about summary refs log tree commit diff
path: root/compiler/rustc_hir_analysis/src/check/check.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/check/check.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/check/check.rs1753
1 files changed, 1753 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/check/check.rs b/compiler/rustc_hir_analysis/src/check/check.rs
new file mode 100644
index 00000000000..d82ee8f48c5
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/check.rs
@@ -0,0 +1,1753 @@
+use crate::check::intrinsicck::InlineAsmCtxt;
+
+use super::coercion::CoerceMany;
+use super::compare_method::check_type_bounds;
+use super::compare_method::{compare_const_impl, compare_impl_method, compare_ty_impl};
+use super::*;
+use rustc_attr as attr;
+use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{ItemKind, Node, PathSegment};
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
+use rustc_infer::traits::Obligation;
+use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::stability::EvalResult;
+use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::util::{Discr, IntTypeExt};
+use rustc_middle::ty::{
+    self, ParamEnv, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
+};
+use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
+use rustc_span::symbol::sym;
+use rustc_span::{self, Span};
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use rustc_trait_selection::traits::{self, ObligationCtxt};
+use rustc_ty_utils::representability::{self, Representability};
+
+use std::ops::ControlFlow;
+
+pub(super) fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
+    match tcx.sess.target.is_abi_supported(abi) {
+        Some(true) => (),
+        Some(false) => {
+            struct_span_err!(
+                tcx.sess,
+                span,
+                E0570,
+                "`{abi}` is not a supported ABI for the current target",
+            )
+            .emit();
+        }
+        None => {
+            tcx.struct_span_lint_hir(UNSUPPORTED_CALLING_CONVENTIONS, hir_id, span, |lint| {
+                lint.build("use of calling convention not supported on this target").emit();
+            });
+        }
+    }
+
+    // This ABI is only allowed on function pointers
+    if abi == Abi::CCmseNonSecureCall {
+        struct_span_err!(
+            tcx.sess,
+            span,
+            E0781,
+            "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
+        )
+        .emit();
+    }
+}
+
+/// Helper used for fns and closures. Does the grungy work of checking a function
+/// body and returns the function context used for that purpose, since in the case of a fn item
+/// there is still a bit more to do.
+///
+/// * ...
+/// * inherited: other fields inherited from the enclosing fn (if any)
+#[instrument(skip(inherited, body), level = "debug")]
+pub(super) fn check_fn<'a, 'tcx>(
+    inherited: &'a Inherited<'a, 'tcx>,
+    param_env: ty::ParamEnv<'tcx>,
+    fn_sig: ty::FnSig<'tcx>,
+    decl: &'tcx hir::FnDecl<'tcx>,
+    fn_id: hir::HirId,
+    body: &'tcx hir::Body<'tcx>,
+    can_be_generator: Option<hir::Movability>,
+    return_type_pre_known: bool,
+) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
+    // Create the function context. This is either derived from scratch or,
+    // in the case of closures, based on the outer context.
+    let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
+    fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
+    fcx.return_type_pre_known = return_type_pre_known;
+
+    let tcx = fcx.tcx;
+    let hir = tcx.hir();
+
+    let declared_ret_ty = fn_sig.output();
+
+    let ret_ty =
+        fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
+            declared_ret_ty,
+            body.value.hir_id,
+            decl.output.span(),
+            param_env,
+        ));
+    // If we replaced declared_ret_ty with infer vars, then we must be inferring
+    // an opaque type, so set a flag so we can improve diagnostics.
+    fcx.return_type_has_opaque = ret_ty != declared_ret_ty;
+
+    fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
+
+    let span = body.value.span;
+
+    fn_maybe_err(tcx, span, fn_sig.abi);
+
+    if fn_sig.abi == Abi::RustCall {
+        let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };
+
+        let err = || {
+            let item = match tcx.hir().get(fn_id) {
+                Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
+                Node::ImplItem(hir::ImplItem {
+                    kind: hir::ImplItemKind::Fn(header, ..), ..
+                }) => Some(header),
+                Node::TraitItem(hir::TraitItem {
+                    kind: hir::TraitItemKind::Fn(header, ..),
+                    ..
+                }) => Some(header),
+                // Closures are RustCall, but they tuple their arguments, so shouldn't be checked
+                Node::Expr(hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => None,
+                node => bug!("Item being checked wasn't a function/closure: {:?}", node),
+            };
+
+            if let Some(header) = item {
+                tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple");
+            }
+        };
+
+        if fn_sig.inputs().len() != expected_args {
+            err()
+        } else {
+            // FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
+            //   This will probably require wide-scale changes to support a TupleKind obligation
+            //   We can't resolve this without knowing the type of the param
+            if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
+                err()
+            }
+        }
+    }
+
+    if body.generator_kind.is_some() && can_be_generator.is_some() {
+        let yield_ty = fcx
+            .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
+        fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
+
+        // Resume type defaults to `()` if the generator has no argument.
+        let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());
+
+        fcx.resume_yield_tys = Some((resume_ty, yield_ty));
+    }
+
+    GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+    // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
+    // (as it's created inside the body itself, not passed in from outside).
+    let maybe_va_list = if fn_sig.c_variadic {
+        let span = body.params.last().unwrap().span;
+        let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
+        let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));
+
+        Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
+    } else {
+        None
+    };
+
+    // Add formal parameters.
+    let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
+    let inputs_fn = fn_sig.inputs().iter().copied();
+    for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
+        // Check the pattern.
+        let ty_span = try { inputs_hir?.get(idx)?.span };
+        fcx.check_pat_top(&param.pat, param_ty, ty_span, false);
+
+        // Check that argument is Sized.
+        // The check for a non-trivial pattern is a hack to avoid duplicate warnings
+        // for simple cases like `fn foo(x: Trait)`,
+        // where we would error once on the parameter as a whole, and once on the binding `x`.
+        if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
+            fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
+        }
+
+        fcx.write_ty(param.hir_id, param_ty);
+    }
+
+    inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);
+
+    fcx.in_tail_expr = true;
+    if let ty::Dynamic(..) = declared_ret_ty.kind() {
+        // FIXME: We need to verify that the return type is `Sized` after the return expression has
+        // been evaluated so that we have types available for all the nodes being returned, but that
+        // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
+        // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
+        // while keeping the current ordering we will ignore the tail expression's type because we
+        // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
+        // because we will trigger "unreachable expression" lints unconditionally.
+        // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
+        // case that a newcomer might make, returning a bare trait, and in that case we populate
+        // the tail expression's type so that the suggestion will be correct, but ignore all other
+        // possible cases.
+        fcx.check_expr(&body.value);
+        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+    } else {
+        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+        fcx.check_return_expr(&body.value, false);
+    }
+    fcx.in_tail_expr = false;
+
+    // We insert the deferred_generator_interiors entry after visiting the body.
