref(V, Option<V>, Align),
+    /// A single LLVM value.
+    Immediate(V),
+    /// A pair of immediate LLVM values. Used by fat pointers too.
+    Pair(V, V),
+}
+
+/// An `OperandRef` is an "SSA" reference to a Rust value, along with
+/// its type.
+///
+/// NOTE: unless you know a value's type exactly, you should not
+/// generate LLVM opcodes acting on it and instead act via methods,
+/// to avoid nasty edge cases. In particular, using `Builder::store`
+/// directly is sure to cause problems -- use `OperandRef::store`
+/// instead.
+#[derive(Copy, Clone)]
+pub struct OperandRef<'tcx, V> {
+    // The value.
+    pub val: OperandValue<V>,
+
+    // The layout of value, based on its Rust type.
+    pub layout: TyAndLayout<'tcx>,
+}
+
+impl<V: CodegenObject> fmt::Debug for OperandRef<'tcx, V> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
+    }
+}
+
+impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
+    pub fn new_zst<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        bx: &mut Bx,
+        layout: TyAndLayout<'tcx>,
+    ) -> OperandRef<'tcx, V> {
+        assert!(layout.is_zst());
+        OperandRef {
+            val: OperandValue::Immediate(bx.const_undef(bx.immediate_backend_type(layout))),
+            layout,
+        }
+    }
+
+    pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        bx: &mut Bx,
+        val: ConstValue<'tcx>,
+        ty: Ty<'tcx>,
+    ) -> Self {
+        let layout = bx.layout_of(ty);
+
+        if layout.is_zst() {
+            return OperandRef::new_zst(bx, layout);
+        }
+
+        let val = match val {
+            ConstValue::Scalar(x) => {
+                let scalar = match layout.abi {
+                    Abi::Scalar(ref x) => x,
+                    _ => bug!("from_const: invalid ByVal layout: {:#?}", layout),
+                };
+                let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
+                OperandValue::Immediate(llval)
+            }
+            ConstValue::Slice { data, start, end } => {
+                let a_scalar = match layout.abi {
+                    Abi::ScalarPair(ref a, _) => a,
+                    _ => bug!("from_const: invalid ScalarPair layout: {:#?}", layout),
+                };
+                let a = Scalar::from(Pointer::new(
+                    bx.tcx().create_memory_alloc(data),
+                    Size::from_bytes(start),
+                ));
+                let a_llval = bx.scalar_to_backend(
+                    a,
+                    a_scalar,
+                    bx.scalar_pair_element_backend_type(layout, 0, true),
+                );
+                let b_llval = bx.const_usize((end - start) as u64);
+                OperandValue::Pair(a_llval, b_llval)
+            }
+            ConstValue::ByRef { alloc, offset } => {
+                return bx.load_operand(bx.from_const_alloc(layout, alloc, offset));
+            }
+        };
+
+        OperandRef { val, layout }
+    }
+
+    /// Asserts that this operand refers to a scalar and returns
+    /// a reference to its value.
+    pub fn immediate(self) -> V {
+        match self.val {
+            OperandValue::Immediate(s) => s,
+            _ => bug!("not immediate: {:?}", self),
+        }
+    }
+
+    pub fn deref<Cx: LayoutTypeMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
+        let projected_ty = self
+            .layout
+            .ty
+            .builtin_deref(true)
+            .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self))
+            .ty;
+        let (llptr, llextra) = match self.val {
+            OperandValue::Immediate(llptr) => (llptr, None),
+            OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
+            OperandValue::Ref(..) => bug!("Deref of by-Ref operand {:?}", self),
+        };
+        let layout = cx.layout_of(projected_ty);
+        PlaceRef { llval: llptr, llextra, layout, align: layout.align.abi }
+    }
+
+    /// If this operand is a `Pair`, we return an aggregate with the two values.
+    /// For other cases, see `immediate`.
+    pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+    ) -> V {
+        if let OperandValue::Pair(a, b) = self.val {
+            let llty = bx.cx().backend_type(self.layout);
+            debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
+            // Reconstruct the immediate aggregate.
+            let mut llpair = bx.cx().const_undef(llty);
+            let imm_a = base::from_immediate(bx, a);
+            let imm_b = base::from_immediate(bx, b);
+            llpair = bx.insert_value(llpair, imm_a, 0);
+            llpair = bx.insert_value(llpair, imm_b, 1);
+            llpair
+        } else {
+            self.immediate()
+        }
+    }
+
+    /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
+    pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        bx: &mut Bx,
+        llval: V,
+        layout: TyAndLayout<'tcx>,
+    ) -> Self {
+        let val = if let Abi::ScalarPair(ref a, ref b) = layout.abi {
+            debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
+
+            // Deconstruct the immediate aggregate.
