about summary refs log tree commit diff
path: root/compiler/rustc_hir_analysis/src/check/method/probe.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/check/method/probe.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/check/method/probe.rs1927
1 files changed, 1927 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/check/method/probe.rs b/compiler/rustc_hir_analysis/src/check/method/probe.rs
new file mode 100644
index 00000000000..6cd7ced01a3
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/method/probe.rs
@@ -0,0 +1,1927 @@
+use super::suggest;
+use super::CandidateSource;
+use super::MethodError;
+use super::NoMatchData;
+
+use crate::check::FnCtxt;
+use crate::errors::MethodCallOnUnknownType;
+use crate::hir::def::DefKind;
+use crate::hir::def_id::DefId;
+
+use rustc_data_structures::fx::FxHashSet;
+use rustc_errors::Applicability;
+use rustc_hir as hir;
+use rustc_hir::def::Namespace;
+use rustc_infer::infer::canonical::OriginalQueryValues;
+use rustc_infer::infer::canonical::{Canonical, QueryResponse};
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
+use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
+use rustc_middle::middle::stability;
+use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
+use rustc_middle::ty::GenericParamDefKind;
+use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
+use rustc_middle::ty::{InternalSubsts, SubstsRef};
+use rustc_session::lint;
+use rustc_span::def_id::LocalDefId;
+use rustc_span::lev_distance::{
+    find_best_match_for_name_with_substrings, lev_distance_with_substrings,
+};
+use rustc_span::symbol::sym;
+use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
+use rustc_trait_selection::autoderef::{self, Autoderef};
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
+use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
+use rustc_trait_selection::traits::query::method_autoderef::{
+    CandidateStep, MethodAutoderefStepsResult,
+};
+use rustc_trait_selection::traits::query::CanonicalTyGoal;
+use rustc_trait_selection::traits::{self, ObligationCause};
+use std::cmp::max;
+use std::iter;
+use std::mem;
+use std::ops::Deref;
+
+use smallvec::{smallvec, SmallVec};
+
+use self::CandidateKind::*;
+pub use self::PickKind::*;
+
+/// Boolean flag used to indicate if this search is for a suggestion
+/// or not. If true, we can allow ambiguity and so forth.
+#[derive(Clone, Copy, Debug)]
+pub struct IsSuggestion(pub bool);
+
+struct ProbeContext<'a, 'tcx> {
+    fcx: &'a FnCtxt<'a, 'tcx>,
+    span: Span,
+    mode: Mode,
+    method_name: Option<Ident>,
+    return_type: Option<Ty<'tcx>>,
+
+    /// This is the OriginalQueryValues for the steps queries
+    /// that are answered in steps.
+    orig_steps_var_values: OriginalQueryValues<'tcx>,
+    steps: &'tcx [CandidateStep<'tcx>],
+
+    inherent_candidates: Vec<Candidate<'tcx>>,
+    extension_candidates: Vec<Candidate<'tcx>>,
+    impl_dups: FxHashSet<DefId>,
+
+    /// Collects near misses when the candidate functions are missing a `self` keyword and is only
+    /// used for error reporting
+    static_candidates: Vec<CandidateSource>,
+
+    /// When probing for names, include names that are close to the
+    /// requested name (by Levensthein distance)
+    allow_similar_names: bool,
+
+    /// Some(candidate) if there is a private candidate
+    private_candidate: Option<(DefKind, DefId)>,
+
+    /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
+    /// for error reporting
+    unsatisfied_predicates:
+        Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
+
+    is_suggestion: IsSuggestion,
+
+    scope_expr_id: hir::HirId,
+}
+
+impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
+    type Target = FnCtxt<'a, 'tcx>;
+    fn deref(&self) -> &Self::Target {
+        self.fcx
+    }
+}
+
+#[derive(Debug, Clone)]
+struct Candidate<'tcx> {
+    // Candidates are (I'm not quite sure, but they are mostly) basically
+    // some metadata on top of a `ty::AssocItem` (without substs).
+    //
+    // However, method probing wants to be able to evaluate the predicates
+    // for a function with the substs applied - for example, if a function
+    // has `where Self: Sized`, we don't want to consider it unless `Self`
+    // is actually `Sized`, and similarly, return-type suggestions want
+    // to consider the "actual" return type.
+    //
+    // The way this is handled is through `xform_self_ty`. It contains
+    // the receiver type of this candidate, but `xform_self_ty`,
+    // `xform_ret_ty` and `kind` (which contains the predicates) have the
+    // generic parameters of this candidate substituted with the *same set*
+    // of inference variables, which acts as some weird sort of "query".
+    //
+    // When we check out a candidate, we require `xform_self_ty` to be
+    // a subtype of the passed-in self-type, and this equates the type
+    // variables in the rest of the fields.
+    //
+    // For example, if we have this candidate:
+    // ```
+    //    trait Foo {
+    //        fn foo(&self) where Self: Sized;
+    //    }
+    // ```
+    //
+    // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
+    // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
+    // the receiver `&T`, we'll do the subtyping which will make `?X`
+    // get the right value, then when we evaluate the predicate we'll check
+    // if `T: Sized`.
+    xform_self_ty: Ty<'tcx>,
+    xform_ret_ty: Option<Ty<'tcx>>,
+    item: ty::AssocItem,
+    kind: CandidateKind<'tcx>,
+    import_ids: SmallVec<[LocalDefId; 1]>,
+}
+
+#[derive(Debug, Clone)]
+enum CandidateKind<'tcx> {
+    InherentImplCandidate(
+        SubstsRef<'tcx>,
+        // Normalize obligations
+        Vec<traits::PredicateObligation<'tcx>>,
+    ),
+    ObjectCandidate,
+    TraitCandidate(ty::TraitRef<'tcx>),
+    WhereClauseCandidate(
+        // Trait
+        ty::PolyTraitRef<'tcx>,
+    ),
+}
+
+#[derive(Debug, PartialEq, Eq, Copy, Clone)]
+enum ProbeResult {
+    NoMatch,
+    BadReturnType,
+    Match,
+}
+
+/// When adjusting a receiver we often want to do one of
+///
+/// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
+/// - If the receiver has type `*mut T`, convert it to `*const T`
+///
+/// This type tells us which one to do.
+///
+/// Note that in principle we could do both at the same time. For example, when the receiver has
+/// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
+/// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
+/// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
+/// `mut`), or it has type `*mut T` and we convert it to `*const T`.
+#[derive(Debug, PartialEq, Copy, Clone)]
+pub enum AutorefOrPtrAdjustment {
+    /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
+    /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
+    Autoref {
+        mutbl: hir::Mutability,
+
+        /// Indicates that the source expression should be "unsized" to a target type.
+        /// This is special-cased for just arrays unsizing to slices.
+        unsize: bool,
+    },
+    /// Receiver has type `*mut T`, convert to `*const T`
+    ToConstPtr,
+}
+
+impl AutorefOrPtrAdjustment {
+    fn get_unsize(&self) -> bool {
+        match self {
+            AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
+            AutorefOrPtrAdjustment::ToConstPtr => false,
+        }
+    }
+}
+
+#[derive(Debug, PartialEq, Clone)]
+pub struct Pick<'tcx> {
+    pub item: ty::AssocItem,
+    pub kind: PickKind<'tcx>,
+    pub import_ids: SmallVec<[LocalDefId; 1]>,
+
+    /// Indicates that the source expression should be autoderef'd N times
+    /// ```ignore (not-rust)
+    /// A = expr | *expr | **expr | ...