+    // This ensures that all nested generators appear before the entry of this generator.
+    // resolve_generator_interiors relies on this property.
+    let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
+        let interior = fcx
+            .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
+        fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));
+
+        let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
+        Some(GeneratorTypes {
+            resume_ty,
+            yield_ty,
+            interior,
+            movability: can_be_generator.unwrap(),
+        })
+    } else {
+        None
+    };
+
+    // Finalize the return check by taking the LUB of the return types
+    // we saw and assigning it to the expected return type. This isn't
+    // really expected to fail, since the coercions would have failed
+    // earlier when trying to find a LUB.
+    let coercion = fcx.ret_coercion.take().unwrap().into_inner();
+    let mut actual_return_ty = coercion.complete(&fcx);
+    debug!("actual_return_ty = {:?}", actual_return_ty);
+    if let ty::Dynamic(..) = declared_ret_ty.kind() {
+        // We have special-cased the case where the function is declared
+        // `-> dyn Foo` and we don't actually relate it to the
+        // `fcx.ret_coercion`, so just substitute a type variable.
+        actual_return_ty =
+            fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
+        debug!("actual_return_ty replaced with {:?}", actual_return_ty);
+    }
+
+    // HACK(oli-obk, compiler-errors): We should be comparing this against
+    // `declared_ret_ty`, but then anything uninferred would be inferred to
+    // the opaque type itself. That again would cause writeback to assume
+    // we have a recursive call site and do the sadly stabilized fallback to `()`.
+    fcx.demand_suptype(span, ret_ty, actual_return_ty);
+
+    // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
+    if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
+        && panic_impl_did == hir.local_def_id(fn_id).to_def_id()
+    {
+        check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
+    }
+
+    // Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
+    if let Some(alloc_error_handler_did) = tcx.lang_items().oom()
+        && alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id()
+    {
+        check_alloc_error_fn(tcx, alloc_error_handler_did.expect_local(), fn_sig, decl, declared_ret_ty);
+    }
+
+    (fcx, gen_ty)
+}
+
+fn check_panic_info_fn(
+    tcx: TyCtxt<'_>,
+    fn_id: LocalDefId,
+    fn_sig: ty::FnSig<'_>,
+    decl: &hir::FnDecl<'_>,
+    declared_ret_ty: Ty<'_>,
+) {
+    let Some(panic_info_did) = tcx.lang_items().panic_info() else {
+        tcx.sess.err("language item required, but not found: `panic_info`");
+        return;
+    };
+
+    if *declared_ret_ty.kind() != ty::Never {
+        tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+    }
+
+    let inputs = fn_sig.inputs();
+    if inputs.len() != 1 {
+        tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+        return;
+    }
+
+    let arg_is_panic_info = match *inputs[0].kind() {
+        ty::Ref(region, ty, mutbl) => match *ty.kind() {
+            ty::Adt(ref adt, _) => {
+                adt.did() == panic_info_did && mutbl == hir::Mutability::Not && !region.is_static()
+            }
+            _ => false,
+        },
+        _ => false,
+    };
+
+    if !arg_is_panic_info {
+        tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
+    }
+
+    let DefKind::Fn = tcx.def_kind(fn_id) else {
+        let span = tcx.def_span(fn_id);
+        tcx.sess.span_err(span, "should be a function");
+        return;
+    };
+
+    let generic_counts = tcx.generics_of(fn_id).own_counts();
+    if generic_counts.types != 0 {
+        let span = tcx.def_span(fn_id);
+        tcx.sess.span_err(span, "should have no type parameters");
+    }
+    if generic_counts.consts != 0 {
+        let span = tcx.def_span(fn_id);
+        tcx.sess.span_err(span, "should have no const parameters");
+    }
+}
+
+fn check_alloc_error_fn(
+    tcx: TyCtxt<'_>,
+    fn_id: LocalDefId,
+    fn_sig: ty::FnSig<'_>,
+    decl: &hir::FnDecl<'_>,
+    declared_ret_ty: Ty<'_>,
+) {
+    let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() else {
+        tcx.sess.err("language item required, but not found: `alloc_layout`");
+        return;
+    };
+
+    if *declared_ret_ty.kind() != ty::Never {
+        tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+    }
+
+    let inputs = fn_sig.inputs();
+    if inputs.len() != 1 {
+        tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+        return;
+    }
+
+    let arg_is_alloc_layout = match inputs[0].kind() {
+        ty::Adt(ref adt, _) => adt.did() == alloc_layout_did,
+        _ => false,
+    };
+
+    if !arg_is_alloc_layout {
+        tcx.sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
+    }
+
+    let DefKind::Fn = tcx.def_kind(fn_id) else {
+        let span = tcx.def_span(fn_id);
+        tcx.sess.span_err(span, "`#[alloc_error_handler]` should be a function");
+        return;
+    };
+
+    let generic_counts = tcx.generics_of(fn_id).own_counts();
+    if generic_counts.types != 0 {
+        let span = tcx.def_span(fn_id);
+        tcx.sess.span_err(span, "`#[alloc_error_handler]` function should have no type parameters");
+    }
+    if generic_counts.consts != 0 {
+        let span = tcx.def_span(fn_id);
+        tcx.sess
+            .span_err(span, "`#[alloc_error_handler]` function should have no const parameters");
+    }
+}
+
+fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+    let def = tcx.adt_def(def_id);
+    let span = tcx.def_span(def_id);
+    def.destructor(tcx); // force the destructor to be evaluated
+    check_representable(tcx, span, def_id);
+
+    if def.repr().simd() {
+        check_simd(tcx, span, def_id);
+    }
+
+    check_transparent(tcx, span, def);
+    check_packed(tcx, span, def);
+}
+
+fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+    let def = tcx.adt_def(def_id);
+    let span = tcx.def_span(def_id);
+    def.destructor(tcx); // force the destructor to be evaluated
+    check_representable(tcx, span, def_id);
+    check_transparent(tcx, span, def);
+    check_union_fields(tcx, span, def_id);
+    check_packed(tcx, span, def);
+}
+
+/// Check that the fields of the `union` do not need dropping.
+fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
+    let item_type = tcx.type_of(item_def_id);
+    if let ty::Adt(def, substs) = item_type.kind() {
+        assert!(def.is_union());
+
+        fn allowed_union_field<'tcx>(
+            ty: Ty<'tcx>,
+            tcx: TyCtxt<'tcx>,
+            param_env: ty::ParamEnv<'tcx>,
+            span: Span,
+        ) -> bool {
+            // We don't just accept all !needs_drop fields, due to semver concerns.
