diff options
Diffstat (limited to 'compiler/rustc_expand/src/mbe/macro_parser.rs')
| -rw-r--r-- | compiler/rustc_expand/src/mbe/macro_parser.rs | 745 | 
1 files changed, 745 insertions, 0 deletions
| diff --git a/compiler/rustc_expand/src/mbe/macro_parser.rs b/compiler/rustc_expand/src/mbe/macro_parser.rs new file mode 100644 index 00000000000..92a8f231126 --- /dev/null +++ b/compiler/rustc_expand/src/mbe/macro_parser.rs @@ -0,0 +1,745 @@ +//! This is an NFA-based parser, which calls out to the main rust parser for named non-terminals +//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads +//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in +//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier +//! fit for Macro-by-Example-style rules. +//! +//! (In order to prevent the pathological case, we'd need to lazily construct the resulting +//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old +//! items, but it would also save overhead) +//! +//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate. +//! The macro parser restricts itself to the features of finite state automata. Earley parsers +//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion. +//! +//! Quick intro to how the parser works: +//! +//! A 'position' is a dot in the middle of a matcher, usually represented as a +//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`. +//! +//! The parser walks through the input a character at a time, maintaining a list +//! of threads consistent with the current position in the input string: `cur_items`. +//! +//! As it processes them, it fills up `eof_items` with threads that would be valid if +//! the macro invocation is now over, `bb_items` with threads that are waiting on +//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting +//! on a particular token. Most of the logic concerns moving the · through the +//! repetitions indicated by Kleene stars. The rules for moving the · without +//! consuming any input are called epsilon transitions. It only advances or calls +//! out to the real Rust parser when no `cur_items` threads remain. +//! +//! Example: +//! +//! ```text, ignore +//! Start parsing a a a a b against [· a $( a )* a b]. +//! +//! Remaining input: a a a a b +//! next: [· a $( a )* a b] +//! +//! - - - Advance over an a. - - - +//! +//! Remaining input: a a a b +//! cur: [a · $( a )* a b] +//! Descend/Skip (first item). +//! next: [a $( · a )* a b] [a $( a )* · a b]. +//! +//! - - - Advance over an a. - - - +//! +//! Remaining input: a a b +//! cur: [a $( a · )* a b] [a $( a )* a · b] +//! Follow epsilon transition: Finish/Repeat (first item) +//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] +//! +//! - - - Advance over an a. - - - (this looks exactly like the last step) +//! +//! Remaining input: a b +//! cur: [a $( a · )* a b] [a $( a )* a · b] +//! Follow epsilon transition: Finish/Repeat (first item) +//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] +//! +//! - - - Advance over an a. - - - (this looks exactly like the last step) +//! +//! Remaining input: b +//! cur: [a $( a · )* a b] [a $( a )* a · b] +//! Follow epsilon transition: Finish/Repeat (first item) +//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] +//! +//! - - - Advance over a b. - - - +//! +//! Remaining input: '' +//! eof: [a $( a )* a b ·] +//! ``` + +crate use NamedMatch::*; +crate use ParseResult::*; +use TokenTreeOrTokenTreeSlice::*; + +use crate::mbe::{self, TokenTree}; + +use rustc_ast::token::{self, DocComment, Nonterminal, Token}; +use rustc_parse::parser::Parser; +use rustc_session::parse::ParseSess; +use rustc_span::symbol::MacroRulesNormalizedIdent; + +use smallvec::{smallvec, SmallVec}; + +use rustc_data_structures::fx::FxHashMap; +use rustc_data_structures::sync::Lrc; +use std::borrow::Cow; +use std::collections::hash_map::Entry::{Occupied, Vacant}; +use std::mem; +use std::ops::{Deref, DerefMut}; + +// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body. + +/// Either a sequence of token trees or a single one. This is used as the representation of the +/// sequence of tokens that make up a matcher. +#[derive(Clone)] +enum TokenTreeOrTokenTreeSlice<'tt> { + Tt(TokenTree), + TtSeq(&'tt [TokenTree]), +} + +impl<'tt> TokenTreeOrTokenTreeSlice<'tt> { + /// Returns the number of constituent top-level token trees of `self` (top-level in that it + /// will not recursively descend into subtrees). + fn len(&self) -> usize { + match *self { + TtSeq(ref v) => v.len(), + Tt(ref tt) => tt.len(), + } + } + + /// The `index`-th