+    /// ```
+    pub autoderefs: usize,
+
+    /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
+    /// `*mut T`, convert it to `*const T`.
+    pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
+    pub self_ty: Ty<'tcx>,
+}
+
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub enum PickKind<'tcx> {
+    InherentImplPick,
+    ObjectPick,
+    TraitPick,
+    WhereClausePick(
+        // Trait
+        ty::PolyTraitRef<'tcx>,
+    ),
+}
+
+pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
+
+#[derive(PartialEq, Eq, Copy, Clone, Debug)]
+pub enum Mode {
+    // An expression of the form `receiver.method_name(...)`.
+    // Autoderefs are performed on `receiver`, lookup is done based on the
+    // `self` argument  of the method, and static methods aren't considered.
+    MethodCall,
+    // An expression of the form `Type::item` or `<T>::item`.
+    // No autoderefs are performed, lookup is done based on the type each
+    // implementation is for, and static methods are included.
+    Path,
+}
+
+#[derive(PartialEq, Eq, Copy, Clone, Debug)]
+pub enum ProbeScope {
+    // Assemble candidates coming only from traits in scope.
+    TraitsInScope,
+
+    // Assemble candidates coming from all traits.
+    AllTraits,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    /// This is used to offer suggestions to users. It returns methods
+    /// that could have been called which have the desired return
+    /// type. Some effort is made to rule out methods that, if called,
+    /// would result in an error (basically, the same criteria we
+    /// would use to decide if a method is a plausible fit for
+    /// ambiguity purposes).
+    #[instrument(level = "debug", skip(self))]
+    pub fn probe_for_return_type(
+        &self,
+        span: Span,
+        mode: Mode,
+        return_type: Ty<'tcx>,
+        self_ty: Ty<'tcx>,
+        scope_expr_id: hir::HirId,
+    ) -> Vec<ty::AssocItem> {
+        let method_names = self
+            .probe_op(
+                span,
+                mode,
+                None,
+                Some(return_type),
+                IsSuggestion(true),
+                self_ty,
+                scope_expr_id,
+                ProbeScope::AllTraits,
+                |probe_cx| Ok(probe_cx.candidate_method_names()),
+            )
+            .unwrap_or_default();
+        method_names
+            .iter()
+            .flat_map(|&method_name| {
+                self.probe_op(
+                    span,
+                    mode,
+                    Some(method_name),
+                    Some(return_type),
+                    IsSuggestion(true),
+                    self_ty,
+                    scope_expr_id,
+                    ProbeScope::AllTraits,
+                    |probe_cx| probe_cx.pick(),
+                )
+                .ok()
+                .map(|pick| pick.item)
+            })
+            .collect()
+    }
+
+    #[instrument(level = "debug", skip(self))]
+    pub fn probe_for_name(
+        &self,
+        span: Span,
+        mode: Mode,
+        item_name: Ident,
+        is_suggestion: IsSuggestion,
+        self_ty: Ty<'tcx>,
+        scope_expr_id: hir::HirId,
+        scope: ProbeScope,
+    ) -> PickResult<'tcx> {
+        self.probe_op(
+            span,
+            mode,
+            Some(item_name),
+            None,
+            is_suggestion,
+            self_ty,
+            scope_expr_id,
+            scope,
+            |probe_cx| probe_cx.pick(),
+        )
+    }
+
+    fn probe_op<OP, R>(
+        &'a self,
+        span: Span,
+        mode: Mode,
+        method_name: Option<Ident>,
+        return_type: Option<Ty<'tcx>>,
+        is_suggestion: IsSuggestion,
+        self_ty: Ty<'tcx>,
+        scope_expr_id: hir::HirId,
+        scope: ProbeScope,
+        op: OP,
+    ) -> Result<R, MethodError<'tcx>>
+    where
+        OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
+    {
+        let mut orig_values = OriginalQueryValues::default();
+        let param_env_and_self_ty = self.canonicalize_query(
+            ParamEnvAnd { param_env: self.param_env, value: self_ty },
+            &mut orig_values,
+        );
+
+        let steps = if mode == Mode::MethodCall {
+            self.tcx.method_autoderef_steps(param_env_and_self_ty)
+        } else {
+            self.probe(|_| {
+                // Mode::Path - the deref steps is "trivial". This turns
+                // our CanonicalQuery into a "trivial" QueryResponse. This
+                // is a bit inefficient, but I don't think that writing
+                // special handling for this "trivial case" is a good idea.
+
+                let infcx = &self.infcx;
+                let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
+                    infcx.instantiate_canonical_with_fresh_inference_vars(
+                        span,
+                        &param_env_and_self_ty,
+                    );
+                debug!(
+                    "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
+                    param_env_and_self_ty, self_ty
+                );
+                MethodAutoderefStepsResult {
+                    steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
+                        self_ty: self.make_query_response_ignoring_pending_obligations(
+                            canonical_inference_vars,
+                            self_ty,
+                        ),
+                        autoderefs: 0,
+                        from_unsafe_deref: false,
+                        unsize: false,
+                    }]),
+                    opt_bad_ty: None,
+                    reached_recursion_limit: false,
+                }
+            })
+        };
+
+        // If our autoderef loop had reached the recursion limit,
+        // report an overflow error, but continue going on with
+        // the truncated autoderef list.
+        if steps.reached_recursion_limit {
+            self.probe(|_| {
+                let ty = &steps
+                    .steps
+                    .last()
+                    .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
+                    .self_ty;
+                let ty = self
+                    .probe_instantiate_query_response(span, &orig_values, ty)
+                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
+                autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
+            });
+        }
+
+        // If we encountered an `_` type or an error type during autoderef, this is
+        // ambiguous.
+        if let Some(bad_ty) = &steps.opt_bad_ty {
+            if is_suggestion.0 {
+                // Ambiguity was encountered during a suggestion. Just keep going.
+                debug!("ProbeContext: encountered ambiguity in suggestion");
+            } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
+                // this case used to be allowed by the compiler,
+                // so we do a future-compat lint here for the 2015 edition
+                // (see https://github.com/rust-lang/rust/issues/46906)
+                if self.tcx.sess.rust_2018() {
+                    self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
+                } else {
+                    self.tcx.struct_span_lint_hir(
+                        lint::builtin::TYVAR_BEHIND_RAW_POINTER,
+                        scope_expr_id,
+                        span,
+                        |lint| {
+                            lint.build("type annotations needed").emit();
+                        },
+                    );
+                }
+            } else {
+                // Encountered a real ambiguity, so abort the lookup. If `ty` is not
+                // an `Err`, report the right "type annotations needed" error pointing
+                // to it.
