diff options
Diffstat (limited to 'compiler/rustc_const_eval/src/interpret/validity.rs')
| -rw-r--r-- | compiler/rustc_const_eval/src/interpret/validity.rs | 116 |
1 files changed, 55 insertions, 61 deletions
diff --git a/compiler/rustc_const_eval/src/interpret/validity.rs b/compiler/rustc_const_eval/src/interpret/validity.rs index 21c655988a0..6618c70ac75 100644 --- a/compiler/rustc_const_eval/src/interpret/validity.rs +++ b/compiler/rustc_const_eval/src/interpret/validity.rs @@ -29,7 +29,7 @@ use std::hash::Hash; use super::UndefinedBehaviorInfo::*; use super::{ AllocId, CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, - Machine, MemPlaceMeta, OpTy, Pointer, Scalar, ValueVisitor, + Machine, MemPlaceMeta, OpTy, Pointer, Projectable, Scalar, ValueVisitor, }; macro_rules! throw_validation_failure { @@ -462,6 +462,8 @@ impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValidityVisitor<'rt, 'mir, ' /// Check if this is a value of primitive type, and if yes check the validity of the value /// at that type. Return `true` if the type is indeed primitive. + /// + /// Note that not all of these have `FieldsShape::Primitive`, e.g. wide references. fn try_visit_primitive( &mut self, value: &OpTy<'tcx, M::Provenance>, @@ -655,15 +657,14 @@ impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M> ) -> InterpResult<'tcx, VariantIdx> { self.with_elem(PathElem::EnumTag, move |this| { Ok(try_validation!( - this.ecx.read_discriminant(op), + this.ecx.read_discriminant(op).map(|(_, idx)| idx), this.path, InvalidTag(val) => InvalidEnumTag { value: format!("{val:x}"), }, - + UninhabitedEnumVariantRead(_) => UninhabitedEnumTag, InvalidUninitBytes(None) => UninitEnumTag, - ) - .1) + )) }) } @@ -733,60 +734,7 @@ impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M> } } - // Recursively walk the value at its type. - self.walk_value(op)?; - - // *After* all of this, check the ABI. We need to check the ABI to handle - // types like `NonNull` where the `Scalar` info is more restrictive than what - // the fields say (`rustc_layout_scalar_valid_range_start`). - // But in most cases, this will just propagate what the fields say, - // and then we want the error to point at the field -- so, first recurse, - // then check ABI. - // - // FIXME: We could avoid some redundant checks here. For newtypes wrapping - // scalars, we do the same check on every "level" (e.g., first we check - // MyNewtype and then the scalar in there). - match op.layout.abi { - Abi::Uninhabited => { - let ty = op.layout.ty; - throw_validation_failure!(self.path, UninhabitedVal { ty }); - } - Abi::Scalar(scalar_layout) => { - if !scalar_layout.is_uninit_valid() { - // There is something to check here. - let scalar = self.read_scalar(op, ExpectedKind::InitScalar)?; - self.visit_scalar(scalar, scalar_layout)?; - } - } - Abi::ScalarPair(a_layout, b_layout) => { - // We can only proceed if *both* scalars need to be initialized. - // FIXME: find a way to also check ScalarPair when one side can be uninit but - // the other must be init. - if !a_layout.is_uninit_valid() && !b_layout.is_uninit_valid() { - let (a, b) = - self.read_immediate(op, ExpectedKind::InitScalar)?.to_scalar_pair(); - self.visit_scalar(a, a_layout)?; - self.visit_scalar(b, b_layout)?; - } - } - Abi::Vector { .. } => { - // No checks here, we assume layout computation gets this right. - // (This is harder to check since Miri does not represent these as `Immediate`. We - // also cannot use field projections since this might be a newtype around a vector.) - } - Abi::Aggregate { .. } => { - // Nothing to do. - } - } - - Ok(()) - } - - fn visit_aggregate( - &mut self, - op: &OpTy<'tcx, M::Provenance>, - fields: impl Iterator<Item = InterpResult<'tcx, Self::V>>, - ) -> InterpResult<'tcx> { + // Recursively walk the value at its type. Apply optimizations for some large types. match op.layout.ty.kind() { ty::Str => { let mplace = op.assert_mem_place(); // strings are unsized and hence never immediate @@ -874,12 +822,58 @@ impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M> // ZST type, so either validation fails for all elements or none. ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => { // Validate just the first element (if any). - self.walk_aggregate(op, fields.take(1))? + if op.len(self.ecx)? > 0 { + self.visit_field(op, 0, &self.ecx.project_index(op, 0)?)?; + } } _ => { - self.walk_aggregate(op, fields)? // default handler + self.walk_value(op)?; // default handler } } + + // *After* all of this, check the ABI. We need to check the ABI to handle + // types like `NonNull` where the `Scalar` info is more restrictive than what + // the fields say (`rustc_layout_scalar_valid_range_start`). + // But in most cases, this will just propagate what the fields say, + // and then we want the error to point at the field -- so, first recurse, + // then check ABI. + // + // FIXME: We could avoid some redundant checks here. For newtypes wrapping + // scalars, we do the same check on every "level" (e.g., first we check + // MyNewtype and then the scalar in there). + match op.layout.abi { + Abi::Uninhabited => { + let ty = op.layout.ty; + throw_validation_failure!(self.path, UninhabitedVal { ty }); + } + Abi::Scalar(scalar_layout) => { + if !scalar_layout.is_uninit_valid() { + // There is something to check here. + let scalar = self.read_scalar(op, ExpectedKind::InitScalar)?; + self.visit_scalar(scalar, scalar_layout)?; + } + } + Abi::ScalarPair(a_layout, b_layout) => { + // We can only proceed if *both* scalars need to be initialized. + // FIXME: find a way to also check ScalarPair when one side can be uninit but + // the other must be init. + if !a_layout.is_uninit_valid() && !b_layout.is_uninit_valid() { + let (a, b) = + self.read_immediate(op, ExpectedKind::InitScalar)?.to_scalar_pair(); + self.visit_scalar(a, a_layout)?; + self.visit_scalar(b, b_layout)?; + } + } + Abi::Vector { .. } => { + // No checks here, we assume layout computation gets this right. + // (This is harder to check since Miri does not represent these as `Immediate`. We + // also cannot use field projections since this might be a newtype around a vector.) + } + Abi::Aggregate { .. } => { + // Nothing to do. + } + } + Ok(()) } } |