token tree of `self`. + fn get_tt(&self, index: usize) -> TokenTree { + match *self { + TtSeq(ref v) => v[index].clone(), + Tt(ref tt) => tt.get_tt(index), + } + } +} + +/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`. +/// +/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have +/// descended into. +#[derive(Clone)] +struct MatcherTtFrame<'tt> { + /// The "parent" matcher that we are descending into. + elts: TokenTreeOrTokenTreeSlice<'tt>, + /// The position of the "dot" in `elts` at the time we descended. + idx: usize, +} + +type NamedMatchVec = SmallVec<[NamedMatch; 4]>; + +/// Represents a single "position" (aka "matcher position", aka "item"), as +/// described in the module documentation. +/// +/// Here: +/// +/// - `'root` represents the lifetime of the stack slot that holds the root +/// `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos` +/// structure is stored on the stack, but subsequent instances are put into +/// the heap. +/// - `'tt` represents the lifetime of the token trees that this matcher +/// position refers to. +/// +/// It is important to distinguish these two lifetimes because we have a +/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of +/// that is considered to possibly access the data from its elements (it lacks +/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that +/// all the elements in that `SmallVec` strictly outlive the root stack slot +/// lifetime. By separating `'tt` from `'root`, we can show that. +#[derive(Clone)] +struct MatcherPos<'root, 'tt> { + /// The token or sequence of tokens that make up the matcher + top_elts: TokenTreeOrTokenTreeSlice<'tt>, + + /// The position of the "dot" in this matcher + idx: usize, + + /// For each named metavar in the matcher, we keep track of token trees matched against the + /// metavar by the black box parser. In particular, there may be more than one match per + /// metavar if we are in a repetition (each repetition matches each of the variables). + /// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the + /// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of + /// the current position of the `self` matcher position in the shared `matches` list. + /// + /// Also, note that while we are descending into a sequence, matchers are given their own + /// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add + /// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep` + /// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one + /// wants the shared `matches`, one should use `up.matches`. + matches: Box<[Lrc<NamedMatchVec>]>, + /// The position in `matches` corresponding to the first metavar in this matcher's sequence of + /// token trees. In other words, the first metavar in the first token of `top_elts` corresponds + /// to `matches[match_lo]`. + match_lo: usize, + /// The position in `matches` corresponding to the metavar we are currently trying to match + /// against the source token stream. `match_lo <= match_cur <= match_hi`. + match_cur: usize, + /// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar + /// in this matcher. + match_hi: usize, + + // The following fields are used if we are matching a repetition. If we aren't, they should be + // `None`. + /// The KleeneOp of this sequence if we are in a repetition. + seq_op: Option<mbe::KleeneOp>, + + /// The separator if we are in a repetition. + sep: Option<Token>, + + /// The "parent" matcher position if we are in a repetition. That is, the matcher position just + /// before we enter the sequence. + up: Option<MatcherPosHandle<'root, 'tt>>, + + /// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from + /// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc + /// comment... + /// + /// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. ) + /// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does + /// that where the bottom of the stack is the outermost matcher. + /// Also, throughout the comments, this "descent" is often referred to as "unzipping"... + stack: SmallVec<[MatcherTtFrame<'tt>; 1]>, +} + +impl<'root, 'tt> MatcherPos<'root, 'tt> { + /// Adds `m` as a named match for the `idx`-th metavar. + fn push_match(&mut self, idx: usize, m: NamedMatch) { + let matches = Lrc::make_mut(&mut self.matches[idx]); + matches.push(m); + } +} + +// Lots of MatcherPos instances are created at runtime. Allocating them on the +// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all +// on the stack is also slow, because MatcherPos is quite a large type and +// instances get moved around a