+                let ty = &bad_ty.ty;
+                let ty = self
+                    .probe_instantiate_query_response(span, &orig_values, ty)
+                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
+                let ty = self.structurally_resolved_type(span, ty.value);
+                assert!(matches!(ty.kind(), ty::Error(_)));
+                return Err(MethodError::NoMatch(NoMatchData {
+                    static_candidates: Vec::new(),
+                    unsatisfied_predicates: Vec::new(),
+                    out_of_scope_traits: Vec::new(),
+                    lev_candidate: None,
+                    mode,
+                }));
+            }
+        }
+
+        debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
+
+        // this creates one big transaction so that all type variables etc
+        // that we create during the probe process are removed later
+        self.probe(|_| {
+            let mut probe_cx = ProbeContext::new(
+                self,
+                span,
+                mode,
+                method_name,
+                return_type,
+                orig_values,
+                steps.steps,
+                is_suggestion,
+                scope_expr_id,
+            );
+
+            probe_cx.assemble_inherent_candidates();
+            match scope {
+                ProbeScope::TraitsInScope => {
+                    probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
+                }
+                ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
+            };
+            op(probe_cx)
+        })
+    }
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+    providers.method_autoderef_steps = method_autoderef_steps;
+}
+
+fn method_autoderef_steps<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    goal: CanonicalTyGoal<'tcx>,
+) -> MethodAutoderefStepsResult<'tcx> {
+    debug!("method_autoderef_steps({:?})", goal);
+
+    tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
+        let ParamEnvAnd { param_env, value: self_ty } = goal;
+
+        let mut autoderef =
+            Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
+                .include_raw_pointers()
+                .silence_errors();
+        let mut reached_raw_pointer = false;
+        let mut steps: Vec<_> = autoderef
+            .by_ref()
+            .map(|(ty, d)| {
+                let step = CandidateStep {
+                    self_ty: infcx.make_query_response_ignoring_pending_obligations(
+                        inference_vars.clone(),
+                        ty,
+                    ),
+                    autoderefs: d,
+                    from_unsafe_deref: reached_raw_pointer,
+                    unsize: false,
+                };
+                if let ty::RawPtr(_) = ty.kind() {
+                    // all the subsequent steps will be from_unsafe_deref
+                    reached_raw_pointer = true;
+                }
+                step
+            })
+            .collect();
+
+        let final_ty = autoderef.final_ty(true);
+        let opt_bad_ty = match final_ty.kind() {
+            ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
+                reached_raw_pointer,
+                ty: infcx
+                    .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
+            }),
+            ty::Array(elem_ty, _) => {
+                let dereferences = steps.len() - 1;
+
+                steps.push(CandidateStep {
+                    self_ty: infcx.make_query_response_ignoring_pending_obligations(
+                        inference_vars,
+                        infcx.tcx.mk_slice(*elem_ty),
+                    ),
+                    autoderefs: dereferences,
+                    // this could be from an unsafe deref if we had
+                    // a *mut/const [T; N]
+                    from_unsafe_deref: reached_raw_pointer,
+                    unsize: true,
+                });
+
+                None
+            }
+            _ => None,
+        };
+
+        debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
+
+        MethodAutoderefStepsResult {
+            steps: tcx.arena.alloc_from_iter(steps),
+            opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
+            reached_recursion_limit: autoderef.reached_recursion_limit(),
+        }
+    })
+}
+
+impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
+    fn new(
+        fcx: &'a FnCtxt<'a, 'tcx>,
+        span: Span,
+        mode: Mode,
+        method_name: Option<Ident>,
+        return_type: Option<Ty<'tcx>>,
+        orig_steps_var_values: OriginalQueryValues<'tcx>,
+        steps: &'tcx [CandidateStep<'tcx>],
+        is_suggestion: IsSuggestion,
+        scope_expr_id: hir::HirId,
+    ) -> ProbeContext<'a, 'tcx> {
+        ProbeContext {
+            fcx,
+            span,
+            mode,
+            method_name,
+            return_type,
+            inherent_candidates: Vec::new(),
+            extension_candidates: Vec::new(),
+            impl_dups: FxHashSet::default(),
+            orig_steps_var_values,
+            steps,
+            static_candidates: Vec::new(),
+            allow_similar_names: false,
+            private_candidate: None,
+            unsatisfied_predicates: Vec::new(),
+            is_suggestion,
+            scope_expr_id,
+        }
+    }
+
+    fn reset(&mut self) {
+        self.inherent_candidates.clear();
+        self.extension_candidates.clear();
+        self.impl_dups.clear();
+        self.static_candidates.clear();
+        self.private_candidate = None;
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // CANDIDATE ASSEMBLY
+
+    fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
+        let is_accessible = if let Some(name) = self.method_name {
+            let item = candidate.item;
+            let def_scope = self
+                .tcx
+                .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
+                .1;
+            item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
+        } else {
+            true
+        };
+        if is_accessible {
+            if is_inherent {
+                self.inherent_candidates.push(candidate);
+            } else {
+                self.extension_candidates.push(candidate);
+            }
+        } else if self.private_candidate.is_none() {
+            self.private_candidate =
+                Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
+        }
+    }
+
+    fn assemble_inherent_candidates(&mut self) {
+        for step in self.steps.iter() {
+            self.assemble_probe(&step.self_ty);
+        }
+    }
+
+    fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
+        debug!("assemble_probe: self_ty={:?}", self_ty);
+        let raw_self_ty = self_ty.value.value;
+        match *raw_self_ty.kind() {
+            ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
+                // Subtle: we can't use `instantiate_query_response` here: using it will
+                // commit to all of the type equalities assumed by inference going through
+                // autoderef (see the `method-probe-no-guessing` test).
+                //
+                // However, in this code, it is OK if we end up with an object type that is
+                // "more general" than the object type that we are evaluating. For *every*
+                // object type `MY_OBJECT`, a function call that goes through a trait-ref
+                // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
+                // `ObjectCandidate`, and it should be discoverable "exactly" through one
+                // of the iterations in the autoderef loop, so there is no problem with it
+                // being discoverable in another one of these iterations.
+                //
+                // Using `instantiate_canonical_with_fresh_inference_vars` on our
+                // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
+                // `CanonicalVarValues` will exactly give us such a generalization - it
+                // will still match the original object type, but it won't pollute our
+                // type variables in any form, so just do that!
+                let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
+                    self.fcx
+                        .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
+
+                self.assemble_inherent_candidates_from_object(generalized_self_ty);
+                self.assemble_inherent_impl_candidates_for_type(p.def_id());
+                if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
+                    self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+                }
+            }
+            ty::Adt(def, _) => {
+                let def_id = def.did();
+                self.assemble_inherent_impl_candidates_for_type(def_id);
+                if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
+                    self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+                }
+            }
+            ty::Foreign(did) => {
+                self.assemble_inherent_impl_candidates_for_type(did);
+                if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
+                    self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+                }
+            }
+            ty::Param(p) => {
+                self.assemble_inherent_candidates_from_param(p);
+            }
+            ty::Bool
+            | ty::Char
+            | ty::Int(_)
+            | ty::Uint(_)
+            | ty::Float(_)
+            | ty::Str
+            | ty::Array(..)
+            | ty::Slice(_)
+            | ty::RawPtr(_)
+            | ty::Ref(..)
+            | ty::Never
+            | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
+            _ => {}
+        }
+    }
+
+    fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
+        let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
+            bug!("unexpected incoherent type: {:?}", self_ty)
+        };
+        for &impl_def_id in self.tcx.incoherent_impls(simp) {
+            self.assemble_inherent_impl_probe(impl_def_id);
+        }
+    }
+
+    fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
+        let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
+        for &impl_def_id in impl_def_ids.iter() {
+            self.assemble_inherent_impl_probe(impl_def_id);
+        }
+    }
+
+    fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
+        if !self.impl_dups.insert(impl_def_id) {
+            return; // already visited
+        }
+
+        debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
+
+        for item in self.impl_or_trait_item(impl_def_id) {
+            if !self.has_applicable_self(&item) {
+                // No receiver declared. Not a candidate.
+                self.record_static_candidate(CandidateSource::Impl(impl_def_id));
+                continue;
+            }
+
+            let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
+            let impl_ty = impl_ty.subst(self.tcx, impl_substs);
+
+            debug!("impl_ty: {:?}", impl_ty);
+
+            // Determine the receiver type that the method itself expects.