+            let a_llval = bx.extract_value(llval, 0);
+            let a_llval = base::to_immediate_scalar(bx, a_llval, a);
+            let b_llval = bx.extract_value(llval, 1);
+            let b_llval = base::to_immediate_scalar(bx, b_llval, b);
+            OperandValue::Pair(a_llval, b_llval)
+        } else {
+            OperandValue::Immediate(llval)
+        };
+        OperandRef { val, layout }
+    }
+
+    pub fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        &self,
+        bx: &mut Bx,
+        i: usize,
+    ) -> Self {
+        let field = self.layout.field(bx.cx(), i);
+        let offset = self.layout.fields.offset(i);
+
+        let mut val = match (self.val, &self.layout.abi) {
+            // If the field is ZST, it has no data.
+            _ if field.is_zst() => {
+                return OperandRef::new_zst(bx, field);
+            }
+
+            // Newtype of a scalar, scalar pair or vector.
+            (OperandValue::Immediate(_) | OperandValue::Pair(..), _)
+                if field.size == self.layout.size =>
+            {
+                assert_eq!(offset.bytes(), 0);
+                self.val
+            }
+
+            // Extract a scalar component from a pair.
+            (OperandValue::Pair(a_llval, b_llval), &Abi::ScalarPair(ref a, ref b)) => {
+                if offset.bytes() == 0 {
+                    assert_eq!(field.size, a.value.size(bx.cx()));
+                    OperandValue::Immediate(a_llval)
+                } else {
+                    assert_eq!(offset, a.value.size(bx.cx()).align_to(b.value.align(bx.cx()).abi));
+                    assert_eq!(field.size, b.value.size(bx.cx()));
+                    OperandValue::Immediate(b_llval)
+                }
+            }
+
+            // `#[repr(simd)]` types are also immediate.
+            (OperandValue::Immediate(llval), &Abi::Vector { .. }) => {
+                OperandValue::Immediate(bx.extract_element(llval, bx.cx().const_usize(i as u64)))
+            }
+
+            _ => bug!("OperandRef::extract_field({:?}): not applicable", self),
+        };
+
+        // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
+        // Bools in union fields needs to be truncated.
+        let to_immediate_or_cast = |bx: &mut Bx, val, ty| {
+            if ty == bx.cx().type_i1() { bx.trunc(val, ty) } else { bx.bitcast(val, ty) }
+        };
+
+        match val {
+            OperandValue::Immediate(ref mut llval) => {
+                *llval = to_immediate_or_cast(bx, *llval, bx.cx().immediate_backend_type(field));
+            }
+            OperandValue::Pair(ref mut a, ref mut b) => {
+                *a = to_immediate_or_cast(
+                    bx,
+                    *a,
+                    bx.cx().scalar_pair_element_backend_type(field, 0, true),
+                );
+                *b = to_immediate_or_cast(
+                    bx,
+                    *b,
+                    bx.cx().scalar_pair_element_backend_type(field, 1, true),
+                );
+            }
+            OperandValue::Ref(..) => bug!(),
+        }
+
+        OperandRef { val, layout: field }
+    }
+}
+
+impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
+    pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        dest: PlaceRef<'tcx, V>,
+    ) {
+        self.store_with_flags(bx, dest, MemFlags::empty());
+    }
+
+    pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        dest: PlaceRef<'tcx, V>,
+    ) {
+        self.store_with_flags(bx, dest, MemFlags::VOLATILE);
+    }
+
+    pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        dest: PlaceRef<'tcx, V>,
+    ) {
+        self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
+    }
+
+    pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        dest: PlaceRef<'tcx, V>,
+    ) {
+        self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
+    }
+
+    fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        dest: PlaceRef<'tcx, V>,
+        flags: MemFlags,
+    ) {
+        debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
+        // Avoid generating stores of zero-sized values, because the only way to have a zero-sized
+        // value is through `undef`, and store itself is useless.
+        if dest.layout.is_zst() {
+            return;
+        }
+        match self {
+            OperandValue::Ref(r, None, source_align) => {
+                base::memcpy_ty(bx, dest.llval, dest.align, r, source_align, dest.layout, flags)
+            }
+            OperandValue::Ref(_, Some(_), _) => {
+                bug!("cannot directly store unsized values");
+            }
+            OperandValue::Immediate(s) => {
+                let val = base::from_immediate(bx, s);
+                bx.store_with_flags(val, dest.llval, dest.align, flags);
+            }
+            OperandValue::Pair(a, b) => {
+                let (a_scalar, b_scalar) = match dest.layout.abi {
+                    Abi::ScalarPair(ref a, ref b) => (a, b),
+                    _ => bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout),
+                };
+                let b_offset = a_scalar.value.size(bx).align_to(b_scalar.value.align(bx).abi);
+
+                let llptr = bx.struct_gep(dest.llval, 0);
+                let val = base::from_immediate(bx, a);
+                let align = dest.align;
+                bx.store_with_flags(val, llptr, align, flags);
+
+                let llptr = bx.struct_gep(dest.llval, 1);
+                let val = base::from_immediate(bx, b);
+                let align = dest.align.restrict_for_offset(b_offset);
+                bx.store_with_flags(val, llptr, align, flags);
+            }
+        }
+    }
+
+    pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
+        self,
+        bx: &mut Bx,
+        indirect_dest: PlaceRef<'tcx, V>,
+    ) {
+        debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
+        let flags = MemFlags::empty();
+
+        // `indirect_dest` must have `*mut T` type. We extract `T` out of it.