lot between vectors, which requires lots of +// slow memcpy calls. +// +// Therefore, the initial MatcherPos is always allocated on the stack, +// subsequent ones (of which there aren't that many) are allocated on the heap, +// and this type is used to encapsulate both cases. +enum MatcherPosHandle<'root, 'tt> { + Ref(&'root mut MatcherPos<'root, 'tt>), + Box(Box<MatcherPos<'root, 'tt>>), +} + +impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> { + // This always produces a new Box. + fn clone(&self) -> Self { + MatcherPosHandle::Box(match *self { + MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()), + MatcherPosHandle::Box(ref b) => b.clone(), + }) + } +} + +impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> { + type Target = MatcherPos<'root, 'tt>; + fn deref(&self) -> &Self::Target { + match *self { + MatcherPosHandle::Ref(ref r) => r, + MatcherPosHandle::Box(ref b) => b, + } + } +} + +impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> { + fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> { + match *self { + MatcherPosHandle::Ref(ref mut r) => r, + MatcherPosHandle::Box(ref mut b) => b, + } + } +} + +/// Represents the possible results of an attempted parse. +crate enum ParseResult<T> { + /// Parsed successfully. + Success(T), + /// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected + /// end of macro invocation. Otherwise, it indicates that no rules expected the given token. + Failure(Token, &'static str), + /// Fatal error (malformed macro?). Abort compilation. + Error(rustc_span::Span, String), + ErrorReported, +} + +/// A `ParseResult` where the `Success` variant contains a mapping of +/// `MacroRulesNormalizedIdent`s to `NamedMatch`es. This represents the mapping +/// of metavars to the token trees they bind to. +crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, NamedMatch>>; + +/// Count how many metavars are named in the given matcher `ms`. +pub(super) fn count_names(ms: &[TokenTree]) -> usize { + ms.iter().fold(0, |count, elt| { + count + + match *elt { + TokenTree::Sequence(_, ref seq) => seq.num_captures, + TokenTree::Delimited(_, ref delim) => count_names(&delim.tts), + TokenTree::MetaVar(..) => 0, + TokenTree::MetaVarDecl(..) => 1, + TokenTree::Token(..) => 0, + } + }) +} + +/// `len` `Vec`s (initially shared and empty) that will store matches of metavars. +fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> { + if len == 0 { + vec![] + } else { + let empty_matches = Lrc::new(SmallVec::new()); + vec![empty_matches; len] + } + .into_boxed_slice() +} + +/// Generates the top-level matcher position in which the "dot" is before the first token of the +/// matcher `ms`. +fn initial_matcher_pos<'root, 'tt>(ms: &'tt [TokenTree]) -> MatcherPos<'root, 'tt> { + let match_idx_hi = count_names(ms); + let matches = create_matches(match_idx_hi); + MatcherPos { + // Start with the top level matcher given to us + top_elts: TtSeq(ms), // "elts" is an abbr. for "elements" + // The "dot" is before the first token of the matcher + idx: 0, + + // Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`. + // `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since + // we haven't actually matched anything yet. + matches, + match_lo: 0, + match_cur: 0, + match_hi: match_idx_hi, + + // Haven't descended into any delimiters, so empty stack + stack: smallvec![], + + // Haven't descended into any sequences, so both of these are `None`. + seq_op: None, + sep: None, + up: None, + } +} + +/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`: +/// so it is associated with a single ident in a parse, and all +/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type +/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a +/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it. +/// +/// The in-memory structure of a particular `NamedMatch` represents the match +/// that occurred when a particular subset of a matcher was applied to a +/// particular token tree. +/// +/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of +/// the `MatchedNonterminal`s, will depend on the token tree it was applied +/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating +/// token tree. The depth of the `NamedMatch` structure will therefore depend +/// only on the nesting depth of `ast::TTSeq`s in the originating +/// token tree it was derived from. +#[derive(Debug, Clone)] +crate enum NamedMatch { + MatchedSeq(Lrc<NamedMatchVec>), + MatchedNonterminal(Lrc<Nonterminal>), +} + +/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input +/// and an iterator of items that matched input and produces a `NamedParseResult`. +fn nameize<I: Iterator<Item = NamedMatch>>( + sess: &ParseSess, + ms: &[TokenTree], + mut res: I, +) -> NamedParseResult { + // Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make + // sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one + // binding, then there is an error. If it does, then we insert the binding into the + // `NamedParseResult`. + fn n_rec<I: Iterator<Item = NamedMatch>>( + sess: &ParseSess, + m: &TokenTree, + res: &mut I, + ret_val: &mut FxHashMap<MacroRulesNormalizedIdent, NamedMatch>, + ) -> Result<(), (rustc_span::Span, String)> { + match *m { + TokenTree::Sequence(_, ref seq) => { + for next_m in &seq.tts { + n_rec(sess, next_m, res.by_ref(), ret_val)? + } + } + TokenTree::Delimited(_, ref delim) => { + for next_m in &delim.tts { + n_rec(sess, next_m, res.by_ref(), ret_val)?; + } + } + TokenTree::MetaVarDecl(sp, bind_name, _) => match ret_val + .entry(MacroRulesNormalizedIdent::new(bind_name)) + { + Vacant(spot) => { + spot.insert(res.next().unwrap()); + } + Occupied(..) => return Err((sp, format!("duplicated bind name: {}", bind_name))), + }, + TokenTree::MetaVar(..) | TokenTree::Token(..) => (), + } + + Ok(()) + } + + let mut ret_val = FxHashMap::default(); + for m in ms { + match n_rec(sess, m, res.by_ref(), &mut ret_val) { + Ok(_) => {} + Err((sp, msg)) => return Error(sp, msg), + } + } + + Success(ret_val) +} + +/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison) +fn token_name_eq(t1: &Token, t2: &Token) -> bool { + if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) { + ident1.name == ident2.name && is_raw1 == is_raw2 + } else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) { + ident1.name == ident2.name + } else { + t1.kind == t2.kind + } +} + +/// Process the matcher positions of `cur_items` until it is empty. In the process, this will +/// produce more items in `next_items`, `eof_items`, and `bb_items`. +/// +/// For more info about the how this happens, see the module-level doc comments and the inline +/// comments of this function. +/// +/// # Parameters +/// +/// - `sess`: the parsing session into which errors are emitted. +/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a +/// successful execution of this function. +/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in +/// the function `parse`. +/// - `eof_items`: the set of items that would be valid if this was the EOF. +/// - `bb_items`: the set of items that are waiting for the black-box parser. +/// - `token`: the current token of the parser. +/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match +/// against the matcher positions in `cur_items`. +/// +/// # Returns +/// +/// A `ParseResult`. Note that matches are kept track of through the items generated. +fn inner_parse_loop<'root, 'tt>( + cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>, + next_items: &mut Vec<MatcherPosHandle<'root, 'tt>>, + eof_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>, + bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>, + token: &Token, +) -> ParseResult<()> { + // Pop items from `cur_items` until it is empty. + while let Some(mut item) = cur_items.pop() { + // When unzipped trees end, remove them. This corresponds to backtracking out of a + // delimited submatcher into which we already descended. In backtracking out again, we need + // to advance the "dot" past the delimiters in the outer matcher. + while item.idx >= item.top_elts.len() { + match item.stack.pop() { + Some(MatcherTtFrame { elts, idx }) => { + item.top_elts = elts; + item.idx = idx + 1; + } + None => break, + } + } + + // Get the current position of the "dot" (`idx`) in `item` and the number of token trees in + // the matcher (`len`). + let idx = item.idx; + let len = item.top_elts.len(); + + // If `idx >= len`, then we are at or past the end of the matcher of `item`. + if idx >= len { + // We are repeating iff there is a parent. If the matcher is inside of a repetition, + // then we could be at the end of a sequence or at the beginning of the next + // repetition. + if item.up.is_some() { + // At this point, regardless of whether there is a separator, we should add all + // matches from the complete repetition of the sequence to the shared, top-level + // `matches` list (actually, `up.matches`, which could itself not be the top-level, + // but anyway...). Moreover, we add another item to `cur_items` in which the "dot" + // is at the end of the `up` matcher. This ensures that the "dot" in