+            let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
+            debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
+
+            // We can't use normalize_associated_types_in as it will pollute the
+            // fcx's fulfillment context after this probe is over.
+            // Note: we only normalize `xform_self_ty` here since the normalization
+            // of the return type can lead to inference results that prohibit
+            // valid candidates from being found, see issue #85671
+            // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
+            // which might be caused by the `param_env` itself. The clauses of the `param_env`
+            // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
+            // see issue #89650
+            let cause = traits::ObligationCause::misc(self.span, self.body_id);
+            let selcx = &mut traits::SelectionContext::new(self.fcx);
+            let traits::Normalized { value: xform_self_ty, obligations } =
+                traits::normalize(selcx, self.param_env, cause, xform_self_ty);
+            debug!(
+                "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
+                xform_self_ty, xform_ret_ty
+            );
+
+            self.push_candidate(
+                Candidate {
+                    xform_self_ty,
+                    xform_ret_ty,
+                    item,
+                    kind: InherentImplCandidate(impl_substs, obligations),
+                    import_ids: smallvec![],
+                },
+                true,
+            );
+        }
+    }
+
+    fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
+        debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
+
+        let principal = match self_ty.kind() {
+            ty::Dynamic(ref data, ..) => Some(data),
+            _ => None,
+        }
+        .and_then(|data| data.principal())
+        .unwrap_or_else(|| {
+            span_bug!(
+                self.span,
+                "non-object {:?} in assemble_inherent_candidates_from_object",
+                self_ty
+            )
+        });
+
+        // It is illegal to invoke a method on a trait instance that refers to
+        // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
+        // will be reported by `object_safety.rs` if the method refers to the
+        // `Self` type anywhere other than the receiver. Here, we use a
+        // substitution that replaces `Self` with the object type itself. Hence,
+        // a `&self` method will wind up with an argument type like `&dyn Trait`.
+        let trait_ref = principal.with_self_ty(self.tcx, self_ty);
+        self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
+            let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
+
+            let (xform_self_ty, xform_ret_ty) =
+                this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
+            this.push_candidate(
+                Candidate {
+                    xform_self_ty,
+                    xform_ret_ty,
+                    item,
+                    kind: ObjectCandidate,
+                    import_ids: smallvec![],
+                },
+                true,
+            );
+        });
+    }
+
+    fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
+        // FIXME: do we want to commit to this behavior for param bounds?
+        debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
+
+        let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
+            let bound_predicate = predicate.kind();
+            match bound_predicate.skip_binder() {
+                ty::PredicateKind::Trait(trait_predicate) => {
+                    match *trait_predicate.trait_ref.self_ty().kind() {
+                        ty::Param(p) if p == param_ty => {
+                            Some(bound_predicate.rebind(trait_predicate.trait_ref))
+                        }
+                        _ => None,
+                    }
+                }
+                ty::PredicateKind::Subtype(..)
+                | ty::PredicateKind::Coerce(..)
+                | ty::PredicateKind::Projection(..)
+                | ty::PredicateKind::RegionOutlives(..)
+                | ty::PredicateKind::WellFormed(..)
+                | ty::PredicateKind::ObjectSafe(..)
+                | ty::PredicateKind::ClosureKind(..)
+                | ty::PredicateKind::TypeOutlives(..)
+                | ty::PredicateKind::ConstEvaluatable(..)
+                | ty::PredicateKind::ConstEquate(..)
+                | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
+            }
+        });
+
+        self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
+            let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
+
+            let (xform_self_ty, xform_ret_ty) =
+                this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
+
+            // Because this trait derives from a where-clause, it
+            // should not contain any inference variables or other
+            // artifacts. This means it is safe to put into the
+            // `WhereClauseCandidate` and (eventually) into the
+            // `WhereClausePick`.
+            assert!(!trait_ref.substs.needs_infer());
+
+            this.push_candidate(
+                Candidate {
+                    xform_self_ty,
+                    xform_ret_ty,
+                    item,
+                    kind: WhereClauseCandidate(poly_trait_ref),
+                    import_ids: smallvec![],
+                },
+                true,
+            );
+        });
+    }
+
+    // Do a search through a list of bounds, using a callback to actually
+    // create the candidates.
+    fn elaborate_bounds<F>(
+        &mut self,
+        bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
+        mut mk_cand: F,
+    ) where
+        F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
+    {
+        let tcx = self.tcx;
+        for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
+            debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
+            for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
+                if !self.has_applicable_self(&item) {
+                    self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
+                } else {
+                    mk_cand(self, bound_trait_ref, item);
+                }
+            }
+        }
+    }
+
+    fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
+        let mut duplicates = FxHashSet::default();
+        let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
+        if let Some(applicable_traits) = opt_applicable_traits {
+            for trait_candidate in applicable_traits.iter() {
+                let trait_did = trait_candidate.def_id;
+                if duplicates.insert(trait_did) {
+                    self.assemble_extension_candidates_for_trait(
+                        &trait_candidate.import_ids,
+                        trait_did,
+                    );
+                }
+            }
+        }
+    }
+
+    fn assemble_extension_candidates_for_all_traits(&mut self) {
+        let mut duplicates = FxHashSet::default();
+        for trait_info in suggest::all_traits(self.tcx) {
+            if duplicates.insert(trait_info.def_id) {
+                self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
+            }
+        }
+    }
+
+    pub fn matches_return_type(
+        &self,
+        method: &ty::AssocItem,
+        self_ty: Option<Ty<'tcx>>,
+        expected: Ty<'tcx>,
+    ) -> bool {
+        match method.kind {
+            ty::AssocKind::Fn => {
+                let fty = self.tcx.bound_fn_sig(method.def_id);
+                self.probe(|_| {
+                    let substs = self.fresh_substs_for_item(self.span, method.def_id);
+                    let fty = fty.subst(self.tcx, substs);
+                    let fty =
+                        self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
+
+                    if let Some(self_ty) = self_ty {
+                        if self
+                            .at(&ObligationCause::dummy(), self.param_env)
+                            .sup(fty.inputs()[0], self_ty)
+                            .is_err()
+                        {
+                            return false;
+                        }
+                    }
+                    self.can_sub(self.param_env, fty.output(), expected).is_ok()
+                })
+            }
+            _ => false,
+        }
+    }
+
+    fn assemble_extension_candidates_for_trait(
+        &mut self,
+        import_ids: &SmallVec<[LocalDefId; 1]>,
+        trait_def_id: DefId,
+    ) {
+        debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
+        let trait_substs = self.fresh_item_substs(trait_def_id);
+        let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
+
+        if self.tcx.is_trait_alias(trait_def_id) {
+            // For trait aliases, assume all supertraits are relevant.
+            let bounds = iter::once(ty::Binder::dummy(trait_ref));
+            self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
+                let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
+
+                let (xform_self_ty, xform_ret_ty) =
+                    this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
+                this.push_candidate(
+                    Candidate {
+                        xform_self_ty,
+                        xform_ret_ty,
+                        item,
+                        import_ids: import_ids.clone(),
+                        kind: TraitCandidate(new_trait_ref),
+                    },
+                    false,
+                );
+            });
+        } else {
+            debug_assert!(self.tcx.is_trait(trait_def_id));
+            for item in self.impl_or_trait_item(trait_def_id) {
+                // Check whether `trait_def_id` defines a method with suitable name.