+            match ty.kind() {
+                ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
+                ty::Tuple(tys) => {
+                    // allow tuples of allowed types
+                    tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env, span))
+                }
+                ty::Array(elem, _len) => {
+                    // Like `Copy`, we do *not* special-case length 0.
+                    allowed_union_field(*elem, tcx, param_env, span)
+                }
+                _ => {
+                    // Fallback case: allow `ManuallyDrop` and things that are `Copy`.
+                    ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
+                        || ty.is_copy_modulo_regions(tcx.at(span), param_env)
+                }
+            }
+        }
+
+        let param_env = tcx.param_env(item_def_id);
+        for field in &def.non_enum_variant().fields {
+            let field_ty = field.ty(tcx, substs);
+
+            if !allowed_union_field(field_ty, tcx, param_env, span) {
+                let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
+                    // We are currently checking the type this field came from, so it must be local.
+                    Some(Node::Field(field)) => (field.span, field.ty.span),
+                    _ => unreachable!("mir field has to correspond to hir field"),
+                };
+                struct_span_err!(
+                    tcx.sess,
+                    field_span,
+                    E0740,
+                    "unions cannot contain fields that may need dropping"
+                )
+                .note(
+                    "a type is guaranteed not to need dropping \
+                    when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type",
+                )
+                .multipart_suggestion_verbose(
+                    "when the type does not implement `Copy`, \
+                    wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped",
+                    vec![
+                        (ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()),
+                        (ty_span.shrink_to_hi(), ">".into()),
+                    ],
+                    Applicability::MaybeIncorrect,
+                )
+                .emit();
+                return false;
+            } else if field_ty.needs_drop(tcx, param_env) {
+                // This should never happen. But we can get here e.g. in case of name resolution errors.
+                tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
+            }
+        }
+    } else {
+        span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
+    }
+    true
+}
+
+/// Check that a `static` is inhabited.
+fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
+    // Make sure statics are inhabited.
+    // Other parts of the compiler assume that there are no uninhabited places. In principle it
+    // would be enough to check this for `extern` statics, as statics with an initializer will
+    // have UB during initialization if they are uninhabited, but there also seems to be no good
+    // reason to allow any statics to be uninhabited.
+    let ty = tcx.type_of(def_id);
+    let span = tcx.def_span(def_id);
+    let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
+        Ok(l) => l,
+        // Foreign statics that overflow their allowed size should emit an error
+        Err(LayoutError::SizeOverflow(_))
+            if {
+                let node = tcx.hir().get_by_def_id(def_id);
+                matches!(
+                    node,
+                    hir::Node::ForeignItem(hir::ForeignItem {
+                        kind: hir::ForeignItemKind::Static(..),
+                        ..
+                    })
+                )
+            } =>
+        {
+            tcx.sess
+                .struct_span_err(span, "extern static is too large for the current architecture")
+                .emit();
+            return;
+        }
+        // Generic statics are rejected, but we still reach this case.
+        Err(e) => {
+            tcx.sess.delay_span_bug(span, &e.to_string());
+            return;
+        }
+    };
+    if layout.abi.is_uninhabited() {
+        tcx.struct_span_lint_hir(
+            UNINHABITED_STATIC,
+            tcx.hir().local_def_id_to_hir_id(def_id),
+            span,
+            |lint| {
+                lint.build("static of uninhabited type")
+                .note("uninhabited statics cannot be initialized, and any access would be an immediate error")
+                .emit();
+            },
+        );
+    }
+}
+
+/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
+/// projections that would result in "inheriting lifetimes".
+pub(super) fn check_opaque<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: LocalDefId,
+    substs: SubstsRef<'tcx>,
+    origin: &hir::OpaqueTyOrigin,
+) {
+    let span = tcx.def_span(def_id);
+    check_opaque_for_inheriting_lifetimes(tcx, def_id, span);
+    if tcx.type_of(def_id).references_error() {
+        return;
+    }
+    if check_opaque_for_cycles(tcx, def_id, substs, span, origin).is_err() {
+        return;
+    }
+    check_opaque_meets_bounds(tcx, def_id, substs, span, origin);
+}
+
+/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
+/// in "inheriting lifetimes".
+#[instrument(level = "debug", skip(tcx, span))]
+pub(super) fn check_opaque_for_inheriting_lifetimes<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: LocalDefId,
+    span: Span,
+) {
+    let item = tcx.hir().expect_item(def_id);
+    debug!(?item, ?span);
+
+    struct FoundParentLifetime;
+    struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics);
+    impl<'tcx> ty::visit::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> {
+        type BreakTy = FoundParentLifetime;
+
+        fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
+            debug!("FindParentLifetimeVisitor: r={:?}", r);
+            if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *r {
+                if index < self.0.parent_count as u32 {
+                    return ControlFlow::Break(FoundParentLifetime);
+                } else {
+                    return ControlFlow::CONTINUE;
+                }
+            }
+
+            r.super_visit_with(self)
+        }
+
+        fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+            if let ty::ConstKind::Unevaluated(..) = c.kind() {
+                // FIXME(#72219) We currently don't detect lifetimes within substs
+                // which would violate this check. Even though the particular substitution is not used
+                // within the const, this should still be fixed.
+                return ControlFlow::CONTINUE;
+            }
+            c.super_visit_with(self)
+        }
+    }
+
+    struct ProhibitOpaqueVisitor<'tcx> {
+        tcx: TyCtxt<'tcx>,
+        opaque_identity_ty: Ty<'tcx>,
+        generics: &'tcx ty::Generics,
+        selftys: Vec<(Span, Option<String>)>,
+    }
+
+    impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
+        type BreakTy = Ty<'tcx>;
+
+        fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+            debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t);
+            if t == self.opaque_identity_ty {
+                ControlFlow::CONTINUE
+            } else {
+                t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics))
+                    .map_break(|FoundParentLifetime| t)
+            }
+        }
+    }
+
+    impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
+        type NestedFilter = nested_filter::OnlyBodies;
+
+        fn nested_visit_map(&mut self) -> Self::Map {
+            self.tcx.hir()
+        }
+
+        fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
+            match arg.kind {
+                hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
+                    [PathSegment { res: Res::SelfTy { trait_: _, alias_to: impl_ref }, .. }] => {
+                        let impl_ty_name =
+                            impl_ref.map(|(def_id, _)| self.tcx.def_path_str(def_id));
+                        self.selftys.push((path.span, impl_ty_name));
+                    }
+                    _ => {}
+                },
+                _ => {}
+            }
+            hir::intravisit::walk_ty(self, arg);
+        }
+    }
+
+    if let ItemKind::OpaqueTy(hir::OpaqueTy {
+        origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
+        ..