the `up` + // matcher is also advanced sufficiently. + // + // NOTE: removing the condition `idx == len` allows trailing separators. + if idx == len { + // Get the `up` matcher + let mut new_pos = item.up.clone().unwrap(); + + // Add matches from this repetition to the `matches` of `up` + for idx in item.match_lo..item.match_hi { + let sub = item.matches[idx].clone(); + new_pos.push_match(idx, MatchedSeq(sub)); + } + + // Move the "dot" past the repetition in `up` + new_pos.match_cur = item.match_hi; + new_pos.idx += 1; + cur_items.push(new_pos); + } + + // Check if we need a separator. + if idx == len && item.sep.is_some() { + // We have a separator, and it is the current token. We can advance past the + // separator token. + if item.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) { + item.idx += 1; + next_items.push(item); + } + } + // We don't need a separator. Move the "dot" back to the beginning of the matcher + // and try to match again UNLESS we are only allowed to have _one_ repetition. + else if item.seq_op != Some(mbe::KleeneOp::ZeroOrOne) { + item.match_cur = item.match_lo; + item.idx = 0; + cur_items.push(item); + } + } + // If we are not in a repetition, then being at the end of a matcher means that we have + // reached the potential end of the input. + else { + eof_items.push(item); + } + } + // We are in the middle of a matcher. + else { + // Look at what token in the matcher we are trying to match the current token (`token`) + // against. Depending on that, we may generate new items. + match item.top_elts.get_tt(idx) { + // Need to descend into a sequence + TokenTree::Sequence(sp, seq) => { + // Examine the case where there are 0 matches of this sequence. We are + // implicitly disallowing OneOrMore from having 0 matches here. Thus, that will + // result in a "no rules expected token" error by virtue of this matcher not + // working. + if seq.kleene.op == mbe::KleeneOp::ZeroOrMore + || seq.kleene.op == mbe::KleeneOp::ZeroOrOne + { + let mut new_item = item.clone(); + new_item.match_cur += seq.num_captures; + new_item.idx += 1; + for idx in item.match_cur..item.match_cur + seq.num_captures { + new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![]))); + } + cur_items.push(new_item); + } + + let matches = create_matches(item.matches.len()); + cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos { + stack: smallvec![], + sep: seq.separator.clone(), + seq_op: Some(seq.kleene.op), + idx: 0, + matches, + match_lo: item.match_cur, + match_cur: item.match_cur, + match_hi: item.match_cur + seq.num_captures, + up: Some(item), + top_elts: Tt(TokenTree::Sequence(sp, seq)), + }))); + } + + // We need to match a metavar with a valid ident... call out to the black-box + // parser by adding an item to `bb_items`. + TokenTree::MetaVarDecl(_, _, kind) => { + // Built-in nonterminals never start with these tokens, + // so we can eliminate them from consideration. + if Parser::nonterminal_may_begin_with(kind, token) { + bb_items.push(item); + } + } + + // We need to descend into a delimited submatcher or a doc comment. To do this, we + // push the current matcher onto a stack and push a new item containing the + // submatcher onto `cur_items`. + // + // At the beginning of the loop, if we reach the end of the delimited submatcher, + // we pop the stack to backtrack out of the descent. + seq + @ + (TokenTree::Delimited(..) + | TokenTree::Token(Token { kind: DocComment(..), .. })) => { + let lower_elts = mem::replace(&mut item.top_elts, Tt(seq)); + let idx = item.idx; + item.stack.push(MatcherTtFrame { elts: lower_elts, idx }); + item.idx = 0; + cur_items.push(item); + } + + // We just matched a normal token. We can just advance the parser. + TokenTree::Token(t) if token_name_eq(&t, token) => { + item.idx += 1; + next_items.push(item); + } + + // There was another token that was not `token`... This means we can't add any + // rules. NOTE that this is not necessarily an error unless _all_ items in + // `cur_items` end up doing this. There may still be some other matchers that do + // end up working out. + TokenTree::Token(..) | TokenTree::MetaVar(..) => {} + } + } + } + + // Yay a successful parse (so far)! + Success(()) +} + +/// Use the given sequence of token trees (`ms`) as a matcher. Match the token +/// stream from the given `parser` against it and return the match. +pub(super) fn parse_tt(parser: &mut Cow<'_, Parser<'_>>, ms: &[TokenTree]) -> NamedParseResult { + // A queue of possible matcher positions. We initialize it with the matcher position