+                if !self.has_applicable_self(&item) {
+                    debug!("method has inapplicable self");
+                    self.record_static_candidate(CandidateSource::Trait(trait_def_id));
+                    continue;
+                }
+
+                let (xform_self_ty, xform_ret_ty) =
+                    self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
+                self.push_candidate(
+                    Candidate {
+                        xform_self_ty,
+                        xform_ret_ty,
+                        item,
+                        import_ids: import_ids.clone(),
+                        kind: TraitCandidate(trait_ref),
+                    },
+                    false,
+                );
+            }
+        }
+    }
+
+    fn candidate_method_names(&self) -> Vec<Ident> {
+        let mut set = FxHashSet::default();
+        let mut names: Vec<_> = self
+            .inherent_candidates
+            .iter()
+            .chain(&self.extension_candidates)
+            .filter(|candidate| {
+                if let Some(return_ty) = self.return_type {
+                    self.matches_return_type(&candidate.item, None, return_ty)
+                } else {
+                    true
+                }
+            })
+            .map(|candidate| candidate.item.ident(self.tcx))
+            .filter(|&name| set.insert(name))
+            .collect();
+
+        // Sort them by the name so we have a stable result.
+        names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
+        names
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // THE ACTUAL SEARCH
+
+    fn pick(mut self) -> PickResult<'tcx> {
+        assert!(self.method_name.is_some());
+
+        if let Some(r) = self.pick_core() {
+            return r;
+        }
+
+        debug!("pick: actual search failed, assemble diagnostics");
+
+        let static_candidates = mem::take(&mut self.static_candidates);
+        let private_candidate = self.private_candidate.take();
+        let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
+
+        // things failed, so lets look at all traits, for diagnostic purposes now:
+        self.reset();
+
+        let span = self.span;
+        let tcx = self.tcx;
+
+        self.assemble_extension_candidates_for_all_traits();
+
+        let out_of_scope_traits = match self.pick_core() {
+            Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
+            //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
+            Some(Err(MethodError::Ambiguity(v))) => v
+                .into_iter()
+                .map(|source| match source {
+                    CandidateSource::Trait(id) => id,
+                    CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
+                        Some(id) => id,
+                        None => span_bug!(span, "found inherent method when looking at traits"),
+                    },
+                })
+                .collect(),
+            Some(Err(MethodError::NoMatch(NoMatchData {
+                out_of_scope_traits: others, ..
+            }))) => {
+                assert!(others.is_empty());
+                vec![]
+            }
+            _ => vec![],
+        };
+
+        if let Some((kind, def_id)) = private_candidate {
+            return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
+        }
+        let lev_candidate = self.probe_for_lev_candidate()?;
+
+        Err(MethodError::NoMatch(NoMatchData {
+            static_candidates,
+            unsatisfied_predicates,
+            out_of_scope_traits,
+            lev_candidate,
+            mode: self.mode,
+        }))
+    }
+
+    fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
+        let mut unstable_candidates = Vec::new();
+        let pick = self.pick_all_method(Some(&mut unstable_candidates));
+
+        // In this case unstable picking is done by `pick_method`.
+        if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
+            return pick;
+        }
+
+        match pick {
+            // Emit a lint if there are unstable candidates alongside the stable ones.
+            //
+            // We suppress warning if we're picking the method only because it is a
+            // suggestion.
+            Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
+                self.emit_unstable_name_collision_hint(p, &unstable_candidates);
+                pick
+            }
+            Some(_) => pick,
+            None => self.pick_all_method(None),
+        }
+    }
+
+    fn pick_all_method(
+        &mut self,
+        mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>> {
+        let steps = self.steps.clone();
+        steps
+            .iter()
+            .filter(|step| {
+                debug!("pick_all_method: step={:?}", step);
+                // skip types that are from a type error or that would require dereferencing
+                // a raw pointer
+                !step.self_ty.references_error() && !step.from_unsafe_deref
+            })
+            .flat_map(|step| {
+                let InferOk { value: self_ty, obligations: _ } = self
+                    .fcx
+                    .probe_instantiate_query_response(
+                        self.span,
+                        &self.orig_steps_var_values,
+                        &step.self_ty,
+                    )
+                    .unwrap_or_else(|_| {
+                        span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
+                    });
+                self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
+                    .or_else(|| {
+                        self.pick_autorefd_method(
+                            step,
+                            self_ty,
+                            hir::Mutability::Not,
+                            unstable_candidates.as_deref_mut(),
+                        )
+                        .or_else(|| {
+                            self.pick_autorefd_method(
+                                step,
+                                self_ty,
+                                hir::Mutability::Mut,
+                                unstable_candidates.as_deref_mut(),
+                            )
+                        })
+                        .or_else(|| {
+                            self.pick_const_ptr_method(
+                                step,
+                                self_ty,
+                                unstable_candidates.as_deref_mut(),
+                            )
+                        })
+                    })
+            })
+            .next()
+    }
+
+    /// For each type `T` in the step list, this attempts to find a method where
+    /// the (transformed) self type is exactly `T`. We do however do one
+    /// transformation on the adjustment: if we are passing a region pointer in,
+    /// we will potentially *reborrow* it to a shorter lifetime. This allows us
+    /// to transparently pass `&mut` pointers, in particular, without consuming
+    /// them for their entire lifetime.
+    fn pick_by_value_method(
+        &mut self,
+        step: &CandidateStep<'tcx>,
+        self_ty: Ty<'tcx>,
+        unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>> {
+        if step.unsize {
+            return None;
+        }
+
+        self.pick_method(self_ty, unstable_candidates).map(|r| {
+            r.map(|mut pick| {
+                pick.autoderefs = step.autoderefs;
+
+                // Insert a `&*` or `&mut *` if this is a reference type:
+                if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
+                    pick.autoderefs += 1;
+                    pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
+                        mutbl,
+                        unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
+                    })
+                }
+
+                pick
+            })
+        })
+    }
+
+    fn pick_autorefd_method(
+        &mut self,
+        step: &CandidateStep<'tcx>,
+        self_ty: Ty<'tcx>,
+        mutbl: hir::Mutability,
+        unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>> {
+        let tcx = self.tcx;
+
+        // In general, during probing we erase regions.
+        let region = tcx.lifetimes.re_erased;
+
+        let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
+        self.pick_method(autoref_ty, unstable_candidates).map(|r| {
+            r.map(|mut pick| {
+                pick.autoderefs = step.autoderefs;
+                pick.autoref_or_ptr_adjustment =
+                    Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
+                pick
+            })
+        })
+    }
+
+    /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
+    /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
+    /// autorefs would require dereferencing the pointer, which is not safe.
+    fn pick_const_ptr_method(
+        &mut self,
+        step: &CandidateStep<'tcx>,
+        self_ty: Ty<'tcx>,
+        unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>> {
+        // Don't convert an unsized reference to ptr
+        if step.unsize {
+            return None;
+        }
+
+        let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
+            return None;
+        };
+
+        let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
+        let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
+        self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
+            r.map(|mut pick| {
+                pick.autoderefs = step.autoderefs;
+                pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
+                pick
+            })
+        })
+    }
+
+    fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
+        debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
+
+        let mut possibly_unsatisfied_predicates = Vec::new();
+        let mut unstable_candidates = Vec::new();
+
+        for (kind, candidates) in
+            &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
+        {
+            debug!("searching {} candidates", kind);
+            let res = self.consider_candidates(
+                self_ty,
+                candidates.iter(),
+                &mut possibly_unsatisfied_predicates,
+                Some(&mut unstable_candidates),
+            );
+            if let Some(pick) = res {
+                if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
+                    if let Ok(p) = &pick {
+                        // Emit a lint if there are unstable candidates alongside the stable ones.