+    }) = item.kind
+    {
+        let mut visitor = ProhibitOpaqueVisitor {
+            opaque_identity_ty: tcx.mk_opaque(
+                def_id.to_def_id(),
+                InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
+            ),
+            generics: tcx.generics_of(def_id),
+            tcx,
+            selftys: vec![],
+        };
+        let prohibit_opaque = tcx
+            .explicit_item_bounds(def_id)
+            .iter()
+            .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
+        debug!(
+            "check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}",
+            prohibit_opaque, visitor.opaque_identity_ty, visitor.generics
+        );
+
+        if let Some(ty) = prohibit_opaque.break_value() {
+            visitor.visit_item(&item);
+            let is_async = match item.kind {
+                ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
+                    matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
+                }
+                _ => unreachable!(),
+            };
+
+            let mut err = struct_span_err!(
+                tcx.sess,
+                span,
+                E0760,
+                "`{}` return type cannot contain a projection or `Self` that references lifetimes from \
+                 a parent scope",
+                if is_async { "async fn" } else { "impl Trait" },
+            );
+
+            for (span, name) in visitor.selftys {
+                err.span_suggestion(
+                    span,
+                    "consider spelling out the type instead",
+                    name.unwrap_or_else(|| format!("{:?}", ty)),
+                    Applicability::MaybeIncorrect,
+                );
+            }
+            err.emit();
+        }
+    }
+}
+
+/// Checks that an opaque type does not contain cycles.
+pub(super) fn check_opaque_for_cycles<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: LocalDefId,
+    substs: SubstsRef<'tcx>,
+    span: Span,
+    origin: &hir::OpaqueTyOrigin,
+) -> Result<(), ErrorGuaranteed> {
+    if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
+        let reported = match origin {
+            hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
+            _ => opaque_type_cycle_error(tcx, def_id, span),
+        };
+        Err(reported)
+    } else {
+        Ok(())
+    }
+}
+
+/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
+///
+/// This is mostly checked at the places that specify the opaque type, but we
+/// check those cases in the `param_env` of that function, which may have
+/// bounds not on this opaque type:
+///
+/// type X<T> = impl Clone
+/// fn f<T: Clone>(t: T) -> X<T> {
+///     t
+/// }
+///
+/// Without this check the above code is incorrectly accepted: we would ICE if
+/// some tried, for example, to clone an `Option<X<&mut ()>>`.
+#[instrument(level = "debug", skip(tcx))]
+fn check_opaque_meets_bounds<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: LocalDefId,
+    substs: SubstsRef<'tcx>,
+    span: Span,
+    origin: &hir::OpaqueTyOrigin,
+) {
+    let hidden_type = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs);
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+    let defining_use_anchor = match *origin {
+        hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
+        hir::OpaqueTyOrigin::TyAlias => def_id,
+    };
+    let param_env = tcx.param_env(defining_use_anchor);
+
+    tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor)).enter(
+        move |infcx| {
+            let ocx = ObligationCtxt::new(&infcx);
+            let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
+
+            let misc_cause = traits::ObligationCause::misc(span, hir_id);
+
+            match infcx.at(&misc_cause, param_env).eq(opaque_ty, hidden_type) {
+                Ok(infer_ok) => ocx.register_infer_ok_obligations(infer_ok),
+                Err(ty_err) => {
+                    tcx.sess.delay_span_bug(
+                        span,
+                        &format!("could not unify `{hidden_type}` with revealed type:\n{ty_err}"),
+                    );
+                }
+            }
+
+            // Additionally require the hidden type to be well-formed with only the generics of the opaque type.
+            // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
+            // hidden type is well formed even without those bounds.
+            let predicate = ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_type.into()))
+                .to_predicate(tcx);
+            ocx.register_obligation(Obligation::new(misc_cause, param_env, predicate));
+
+            // Check that all obligations are satisfied by the implementation's
+            // version.
+            let errors = ocx.select_all_or_error();
+            if !errors.is_empty() {
+                infcx.report_fulfillment_errors(&errors, None, false);
+            }
+            match origin {
+                // Checked when type checking the function containing them.
+                hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
+                // Can have different predicates to their defining use
+                hir::OpaqueTyOrigin::TyAlias => {
+                    let outlives_environment = OutlivesEnvironment::new(param_env);
+                    infcx.check_region_obligations_and_report_errors(
+                        defining_use_anchor,
+                        &outlives_environment,
+                    );
+                }
+            }
+            // Clean up after ourselves
+            let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+        },
+    );
+}
+
+fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
+    debug!(
+        "check_item_type(it.def_id={:?}, it.name={})",
+        id.def_id,
+        tcx.def_path_str(id.def_id.to_def_id())
+    );
+    let _indenter = indenter();
+    match tcx.def_kind(id.def_id) {
+        DefKind::Static(..) => {
+            tcx.ensure().typeck(id.def_id.def_id);
+            maybe_check_static_with_link_section(tcx, id.def_id.def_id);
+            check_static_inhabited(tcx, id.def_id.def_id);
+        }
+        DefKind::Const => {
+            tcx.ensure().typeck(id.def_id.def_id);
+        }
+        DefKind::Enum => {
+            let item = tcx.hir().item(id);
+            let hir::ItemKind::Enum(ref enum_definition, _) = item.kind else {
+                return;
+            };
+            check_enum(tcx, &enum_definition.variants, item.def_id.def_id);
+        }
+        DefKind::Fn => {} // entirely within check_item_body
+        DefKind::Impl => {
+            let it = tcx.hir().item(id);
+            let hir::ItemKind::Impl(ref impl_) = it.kind else {
+                return;
+            };
+            debug!("ItemKind::Impl {} with id {:?}", it.ident, it.def_id);
+            if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.def_id) {
+                check_impl_items_against_trait(
+                    tcx,
+                    it.span,
+                    it.def_id.def_id,
+                    impl_trait_ref,
+                    &impl_.items,
+                );
+                check_on_unimplemented(tcx, it);
+            }
+        }
+        DefKind::Trait => {
+            let it = tcx.hir().item(id);
+            let hir::ItemKind::Trait(_, _, _, _, ref items) = it.kind else {
+                return;
+            };
+            check_on_unimplemented(tcx, it);
+
+            for item in items.iter() {
+                let item = tcx.hir().trait_item(item.id);
+                match item.kind {
+                    hir::TraitItemKind::Fn(ref sig, _) => {
+                        let abi = sig.header.abi;
+                        fn_maybe_err(tcx, item.ident.span, abi);
+                    }
+                    hir::TraitItemKind::Type(.., Some(default)) => {
+                        let assoc_item = tcx.associated_item(item.def_id);
+                        let trait_substs =
+                            InternalSubsts::identity_for_item(tcx, it.def_id.to_def_id());
+                        let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
+                            tcx,
+                            assoc_item,
+                            assoc_item,
+                            default.span,
+                            ty::TraitRef { def_id: it.def_id.to_def_id(), substs: trait_substs },
+                        );
+                    }
+                    _ => {}
+                }
+            }
+        }
+        DefKind::Struct => {
+            check_struct(tcx, id.def_id.def_id);
+        }
+        DefKind::Union => {
+            check_union(tcx, id.def_id.def_id);
+        }
+        DefKind::OpaqueTy => {
+            let item = tcx.hir().item(id);
+            let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
+                return;
+            };
+            // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
+            // `async-std` (and `pub async fn` in general).