in which + // the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then + // processes all of these possible matcher positions and produces possible next positions into + // `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items` + // and we start over again. + // + // This MatcherPos instance is allocated on the stack. All others -- and + // there are frequently *no* others! -- are allocated on the heap. + let mut initial = initial_matcher_pos(ms); + let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)]; + let mut next_items = Vec::new(); + + loop { + // Matcher positions black-box parsed by parser.rs (`parser`) + let mut bb_items = SmallVec::new(); + + // Matcher positions that would be valid if the macro invocation was over now + let mut eof_items = SmallVec::new(); + assert!(next_items.is_empty()); + + // Process `cur_items` until either we have finished the input or we need to get some + // parsing from the black-box parser done. The result is that `next_items` will contain a + // bunch of possible next matcher positions in `next_items`. + match inner_parse_loop( + &mut cur_items, + &mut next_items, + &mut eof_items, + &mut bb_items, + &parser.token, + ) { + Success(_) => {} + Failure(token, msg) => return Failure(token, msg), + Error(sp, msg) => return Error(sp, msg), + ErrorReported => return ErrorReported, + } + + // inner parse loop handled all cur_items, so it's empty + assert!(cur_items.is_empty()); + + // We need to do some post processing after the `inner_parser_loop`. + // + // Error messages here could be improved with links to original rules. + + // If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise, + // either the parse is ambiguous (which should never happen) or there is a syntax error. + if parser.token == token::Eof { + if eof_items.len() == 1 { + let matches = + eof_items[0].matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap()); + return nameize(parser.sess, ms, matches); + } else if eof_items.len() > 1 { + return Error( + parser.token.span, + "ambiguity: multiple successful parses".to_string(), + ); + } else { + return Failure( + Token::new( + token::Eof, + if parser.token.span.is_dummy() { + parser.token.span + } else { + parser.token.span.shrink_to_hi() + }, + ), + "missing tokens in macro arguments", + ); + } + } + // Performance hack: eof_items may share matchers via Rc with other things that we want + // to modify. Dropping eof_items now may drop these refcounts to 1, preventing an + // unnecessary implicit clone later in Rc::make_mut. + drop(eof_items); + + // If there are no possible next positions AND we aren't waiting for the black-box parser, + // then there is a syntax error. + if bb_items.is_empty() && next_items.is_empty() { + return Failure(parser.token.clone(), "no rules expected this token in macro call"); + } + // Another possibility is that we need to call out to parse some rust nonterminal + // (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong. + else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 { + let nts = bb_items + .iter() + .map(|item| match item.top_elts.get_tt(item.idx) { + TokenTree::MetaVarDecl(_, bind, kind) => format!("{} ('{}')", kind, bind), + _ => panic!(), + }) + .collect::<Vec<String>>() + .join(" or "); + + return Error( + parser.token.span, + format!( + "local ambiguity: multiple parsing options: {}", + match next_items.len() { + 0 => format!("built-in NTs {}.", nts), + 1 => format!("built-in NTs {} or 1 other option.", nts), + n => format!("built-in NTs {} or {} other options.", nts, n), + } + ), + ); + } + // Dump all possible `next_items` into `cur_items` for the next iteration. + else if !next_items.is_empty() { + // Now process the next token + cur_items.extend(next_items.drain(..)); + parser.to_mut().bump(); + } + // Finally, we have the case where we need to call the black-box parser to get some + // nonterminal. + else { + assert_eq!(bb_items.len(), 1); + + let mut item = bb_items.pop().unwrap(); + if let TokenTree::MetaVarDecl(span, _, kind) = item.top_elts.get_tt(item.idx) { + let match_cur = item.match_cur; + let nt = match parser.to_mut().parse_nonterminal(kind) { + Err(mut err) => { + err.span_label( + span, + format!("while parsing argument for this `{}` macro fragment", kind), + ) + .emit(); + return ErrorReported; + } + Ok(nt) => nt, + }; + item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt))); + item.idx += 1; + item.match_cur += 1; + } else { + unreachable!() + } + cur_items.push(item); + } + + assert!(!cur_items.is_empty()); + } +} | 