+        let unsized_ty = indirect_dest
+            .layout
+            .ty
+            .builtin_deref(true)
+            .unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest))
+            .ty;
+
+        let (llptr, llextra) = if let OperandValue::Ref(llptr, Some(llextra), _) = self {
+            (llptr, llextra)
+        } else {
+            bug!("store_unsized called with a sized value")
+        };
+
+        // FIXME: choose an appropriate alignment, or use dynamic align somehow
+        let max_align = Align::from_bits(128).unwrap();
+        let min_align = Align::from_bits(8).unwrap();
+
+        // Allocate an appropriate region on the stack, and copy the value into it
+        let (llsize, _) = glue::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
+        let lldst = bx.array_alloca(bx.cx().type_i8(), llsize, max_align);
+        bx.memcpy(lldst, max_align, llptr, min_align, llsize, flags);
+
+        // Store the allocated region and the extra to the indirect place.
+        let indirect_operand = OperandValue::Pair(lldst, llextra);
+        indirect_operand.store(bx, indirect_dest);
+    }
+}
+
+impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
+    fn maybe_codegen_consume_direct(
+        &mut self,
+        bx: &mut Bx,
+        place_ref: mir::PlaceRef<'tcx>,
+    ) -> Option<OperandRef<'tcx, Bx::Value>> {
+        debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
+
+        match self.locals[place_ref.local] {
+            LocalRef::Operand(Some(mut o)) => {
+                // Moves out of scalar and scalar pair fields are trivial.
+                for elem in place_ref.projection.iter() {
+                    match elem {
+                        mir::ProjectionElem::Field(ref f, _) => {
+                            o = o.extract_field(bx, f.index());
+                        }
+                        mir::ProjectionElem::Index(_)
+                        | mir::ProjectionElem::ConstantIndex { .. } => {
+                            // ZSTs don't require any actual memory access.
+                            // FIXME(eddyb) deduplicate this with the identical
+                            // checks in `codegen_consume` and `extract_field`.
+                            let elem = o.layout.field(bx.cx(), 0);
+                            if elem.is_zst() {
+                                o = OperandRef::new_zst(bx, elem);
+                            } else {
+                                return None;
+                            }
+                        }
+                        _ => return None,
+                    }
+                }
+
+                Some(o)
+            }
+            LocalRef::Operand(None) => {
+                bug!("use of {:?} before def", place_ref);
+            }
+            LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
+                // watch out for locals that do not have an
+                // alloca; they are handled somewhat differently
+                None
+            }
+        }
+    }
+
+    pub fn codegen_consume(
+        &mut self,
+        bx: &mut Bx,
+        place_ref: mir::PlaceRef<'tcx>,
+    ) -> OperandRef<'tcx, Bx::Value> {
+        debug!("codegen_consume(place_ref={:?})", place_ref);
+
+        let ty = self.monomorphized_place_ty(place_ref);
+        let layout = bx.cx().layout_of(ty);
+
+        // ZSTs don't require any actual memory access.
+        if layout.is_zst() {
+            return OperandRef::new_zst(bx, layout);
+        }
+
+        if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
+            return o;
+        }
+
+        // for most places, to consume them we just load them
+        // out from their home
+        let place = self.codegen_place(bx, place_ref);
+        bx.load_operand(place)
+    }
+
+    pub fn codegen_operand(
+        &mut self,
+        bx: &mut Bx,
+        operand: &mir::Operand<'tcx>,
+    ) -> OperandRef<'tcx, Bx::Value> {
+        debug!("codegen_operand(operand={:?})", operand);
+
+        match *operand {
+            mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
+                self.codegen_consume(bx, place.as_ref())
+            }
+
+            mir::Operand::Constant(ref constant) => {
+                self.eval_mir_constant_to_operand(bx, constant).unwrap_or_else(|err| {
+                    match err {
+                        // errored or at least linted
+                        ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted => {}
+                        ErrorHandled::TooGeneric => {
+                            bug!("codegen encountered polymorphic constant")
+                        }
+                    }
+                    // Allow RalfJ to sleep soundly knowing that even refactorings that remove
+                    // the above error (or silence it under some conditions) will not cause UB.
+                    bx.abort();
+                    // We still have to return an operand but it doesn't matter,
+                    // this code is unreachable.
+                    let ty = self.monomorphize(&constant.literal.ty);
+                    let layout = bx.cx().layout_of(ty);
+                    bx.load_operand(PlaceRef::new_sized(
+                        bx.cx().const_undef(bx.cx().type_ptr_to(bx.cx().backend_type(layout))),
+                        layout,
+                    ))
+                })
+            }
+        }
+    }
+}