+            // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
+            // See https://github.com/rust-lang/rust/issues/75100
+            if !tcx.sess.opts.actually_rustdoc {
+                let substs = InternalSubsts::identity_for_item(tcx, item.def_id.to_def_id());
+                check_opaque(tcx, item.def_id.def_id, substs, &origin);
+            }
+        }
+        DefKind::TyAlias => {
+            let pty_ty = tcx.type_of(id.def_id);
+            let generics = tcx.generics_of(id.def_id);
+            check_type_params_are_used(tcx, &generics, pty_ty);
+        }
+        DefKind::ForeignMod => {
+            let it = tcx.hir().item(id);
+            let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
+                return;
+            };
+            check_abi(tcx, it.hir_id(), it.span, abi);
+
+            if abi == Abi::RustIntrinsic {
+                for item in items {
+                    let item = tcx.hir().foreign_item(item.id);
+                    intrinsic::check_intrinsic_type(tcx, item);
+                }
+            } else if abi == Abi::PlatformIntrinsic {
+                for item in items {
+                    let item = tcx.hir().foreign_item(item.id);
+                    intrinsic::check_platform_intrinsic_type(tcx, item);
+                }
+            } else {
+                for item in items {
+                    let def_id = item.id.def_id.def_id;
+                    let generics = tcx.generics_of(def_id);
+                    let own_counts = generics.own_counts();
+                    if generics.params.len() - own_counts.lifetimes != 0 {
+                        let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
+                            (_, 0) => ("type", "types", Some("u32")),
+                            // We don't specify an example value, because we can't generate
+                            // a valid value for any type.
+                            (0, _) => ("const", "consts", None),
+                            _ => ("type or const", "types or consts", None),
+                        };
+                        struct_span_err!(
+                            tcx.sess,
+                            item.span,
+                            E0044,
+                            "foreign items may not have {kinds} parameters",
+                        )
+                        .span_label(item.span, &format!("can't have {kinds} parameters"))
+                        .help(
+                            // FIXME: once we start storing spans for type arguments, turn this
+                            // into a suggestion.
+                            &format!(
+                                "replace the {} parameters with concrete {}{}",
+                                kinds,
+                                kinds_pl,
+                                egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
+                            ),
+                        )
+                        .emit();
+                    }
+
+                    let item = tcx.hir().foreign_item(item.id);
+                    match item.kind {
+                        hir::ForeignItemKind::Fn(ref fn_decl, _, _) => {
+                            require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
+                        }
+                        hir::ForeignItemKind::Static(..) => {
+                            check_static_inhabited(tcx, def_id);
+                        }
+                        _ => {}
+                    }
+                }
+            }
+        }
+        DefKind::GlobalAsm => {
+            let it = tcx.hir().item(id);
+            let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
+            InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id());
+        }
+        _ => {}
+    }
+}
+
+pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
+    // an error would be reported if this fails.
+    let _ = traits::OnUnimplementedDirective::of_item(tcx, item.def_id.to_def_id());
+}
+
+pub(super) fn check_specialization_validity<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    trait_def: &ty::TraitDef,
+    trait_item: &ty::AssocItem,
+    impl_id: DefId,
+    impl_item: &hir::ImplItemRef,
+) {
+    let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
+    let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
+        if parent.is_from_trait() {
+            None
+        } else {
+            Some((parent, parent.item(tcx, trait_item.def_id)))
+        }
+    });
+
+    let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
+        match parent_item {
+            // Parent impl exists, and contains the parent item we're trying to specialize, but
+            // doesn't mark it `default`.
+            Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
+                Some(Err(parent_impl.def_id()))
+            }
+
+            // Parent impl contains item and makes it specializable.
+            Some(_) => Some(Ok(())),
+
+            // Parent impl doesn't mention the item. This means it's inherited from the
+            // grandparent. In that case, if parent is a `default impl`, inherited items use the
+            // "defaultness" from the grandparent, else they are final.
+            None => {
+                if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
+                    None
+                } else {
+                    Some(Err(parent_impl.def_id()))
+                }
+            }
+        }
+    });
+
+    // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
+    // item. This is allowed, the item isn't actually getting specialized here.
+    let result = opt_result.unwrap_or(Ok(()));
+
+    if let Err(parent_impl) = result {
+        report_forbidden_specialization(tcx, impl_item, parent_impl);
+    }
+}
+
+fn check_impl_items_against_trait<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    full_impl_span: Span,
+    impl_id: LocalDefId,
+    impl_trait_ref: ty::TraitRef<'tcx>,
+    impl_item_refs: &[hir::ImplItemRef],
+) {
+    // If the trait reference itself is erroneous (so the compilation is going
+    // to fail), skip checking the items here -- the `impl_item` table in `tcx`
+    // isn't populated for such impls.
+    if impl_trait_ref.references_error() {
+        return;
+    }
+
+    // Negative impls are not expected to have any items
+    match tcx.impl_polarity(impl_id) {
+        ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
+        ty::ImplPolarity::Negative => {
+            if let [first_item_ref, ..] = impl_item_refs {
+                let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
+                struct_span_err!(
+                    tcx.sess,
+                    first_item_span,
+                    E0749,
+                    "negative impls cannot have any items"
+                )
+                .emit();
+            }
+            return;
+        }
+    }
+
+    let trait_def = tcx.trait_def(impl_trait_ref.def_id);
+
+    for impl_item in impl_item_refs {
+        let ty_impl_item = tcx.associated_item(impl_item.id.def_id);
+        let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
+            tcx.associated_item(trait_item_id)
+        } else {
+            // Checked in `associated_item`.
+            tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait");
+            continue;
+        };
+        let impl_item_full = tcx.hir().impl_item(impl_item.id);
+        match impl_item_full.kind {
+            hir::ImplItemKind::Const(..) => {
+                // Find associated const definition.