+                        //
+                        // We suppress warning if we're picking the method only because it is a
+                        // suggestion.
+                        self.emit_unstable_name_collision_hint(p, &unstable_candidates);
+                    }
+                }
+                return Some(pick);
+            }
+        }
+
+        debug!("searching unstable candidates");
+        let res = self.consider_candidates(
+            self_ty,
+            unstable_candidates.iter().map(|(c, _)| c),
+            &mut possibly_unsatisfied_predicates,
+            None,
+        );
+        if res.is_none() {
+            self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
+        }
+        res
+    }
+
+    fn pick_method(
+        &mut self,
+        self_ty: Ty<'tcx>,
+        mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>> {
+        if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
+            return self.pick_method_with_unstable(self_ty);
+        }
+
+        debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
+
+        let mut possibly_unsatisfied_predicates = Vec::new();
+
+        for (kind, candidates) in
+            &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
+        {
+            debug!("searching {} candidates", kind);
+            let res = self.consider_candidates(
+                self_ty,
+                candidates.iter(),
+                &mut possibly_unsatisfied_predicates,
+                unstable_candidates.as_deref_mut(),
+            );
+            if let Some(pick) = res {
+                return Some(pick);
+            }
+        }
+
+        // `pick_method` may be called twice for the same self_ty if no stable methods
+        // match. Only extend once.
+        if unstable_candidates.is_some() {
+            self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
+        }
+        None
+    }
+
+    fn consider_candidates<'b, ProbesIter>(
+        &self,
+        self_ty: Ty<'tcx>,
+        probes: ProbesIter,
+        possibly_unsatisfied_predicates: &mut Vec<(
+            ty::Predicate<'tcx>,
+            Option<ty::Predicate<'tcx>>,
+            Option<ObligationCause<'tcx>>,
+        )>,
+        unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+    ) -> Option<PickResult<'tcx>>
+    where
+        ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
+        'tcx: 'b,
+    {
+        let mut applicable_candidates: Vec<_> = probes
+            .clone()
+            .map(|probe| {
+                (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
+            })
+            .filter(|&(_, status)| status != ProbeResult::NoMatch)
+            .collect();
+
+        debug!("applicable_candidates: {:?}", applicable_candidates);
+
+        if applicable_candidates.len() > 1 {
+            if let Some(pick) =
+                self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
+            {
+                return Some(Ok(pick));
+            }
+        }
+
+        if let Some(uc) = unstable_candidates {
+            applicable_candidates.retain(|&(p, _)| {
+                if let stability::EvalResult::Deny { feature, .. } =
+                    self.tcx.eval_stability(p.item.def_id, None, self.span, None)
+                {
+                    uc.push((p.clone(), feature));
+                    return false;
+                }
+                true
+            });
+        }
+
+        if applicable_candidates.len() > 1 {
+            let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
+            return Some(Err(MethodError::Ambiguity(sources)));
+        }
+
+        applicable_candidates.pop().map(|(probe, status)| {
+            if status == ProbeResult::Match {
+                Ok(probe.to_unadjusted_pick(self_ty))
+            } else {
+                Err(MethodError::BadReturnType)
+            }
+        })
+    }
+
+    fn emit_unstable_name_collision_hint(
+        &self,
+        stable_pick: &Pick<'_>,
+        unstable_candidates: &[(Candidate<'tcx>, Symbol)],
+    ) {
+        self.tcx.struct_span_lint_hir(
+            lint::builtin::UNSTABLE_NAME_COLLISIONS,
+            self.scope_expr_id,
+            self.span,
+            |lint| {
+                let def_kind = stable_pick.item.kind.as_def_kind();
+                let mut diag = lint.build(&format!(
+                    "{} {} with this name may be added to the standard library in the future",
+                    def_kind.article(),
+                    def_kind.descr(stable_pick.item.def_id),
+                ));
+                match (stable_pick.item.kind, stable_pick.item.container) {
+                    (ty::AssocKind::Fn, _) => {
+                        // FIXME: This should be a `span_suggestion` instead of `help`
+                        // However `self.span` only
+                        // highlights the method name, so we can't use it. Also consider reusing
+                        // the code from `report_method_error()`.
+                        diag.help(&format!(
+                            "call with fully qualified syntax `{}(...)` to keep using the current \
+                             method",
+                            self.tcx.def_path_str(stable_pick.item.def_id),
+                        ));
+                    }
+                    (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
+                        let def_id = stable_pick.item.container_id(self.tcx);
+                        diag.span_suggestion(
+                            self.span,
+                            "use the fully qualified path to the associated const",
+                            format!(
+                                "<{} as {}>::{}",
+                                stable_pick.self_ty,
+                                self.tcx.def_path_str(def_id),
+                                stable_pick.item.name
+                            ),
+                            Applicability::MachineApplicable,
+                        );
+                    }
+                    _ => {}
+                }
+                if self.tcx.sess.is_nightly_build() {
+                    for (candidate, feature) in unstable_candidates {
+                        diag.help(&format!(
+                            "add `#![feature({})]` to the crate attributes to enable `{}`",
+                            feature,
+                            self.tcx.def_path_str(candidate.item.def_id),
+                        ));
+                    }
+                }
+
+                diag.emit();
+            },
+        );
+    }
+
+    fn select_trait_candidate(
+        &self,
+        trait_ref: ty::TraitRef<'tcx>,
+    ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
+        let cause = traits::ObligationCause::misc(self.span, self.body_id);
+        let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
+        let obligation = traits::Obligation::new(cause, self.param_env, predicate);
+        traits::SelectionContext::new(self).select(&obligation)
+    }
+
+    fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
+        match candidate.kind {
+            InherentImplCandidate(..) => {
+                CandidateSource::Impl(candidate.item.container_id(self.tcx))
+            }
+            ObjectCandidate | WhereClauseCandidate(_) => {
+                CandidateSource::Trait(candidate.item.container_id(self.tcx))
+            }
+            TraitCandidate(trait_ref) => self.probe(|_| {
+                let _ = self
+                    .at(&ObligationCause::dummy(), self.param_env)
+                    .define_opaque_types(false)
+                    .sup(candidate.xform_self_ty, self_ty);
+                match self.select_trait_candidate(trait_ref) {
+                    Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
+                        // If only a single impl matches, make the error message point
+                        // to that impl.
+                        CandidateSource::Impl(impl_data.impl_def_id)
+                    }
+                    _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
+                }
+            }),
+        }
+    }
+
+    fn consider_probe(
+        &self,
+        self_ty: Ty<'tcx>,
+        probe: &Candidate<'tcx>,
+        possibly_unsatisfied_predicates: &mut Vec<(
+            ty::Predicate<'tcx>,
+            Option<ty::Predicate<'tcx>>,
+            Option<ObligationCause<'tcx>>,
+        )>,
+    ) -> ProbeResult {
+        debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
+
+        self.probe(|_| {
+            // First check that the self type can be related.