+                compare_const_impl(
+                    tcx,
+                    &ty_impl_item,
+                    impl_item.span,
+                    &ty_trait_item,
+                    impl_trait_ref,
+                );
+            }
+            hir::ImplItemKind::Fn(..) => {
+                let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
+                compare_impl_method(
+                    tcx,
+                    &ty_impl_item,
+                    &ty_trait_item,
+                    impl_trait_ref,
+                    opt_trait_span,
+                );
+            }
+            hir::ImplItemKind::TyAlias(impl_ty) => {
+                let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
+                compare_ty_impl(
+                    tcx,
+                    &ty_impl_item,
+                    impl_ty.span,
+                    &ty_trait_item,
+                    impl_trait_ref,
+                    opt_trait_span,
+                );
+            }
+        }
+
+        check_specialization_validity(
+            tcx,
+            trait_def,
+            &ty_trait_item,
+            impl_id.to_def_id(),
+            impl_item,
+        );
+    }
+
+    if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
+        // Check for missing items from trait
+        let mut missing_items = Vec::new();
+
+        let mut must_implement_one_of: Option<&[Ident]> =
+            trait_def.must_implement_one_of.as_deref();
+
+        for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
+            let is_implemented = ancestors
+                .leaf_def(tcx, trait_item_id)
+                .map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());
+
+            if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
+                missing_items.push(tcx.associated_item(trait_item_id));
+            }
+
+            // true if this item is specifically implemented in this impl
+            let is_implemented_here = ancestors
+                .leaf_def(tcx, trait_item_id)
+                .map_or(false, |node_item| !node_item.defining_node.is_from_trait());
+
+            if !is_implemented_here {
+                match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
+                    EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
+                        tcx,
+                        full_impl_span,
+                        trait_item_id,
+                        feature,
+                        reason,
+                        issue,
+                    ),
+
+                    // Unmarked default bodies are considered stable (at least for now).
+                    EvalResult::Allow | EvalResult::Unmarked => {}
+                }
+            }
+
+            if let Some(required_items) = &must_implement_one_of {
+                if is_implemented_here {
+                    let trait_item = tcx.associated_item(trait_item_id);
+                    if required_items.contains(&trait_item.ident(tcx)) {
+                        must_implement_one_of = None;
+                    }
+                }
+            }
+        }
+
+        if !missing_items.is_empty() {
+            missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
+        }
+
+        if let Some(missing_items) = must_implement_one_of {
+            let attr_span = tcx
+                .get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
+                .map(|attr| attr.span);
+
+            missing_items_must_implement_one_of_err(
+                tcx,
+                tcx.def_span(impl_id),
+                missing_items,
+                attr_span,
+            );
+        }
+    }
+}
+
+/// Checks whether a type can be represented in memory. In particular, it
+/// identifies types that contain themselves without indirection through a
+/// pointer, which would mean their size is unbounded.
+pub(super) fn check_representable(tcx: TyCtxt<'_>, sp: Span, item_def_id: LocalDefId) -> bool {
+    let rty = tcx.type_of(item_def_id);
+
+    // Check that it is possible to represent this type. This call identifies
+    // (1) types that contain themselves and (2) types that contain a different
+    // recursive type. It is only necessary to throw an error on those that
+    // contain themselves. For case 2, there must be an inner type that will be
+    // caught by case 1.
+    match representability::ty_is_representable(tcx, rty, sp, None) {
+        Representability::SelfRecursive(spans) => {
+            recursive_type_with_infinite_size_error(tcx, item_def_id.to_def_id(), spans);
+            return false;
+        }
+        Representability::Representable | Representability::ContainsRecursive => (),
+    }
+    true
+}
+
+pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
+    let t = tcx.type_of(def_id);
+    if let ty::Adt(def, substs) = t.kind()
+        && def.is_struct()
+    {
+        let fields = &def.non_enum_variant().fields;
+        if fields.is_empty() {
+            struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
+            return;
+        }
+        let e = fields[0].ty(tcx, substs);
+        if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
+            struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
+                .span_label(sp, "SIMD elements must have the same type")
+                .emit();
+            return;
+        }
+
+        let len = if let ty::Array(_ty, c) = e.kind() {
+            c.try_eval_usize(tcx, tcx.param_env(def.did()))
+        } else {
+            Some(fields.len() as u64)
+        };
+        if let Some(len) = len {
+            if len == 0 {
+                struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
+                return;
+            } else if len > MAX_SIMD_LANES {
+                struct_span_err!(
+                    tcx.sess,
+                    sp,
+                    E0075,
+                    "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
+                )
+                .emit();
+                return;
+            }
+        }
+
+        // Check that we use types valid for use in the lanes of a SIMD "vector register"
+        // These are scalar types which directly match a "machine" type
+        // Yes: Integers, floats, "thin" pointers
+        // No: char, "fat" pointers, compound types
+        match e.kind() {
+            ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
+            ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
+            ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
+            ty::Array(t, _clen)
+                if matches!(
+                    t.kind(),
+                    ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
+                ) =>
+            { /* struct([f32; 4]) is ok */ }
+            _ => {
+                struct_span_err!(
+                    tcx.sess,
+                    sp,
+                    E0077,
+                    "SIMD vector element type should be a \
+                        primitive scalar (integer/float/pointer) type"
+                )
+                .emit();
+                return;
+            }
+        }
+    }
+}
+
+pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
+    let repr = def.repr();
+    if repr.packed() {
+        for attr in tcx.get_attrs(def.did(), sym::repr) {
+            for r in attr::parse_repr_attr(&tcx.sess, attr) {
+                if let attr::ReprPacked(pack) = r
+                && let Some(repr_pack) = repr.pack
+                && pack as u64 != repr_pack.bytes()
+            {
+                        struct_span_err!(
+                            tcx.sess,
+                            sp,
+                            E0634,
+                            "type has conflicting packed representation hints"
+                        )
+                        .emit();
+            }
+            }
+        }
+        if repr.align.is_some() {
+            struct_span_err!(
+                tcx.sess,
+                sp,
+                E0587,
+                "type has conflicting packed and align representation hints"
+            )
+            .emit();
+        } else {
+            if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
+                let mut err = struct_span_err!(
+                    tcx.sess,
+                    sp,
+                    E0588,
+                    "packed type cannot transitively contain a `#[repr(align)]` type"
+                );
+
+                err.span_note(
+                    tcx.def_span(def_spans[0].0),
+                    &format!(
+                        "`{}` has a `#[repr(align)]` attribute",
+                        tcx.item_name(def_spans[0].0)
+                    ),
+                );
+
+                if def_spans.len() > 2 {
+                    let mut first = true;
+                    for (adt_def, span) in def_spans.iter().skip(1).rev() {
+                        let ident = tcx.item_name(*adt_def);
+                        err.span_note(
+                            *span,
+                            &if first {
+                                format!(
+                                    "`{}` contains a field of type `{}`",
+                                    tcx.type_of(def.did()),
+                                    ident
+                                )
+                            } else {
+                                format!("...which contains a field of type `{ident}`")
+                            },
+                        );
+                        first = false;
+                    }
+                }
+
+                err.emit();
+            }
+        }
+    }
+}
+
+pub(super) fn check_packed_inner(
+    tcx: TyCtxt<'_>,
+    def_id: DefId,
+    stack: &mut Vec<DefId>,
+) -> Option<Vec<(DefId, Span)>> {
+    if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
+        if def.is_struct() || def.is_union() {
+            if def.repr().align.is_some() {
+                return Some(vec![(def.did(), DUMMY_SP)]);
+            }
+
+            stack.push(def_id);
+            for field in &def.non_enum_variant().fields {
+                if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
+                    && !stack.contains(&def.did())
+                    && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
+                {
+                    defs.push((def.did(), field.ident(tcx).span));
+                    return Some(defs);
+                }
+            }
+            stack.pop();
+        }
+    }
+
+    None
+}
+
+pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: ty::AdtDef<'tcx>) {
+    if !adt.repr().transparent() {
+        return;
+    }
+
+    if adt.is_union() && !tcx.features().transparent_unions {
+        feature_err(
+            &tcx.sess.parse_sess,
+            sym::transparent_unions,
+            sp,
+            "transparent unions are unstable",
+        )
+        .emit();
+    }
+
+    if adt.variants().len() != 1 {
+        bad_variant_count(tcx, adt, sp, adt.did());
+        if adt.variants().is_empty() {
+            // Don't bother checking the fields. No variants (and thus no fields) exist.