+            let sub_obligations = match self
+                .at(&ObligationCause::dummy(), self.param_env)
+                .define_opaque_types(false)
+                .sup(probe.xform_self_ty, self_ty)
+            {
+                Ok(InferOk { obligations, value: () }) => obligations,
+                Err(err) => {
+                    debug!("--> cannot relate self-types {:?}", err);
+                    return ProbeResult::NoMatch;
+                }
+            };
+
+            let mut result = ProbeResult::Match;
+            let mut xform_ret_ty = probe.xform_ret_ty;
+            debug!(?xform_ret_ty);
+
+            let selcx = &mut traits::SelectionContext::new(self);
+            let cause = traits::ObligationCause::misc(self.span, self.body_id);
+
+            let mut parent_pred = None;
+
+            // If so, impls may carry other conditions (e.g., where
+            // clauses) that must be considered. Make sure that those
+            // match as well (or at least may match, sometimes we
+            // don't have enough information to fully evaluate).
+            match probe.kind {
+                InherentImplCandidate(ref substs, ref ref_obligations) => {
+                    // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
+                    // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
+                    // for why this is necessary
+                    let traits::Normalized {
+                        value: normalized_xform_ret_ty,
+                        obligations: normalization_obligations,
+                    } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
+                    xform_ret_ty = normalized_xform_ret_ty;
+                    debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
+
+                    // Check whether the impl imposes obligations we have to worry about.
+                    let impl_def_id = probe.item.container_id(self.tcx);
+                    let impl_bounds = self.tcx.predicates_of(impl_def_id);
+                    let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
+                    let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
+                        traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
+
+                    // Convert the bounds into obligations.
+                    let impl_obligations = traits::predicates_for_generics(
+                        move |_, _| cause.clone(),
+                        self.param_env,
+                        impl_bounds,
+                    );
+
+                    let candidate_obligations = impl_obligations
+                        .chain(norm_obligations.into_iter())
+                        .chain(ref_obligations.iter().cloned())
+                        .chain(normalization_obligations.into_iter());
+
+                    // Evaluate those obligations to see if they might possibly hold.
+                    for o in candidate_obligations {
+                        let o = self.resolve_vars_if_possible(o);
+                        if !self.predicate_may_hold(&o) {
+                            result = ProbeResult::NoMatch;
+                            possibly_unsatisfied_predicates.push((
+                                o.predicate,
+                                None,
+                                Some(o.cause),
+                            ));
+                        }
+                    }
+                }
+
+                ObjectCandidate | WhereClauseCandidate(..) => {
+                    // These have no additional conditions to check.
+                }
+
+                TraitCandidate(trait_ref) => {
+                    if let Some(method_name) = self.method_name {
+                        // Some trait methods are excluded for arrays before 2021.
+                        // (`array.into_iter()` wants a slice iterator for compatibility.)
+                        if self_ty.is_array() && !method_name.span.rust_2021() {
+                            let trait_def = self.tcx.trait_def(trait_ref.def_id);
+                            if trait_def.skip_array_during_method_dispatch {
+                                return ProbeResult::NoMatch;
+                            }
+                        }
+                    }
+                    let predicate =
+                        ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
+                    parent_pred = Some(predicate);
+                    let obligation = traits::Obligation::new(cause, self.param_env, predicate);
+                    if !self.predicate_may_hold(&obligation) {
+                        result = ProbeResult::NoMatch;
+                        if self.probe(|_| {
+                            match self.select_trait_candidate(trait_ref) {
+                                Err(_) => return true,
+                                Ok(Some(impl_source))
+                                    if !impl_source.borrow_nested_obligations().is_empty() =>
+                                {
+                                    for obligation in impl_source.borrow_nested_obligations() {
+                                        // Determine exactly which obligation wasn't met, so
+                                        // that we can give more context in the error.
+                                        if !self.predicate_may_hold(obligation) {
+                                            let nested_predicate =
+                                                self.resolve_vars_if_possible(obligation.predicate);
+                                            let predicate =
+                                                self.resolve_vars_if_possible(predicate);
+                                            let p = if predicate == nested_predicate {
+                                                // Avoid "`MyStruct: Foo` which is required by
+                                                // `MyStruct: Foo`" in E0599.
+                                                None
+                                            } else {
+                                                Some(predicate)
+                                            };
+                                            possibly_unsatisfied_predicates.push((
+                                                nested_predicate,
+                                                p,
+                                                Some(obligation.cause.clone()),
+                                            ));
+                                        }
+                                    }
+                                }
+                                _ => {
+                                    // Some nested subobligation of this predicate
+                                    // failed.
+                                    let predicate = self.resolve_vars_if_possible(predicate);
+                                    possibly_unsatisfied_predicates.push((predicate, None, None));
+                                }
+                            }
+                            false
+                        }) {
+                            // This candidate's primary obligation doesn't even
+                            // select - don't bother registering anything in
+                            // `potentially_unsatisfied_predicates`.
+                            return ProbeResult::NoMatch;
+                        }
+                    }
+                }
+            }
+
+            // Evaluate those obligations to see if they might possibly hold.
+            for o in sub_obligations {
+                let o = self.resolve_vars_if_possible(o);
+                if !self.predicate_may_hold(&o) {
+                    result = ProbeResult::NoMatch;
+                    possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
+                }
+            }
+
+            if let ProbeResult::Match = result {
+                if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
+                    let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
+                    debug!(
+                        "comparing return_ty {:?} with xform ret ty {:?}",
+                        return_ty, probe.xform_ret_ty
+                    );
+                    if self
+                        .at(&ObligationCause::dummy(), self.param_env)
+                        .define_opaque_types(false)
+                        .sup(return_ty, xform_ret_ty)
+                        .is_err()
+                    {
+                        return ProbeResult::BadReturnType;
+                    }
+                }
+            }
+
+            result
+        })
+    }
+
+    /// Sometimes we get in a situation where we have multiple probes that are all impls of the
+    /// same trait, but we don't know which impl to use. In this case, since in all cases the
+    /// external interface of the method can be determined from the trait, it's ok not to decide.
+    /// We can basically just collapse all of the probes for various impls into one where-clause
+    /// probe. This will result in a pending obligation so when more type-info is available we can
+    /// make the final decision.
+    ///
+    /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
+    ///
+    /// ```ignore (illustrative)
+    /// trait Foo { ... }
+    /// impl Foo for Vec<i32> { ... }
+    /// impl Foo for Vec<usize> { ... }
+    /// ```
+    ///
+    /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
+    /// use, so it's ok to just commit to "using the method from the trait Foo".
+    fn collapse_candidates_to_trait_pick(
+        &self,
+        self_ty: Ty<'tcx>,
+        probes: &[(&Candidate<'tcx>, ProbeResult)],
+    ) -> Option<Pick<'tcx>> {
+        // Do all probes correspond to the same trait?
+        let container = probes[0].0.item.trait_container(self.tcx)?;
+        for (p, _) in &probes[1..] {
+            let p_container = p.item.trait_container(self.tcx)?;
+            if p_container != container {
+                return None;
+            }
+        }
+
+        // FIXME: check the return type here somehow.
+        // If so, just use this trait and call it a day.
+        Some(Pick {
+            item: probes[0].0.item,
+            kind: TraitPick,
+            import_ids: probes[0].0.import_ids.clone(),
+            autoderefs: 0,
+            autoref_or_ptr_adjustment: None,
+            self_ty,
+        })
+    }
+
+    /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
+    /// candidate method where the method name may have been misspelled. Similarly to other
+    /// Levenshtein based suggestions, we provide at most one such suggestion.
+    fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
+        debug!("probing for method names similar to {:?}", self.method_name);
+
+        let steps = self.steps.clone();
+        self.probe(|_| {
+            let mut pcx = ProbeContext::new(
+                self.fcx,
+                self.span,
+                self.mode,
+                self.method_name,
+                self.return_type,
+                self.orig_steps_var_values.clone(),
+                steps,
+                IsSuggestion(true),
+                self.scope_expr_id,
+            );
+            pcx.allow_similar_names = true;
+            pcx.assemble_inherent_candidates();
+
+            let method_names = pcx.candidate_method_names();
+            pcx.allow_similar_names = false;
+            let applicable_close_candidates: Vec<ty::AssocItem> = method_names
+                .iter()
+                .filter_map(|&method_name| {
+                    pcx.reset();
+                    pcx.method_name = Some(method_name);
+                    pcx.assemble_inherent_candidates();
+                    pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
+                })
+                .collect();
+
+            if applicable_close_candidates.is_empty() {
+                Ok(None)
+            } else {
+                let best_name = {
+                    let names = applicable_close_candidates
+                        .iter()
+                        .map(|cand| cand.name)
+                        .collect::<Vec<Symbol>>();
+                    find_best_match_for_name_with_substrings(
+                        &names,
+                        self.method_name.unwrap().name,
+                        None,
+                    )
+                }
+                .unwrap();
+                Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
+            }
+        })
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // MISCELLANY
+    fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
+        // "Fast track" -- check for usage of sugar when in method call
+        // mode.
+        //
+        // In Path mode (i.e., resolving a value like `T::next`), consider any
+        // associated value (i.e., methods, constants) but not types.
+        match self.mode {
+            Mode::MethodCall => item.fn_has_self_parameter,
+            Mode::Path => match item.kind {
+                ty::AssocKind::Type => false,
+                ty::AssocKind::Fn | ty::AssocKind::Const => true,
+            },
+        }
+        // FIXME -- check for types that deref to `Self`,
+        // like `Rc<Self>` and so on.
+        //
+        // Note also that the current code will break if this type
+        // includes any of the type parameters defined on the method
+        // -- but this could be overcome.
+    }
+
+    fn record_static_candidate(&mut self, source: CandidateSource) {
+        self.static_candidates.push(source);
+    }
+
+    #[instrument(level = "debug", skip(self))]
+    fn xform_self_ty(
+        &self,
+        item: &ty::AssocItem,
+        impl_ty: Ty<'tcx>,
+        substs: SubstsRef<'tcx>,
+    ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
+        if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
+            let sig = self.xform_method_sig(item.def_id, substs);
+            (sig.inputs()[0], Some(sig.output()))
+        } else {
+            (impl_ty, None)
+        }
+    }
+
+    #[instrument(level = "debug", skip(self))]
+    fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
+        let fn_sig = self.tcx.bound_fn_sig(method);
+        debug!(?fn_sig);
+
+        assert!(!substs.has_escaping_bound_vars());
+
+        // It is possible for type parameters or early-bound lifetimes
+        // to appear in the signature of `self`. The substitutions we
+        // are given do not include type/lifetime parameters for the
+        // method yet. So create fresh variables here for those too,
+        // if there are any.
+        let generics = self.tcx.generics_of(method);
+        assert_eq!(substs.len(), generics.parent_count as usize);
+
+        let xform_fn_sig = if generics.params.is_empty() {
+            fn_sig.subst(self.tcx, substs)
+        } else {
+            let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
+                let i = param.index as usize;
+                if i < substs.len() {
+                    substs[i]
+                } else {
+                    match param.kind {
+                        GenericParamDefKind::Lifetime => {
+                            // In general, during probe we erase regions.
+                            self.tcx.lifetimes.re_erased.into()
+                        }
+                        GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
+                            self.var_for_def(self.span, param)
+                        }
+                    }
+                }
+            });
+            fn_sig.subst(self.tcx, substs)
+        };
+
+        self.erase_late_bound_regions(xform_fn_sig)
+    }
+
+    /// Gets the type of an impl and generate substitutions with inference vars.
+    fn impl_ty_and_substs(
+        &self,
+        impl_def_id: DefId,
+    ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
+        (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
+    }
+
+    fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
+        InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
+            GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
+            GenericParamDefKind::Type { .. } => self
+                .next_ty_var(TypeVariableOrigin {
+                    kind: TypeVariableOriginKind::SubstitutionPlaceholder,
+                    span: self.tcx.def_span(def_id),
+                })
+                .into(),
+            GenericParamDefKind::Const { .. } => {
+                let span = self.tcx.def_span(def_id);
+                let origin = ConstVariableOrigin {
+                    kind: ConstVariableOriginKind::SubstitutionPlaceholder,
+                    span,
+                };
+                self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
+            }
+        })
+    }
+
+    /// Replaces late-bound-regions bound by `value` with `'static` using
+    /// `ty::erase_late_bound_regions`.
+    ///
+    /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
+    /// method matching. It is reasonable during the probe phase because we don't consider region
+    /// relationships at all. Therefore, we can just replace all the region variables with 'static
+    /// rather than creating fresh region variables. This is nice for two reasons:
+    ///
+    /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
+    ///    particular method call, it winds up creating fewer types overall, which helps for memory
+    ///    usage. (Admittedly, this is a rather small effect, though measurable.)
+    ///
+    /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
+    ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
+    ///    regions with actual region variables as is proper, we'd have to ensure that the same
+    ///    region got replaced with the same variable, which requires a bit more coordination
+    ///    and/or tracking the substitution and
+    ///    so forth.
+    fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        self.tcx.erase_late_bound_regions(value)
+    }
+
+    /// Finds the method with the appropriate name (or return type, as the case may be). If
+    /// `allow_similar_names` is set, find methods with close-matching names.
+    // The length of the returned iterator is nearly always 0 or 1 and this
+    // method is fairly hot.
+    fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
+        if let Some(name) = self.method_name {
+            if self.allow_similar_names {
+                let max_dist = max(name.as_str().len(), 3) / 3;
+                self.tcx
+                    .associated_items(def_id)
+                    .in_definition_order()
+                    .filter(|x| {
+                        if x.kind.namespace() != Namespace::ValueNS {
+                            return false;
+                        }
+                        match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
+                        {
+                            Some(d) => d > 0,
+                            None => false,
+                        }
+                    })
+                    .copied()
+                    .collect()
+            } else {
+                self.fcx
+                    .associated_value(def_id, name)
+                    .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
+            }
+        } else {
+            self.tcx.associated_items(def_id).in_definition_order().copied().collect()
+        }
+    }
+}
+
+impl<'tcx> Candidate<'tcx> {
+    fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
+        Pick {
+            item: self.item,
+            kind: match self.kind {
+                InherentImplCandidate(..) => InherentImplPick,
+                ObjectCandidate => ObjectPick,
+                TraitCandidate(_) => TraitPick,
+                WhereClauseCandidate(ref trait_ref) => {
+                    // Only trait derived from where-clauses should
+                    // appear here, so they should not contain any
+                    // inference variables or other artifacts. This
+                    // means they are safe to put into the
+                    // `WhereClausePick`.
+                    assert!(
+                        !trait_ref.skip_binder().substs.needs_infer()
+                            && !trait_ref.skip_binder().substs.has_placeholders()
+                    );
+
+                    WhereClausePick(*trait_ref)
+                }
+            },
+            import_ids: self.import_ids.clone(),
+            autoderefs: 0,
+            autoref_or_ptr_adjustment: None,
+            self_ty,
+        }
+    }
+}