+            return;
+        }
+    }
+
+    // For each field, figure out if it's known to be a ZST and align(1), with "known"
+    // respecting #[non_exhaustive] attributes.
+    let field_infos = adt.all_fields().map(|field| {
+        let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
+        let param_env = tcx.param_env(field.did);
+        let layout = tcx.layout_of(param_env.and(ty));
+        // We are currently checking the type this field came from, so it must be local
+        let span = tcx.hir().span_if_local(field.did).unwrap();
+        let zst = layout.map_or(false, |layout| layout.is_zst());
+        let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
+        if !zst {
+            return (span, zst, align1, None);
+        }
+
+        fn check_non_exhaustive<'tcx>(
+            tcx: TyCtxt<'tcx>,
+            t: Ty<'tcx>,
+        ) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
+            match t.kind() {
+                ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
+                ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
+                ty::Adt(def, subst) => {
+                    if !def.did().is_local() {
+                        let non_exhaustive = def.is_variant_list_non_exhaustive()
+                            || def
+                                .variants()
+                                .iter()
+                                .any(ty::VariantDef::is_field_list_non_exhaustive);
+                        let has_priv = def.all_fields().any(|f| !f.vis.is_public());
+                        if non_exhaustive || has_priv {
+                            return ControlFlow::Break((
+                                def.descr(),
+                                def.did(),
+                                subst,
+                                non_exhaustive,
+                            ));
+                        }
+                    }
+                    def.all_fields()
+                        .map(|field| field.ty(tcx, subst))
+                        .try_for_each(|t| check_non_exhaustive(tcx, t))
+                }
+                _ => ControlFlow::Continue(()),
+            }
+        }
+
+        (span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
+    });
+
+    let non_zst_fields = field_infos
+        .clone()
+        .filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
+    let non_zst_count = non_zst_fields.clone().count();
+    if non_zst_count >= 2 {
+        bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp);
+    }
+    let incompatible_zst_fields =
+        field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
+    let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
+    for (span, zst, align1, non_exhaustive) in field_infos {
+        if zst && !align1 {
+            struct_span_err!(
+                tcx.sess,
+                span,
+                E0691,
+                "zero-sized field in transparent {} has alignment larger than 1",
+                adt.descr(),
+            )
+            .span_label(span, "has alignment larger than 1")
+            .emit();
+        }
+        if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
+            tcx.struct_span_lint_hir(
+                REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
+                tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
+                span,
+                |lint| {
+                    let note = if non_exhaustive {
+                        "is marked with `#[non_exhaustive]`"
+                    } else {
+                        "contains private fields"
+                    };
+                    let field_ty = tcx.def_path_str_with_substs(def_id, substs);
+                    lint.build("zero-sized fields in repr(transparent) cannot contain external non-exhaustive types")
+                        .note(format!("this {descr} contains `{field_ty}`, which {note}, \
+                            and makes it not a breaking change to become non-zero-sized in the future."))
+                        .emit();
+                },
+            )
+        }
+    }
+}
+
+#[allow(trivial_numeric_casts)]
+fn check_enum<'tcx>(tcx: TyCtxt<'tcx>, vs: &'tcx [hir::Variant<'tcx>], def_id: LocalDefId) {
+    let def = tcx.adt_def(def_id);
+    let sp = tcx.def_span(def_id);
+    def.destructor(tcx); // force the destructor to be evaluated
+
+    if vs.is_empty() {
+        if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() {
+            struct_span_err!(
+                tcx.sess,
+                attr.span,
+                E0084,
+                "unsupported representation for zero-variant enum"
+            )
+            .span_label(sp, "zero-variant enum")
+            .emit();
+        }
+    }
+
+    let repr_type_ty = def.repr().discr_type().to_ty(tcx);
+    if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
+        if !tcx.features().repr128 {
+            feature_err(
+                &tcx.sess.parse_sess,
+                sym::repr128,
+                sp,
+                "repr with 128-bit type is unstable",
+            )
+            .emit();
+        }
+    }
+
+    for v in vs {
+        if let Some(ref e) = v.disr_expr {
+            tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id));
+        }
+    }
+
+    if tcx.adt_def(def_id).repr().int.is_none() && tcx.features().arbitrary_enum_discriminant {
+        let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..));
+
+        let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some();
+        let has_non_units = vs.iter().any(|var| !is_unit(var));
+        let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var));
+        let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var));
+
+        if disr_non_unit || (disr_units && has_non_units) {
+            let mut err =
+                struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified");
+            err.emit();
+        }
+    }
+
+    detect_discriminant_duplicate(tcx, def.discriminants(tcx).collect(), vs, sp);
+
+    check_representable(tcx, sp, def_id);
+    check_transparent(tcx, sp, def);
+}
+
+/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
+fn detect_discriminant_duplicate<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    mut discrs: Vec<(VariantIdx, Discr<'tcx>)>,
+    vs: &'tcx [hir::Variant<'tcx>],
+    self_span: Span,
+) {
+    // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
+    // Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
+    let report = |dis: Discr<'tcx>, idx: usize, err: &mut Diagnostic| {
+        let var = &vs[idx]; // HIR for the duplicate discriminant
+        let (span, display_discr) = match var.disr_expr {
+            Some(ref expr) => {
+                // In the case the discriminant is both a duplicate and overflowed, let the user know
+                if let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
+                    && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
+                    && *lit_value != dis.val
+                {
+                    (tcx.hir().span(expr.hir_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
+                // Otherwise, format the value as-is
+                } else {
+                    (tcx.hir().span(expr.hir_id), format!("`{dis}`"))
+                }
+            }
+            None => {
+                // At this point we know this discriminant is a duplicate, and was not explicitly
+                // assigned by the user. Here we iterate backwards to fetch the HIR for the last
+                // explicitly assigned discriminant, and letting the user know that this was the
+                // increment startpoint, and how many steps from there leading to the duplicate
+                if let Some((n, hir::Variant { span, ident, .. })) =
+                    vs[..idx].iter().rev().enumerate().find(|v| v.1.disr_expr.is_some())
+                {
+                    let ve_ident = var.ident;
+                    let n = n + 1;
+                    let sp = if n > 1 { "variants" } else { "variant" };
+
+                    err.span_label(
+                        *span,
+                        format!("discriminant for `{ve_ident}` incremented from this startpoint (`{ident}` + {n} {sp} later => `{ve_ident}` = {dis})"),
+                    );
+                }
+
+                (vs[idx].span, format!("`{dis}`"))
+            }
+        };
+
+        err.span_label(span, format!("{display_discr} assigned here"));
+    };
+
+    // Here we loop through the discriminants, comparing each discriminant to another.
+    // When a duplicate is detected, we instantiate an error and point to both
+    // initial and duplicate value. The duplicate discriminant is then discarded by swapping
+    // it with the last element and decrementing the `vec.len` (which is why we have to evaluate
+    // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
+    // style as we are mutating `discrs` on the fly).
+    let mut i = 0;
+    while i < discrs.len() {
+        let hir_var_i_idx = discrs[i].0.index();
+        let mut error: Option<DiagnosticBuilder<'_, _>> = None;
+
+        let mut o = i + 1;
+        while o < discrs.len() {
+            let hir_var_o_idx = discrs[o].0.index();
+
+            if discrs[i].1.val == discrs[o].1.val {
+                let err = error.get_or_insert_with(|| {
+                    let mut ret = struct_span_err!(
+                        tcx.sess,
+                        self_span,
+                        E0081,
+                        "discriminant value `{}` assigned more than once",
+                        discrs[i].1,
+                    );
+
+                    report(discrs[i].1, hir_var_i_idx, &mut ret);
+
+                    ret
+                });
+
+                report(discrs[o].1, hir_var_o_idx, err);
+
+                // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
+                discrs[o] = *discrs.last().unwrap();
+                discrs.pop();
+            } else {
+                o += 1;
+            }
+        }
+
+        if let Some(mut e) = error {
+            e.emit();
+        }
+
+        i += 1;
+    }
+}
+
+pub(super) fn check_type_params_are_used<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    generics: &ty::Generics,
+    ty: Ty<'tcx>,
+) {
+    debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
+
+    assert_eq!(generics.parent, None);
+
+    if generics.own_counts().types == 0 {
+        return;
+    }
+
+    let mut params_used = BitSet::new_empty(generics.params.len());
+
+    if ty.references_error() {
+        // If there is already another error, do not emit
+        // an error for not using a type parameter.
+        assert!(tcx.sess.has_errors().is_some());
+        return;
+    }
+
+    for leaf in ty.walk() {
+        if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
+            && let ty::Param(param) = leaf_ty.kind()
+        {
+            debug!("found use of ty param {:?}", param);
+            params_used.insert(param.index);
+        }
+    }
+
+    for param in &generics.params {
+        if !params_used.contains(param.index)
+            && let ty::GenericParamDefKind::Type { .. } = param.kind
+        {
+            let span = tcx.def_span(param.def_id);
+            struct_span_err!(
+                tcx.sess,
+                span,
+                E0091,
+                "type parameter `{}` is unused",
+                param.name,
+            )
+            .span_label(span, "unused type parameter")
+            .emit();
+        }
+    }
+}
+
+pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+    let module = tcx.hir_module_items(module_def_id);
+    for id in module.items() {
+        check_item_type(tcx, id);
+    }
+}
+
+fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
+    struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
+        .span_label(span, "recursive `async fn`")
+        .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
+        .note(
+            "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
+        )
+        .emit()
+}
+
+/// Emit an error for recursive opaque types.
+///
+/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
+/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
+/// `impl Trait`.
+///
+/// If all the return expressions evaluate to `!`, then we explain that the error will go away
+/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
+fn opaque_type_cycle_error(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> ErrorGuaranteed {
+    let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
+
+    let mut label = false;
+    if let Some((def_id, visitor)) = get_owner_return_paths(tcx, def_id) {
+        let typeck_results = tcx.typeck(def_id);
+        if visitor
+            .returns
+            .iter()
+            .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
+            .all(|ty| matches!(ty.kind(), ty::Never))
+        {
+            let spans = visitor
+                .returns
+                .iter()
+                .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
+                .map(|expr| expr.span)
+                .collect::<Vec<Span>>();
+            let span_len = spans.len();
+            if span_len == 1 {
+                err.span_label(spans[0], "this returned value is of `!` type");
+            } else {
+                let mut multispan: MultiSpan = spans.clone().into();
+                for span in spans {
+                    multispan.push_span_label(span, "this returned value is of `!` type");
+                }
+                err.span_note(multispan, "these returned values have a concrete \"never\" type");
+            }
+            err.help("this error will resolve once the item's body returns a concrete type");
+        } else {
+            let mut seen = FxHashSet::default();
+            seen.insert(span);
+            err.span_label(span, "recursive opaque type");
+            label = true;
+            for (sp, ty) in visitor
+                .returns
+                .iter()
+                .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
+                .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
+            {
+                struct OpaqueTypeCollector(Vec<DefId>);
+                impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector {
+                    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+                        match *t.kind() {
+                            ty::Opaque(def, _) => {
+                                self.0.push(def);
+                                ControlFlow::CONTINUE
+                            }
+                            _ => t.super_visit_with(self),
+                        }
+                    }
+                }
+                let mut visitor = OpaqueTypeCollector(vec![]);
+                ty.visit_with(&mut visitor);
+                for def_id in visitor.0 {
+                    let ty_span = tcx.def_span(def_id);
+                    if !seen.contains(&ty_span) {
+                        err.span_label(ty_span, &format!("returning this opaque type `{ty}`"));
+                        seen.insert(ty_span);
+                    }
+                    err.span_label(sp, &format!("returning here with type `{ty}`"));
+                }
+            }
+        }
+    }
+    if !label {
+        err.span_label(span, "cannot resolve opaque type");
+    }
+    err.emit()
+}