about summary refs log tree commit diff
path: root/compiler/rustc_hir_analysis/src/check/writeback.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/check/writeback.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/check/writeback.rs802
1 files changed, 802 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/check/writeback.rs b/compiler/rustc_hir_analysis/src/check/writeback.rs
new file mode 100644
index 00000000000..680dbf7037f
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/writeback.rs
@@ -0,0 +1,802 @@
+// Type resolution: the phase that finds all the types in the AST with
+// unresolved type variables and replaces "ty_var" types with their
+// substitutions.
+
+use crate::check::FnCtxt;
+use hir::def_id::LocalDefId;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir as hir;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
+use rustc_infer::infer::InferCtxt;
+use rustc_middle::hir::place::Place as HirPlace;
+use rustc_middle::mir::FakeReadCause;
+use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast};
+use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
+use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable};
+use rustc_middle::ty::TypeckResults;
+use rustc_middle::ty::{self, ClosureSizeProfileData, Ty, TyCtxt};
+use rustc_span::symbol::sym;
+use rustc_span::Span;
+
+use std::mem;
+use std::ops::ControlFlow;
+
+///////////////////////////////////////////////////////////////////////////
+// Entry point
+
+// During type inference, partially inferred types are
+// represented using Type variables (ty::Infer). These don't appear in
+// the final TypeckResults since all of the types should have been
+// inferred once typeck is done.
+// When type inference is running however, having to update the typeck
+// typeck results every time a new type is inferred would be unreasonably slow,
+// so instead all of the replacement happens at the end in
+// resolve_type_vars_in_body, which creates a new TypeTables which
+// doesn't contain any inference types.
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    pub fn resolve_type_vars_in_body(
+        &self,
+        body: &'tcx hir::Body<'tcx>,
+    ) -> &'tcx ty::TypeckResults<'tcx> {
+        let item_id = self.tcx.hir().body_owner(body.id());
+        let item_def_id = self.tcx.hir().local_def_id(item_id);
+
+        // This attribute causes us to dump some writeback information
+        // in the form of errors, which is used for unit tests.
+        let rustc_dump_user_substs =
+            self.tcx.has_attr(item_def_id.to_def_id(), sym::rustc_dump_user_substs);
+
+        let mut wbcx = WritebackCx::new(self, body, rustc_dump_user_substs);
+        for param in body.params {
+            wbcx.visit_node_id(param.pat.span, param.hir_id);
+        }
+        // Type only exists for constants and statics, not functions.
+        match self.tcx.hir().body_owner_kind(item_def_id) {
+            hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) => {
+                wbcx.visit_node_id(body.value.span, item_id);
+            }
+            hir::BodyOwnerKind::Closure | hir::BodyOwnerKind::Fn => (),
+        }
+        wbcx.visit_body(body);
+        wbcx.visit_min_capture_map();
+        wbcx.eval_closure_size();
+        wbcx.visit_fake_reads_map();
+        wbcx.visit_closures();
+        wbcx.visit_liberated_fn_sigs();
+        wbcx.visit_fru_field_types();
+        wbcx.visit_opaque_types();
+        wbcx.visit_coercion_casts();
+        wbcx.visit_user_provided_tys();
+        wbcx.visit_user_provided_sigs();
+        wbcx.visit_generator_interior_types();
+
+        wbcx.typeck_results.rvalue_scopes =
+            mem::take(&mut self.typeck_results.borrow_mut().rvalue_scopes);
+
+        let used_trait_imports =
+            mem::take(&mut self.typeck_results.borrow_mut().used_trait_imports);
+        debug!("used_trait_imports({:?}) = {:?}", item_def_id, used_trait_imports);
+        wbcx.typeck_results.used_trait_imports = used_trait_imports;
+
+        wbcx.typeck_results.treat_byte_string_as_slice =
+            mem::take(&mut self.typeck_results.borrow_mut().treat_byte_string_as_slice);
+
+        if self.is_tainted_by_errors() {
+            // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
+            wbcx.typeck_results.tainted_by_errors =
+                Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
+        }
+
+        debug!("writeback: typeck results for {:?} are {:#?}", item_def_id, wbcx.typeck_results);
+
+        self.tcx.arena.alloc(wbcx.typeck_results)
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// The Writeback context. This visitor walks the HIR, checking the
+// fn-specific typeck results to find references to types or regions. It
+// resolves those regions to remove inference variables and writes the
+// final result back into the master typeck results in the tcx. Here and
+// there, it applies a few ad-hoc checks that were not convenient to
+// do elsewhere.
+
+struct WritebackCx<'cx, 'tcx> {
+    fcx: &'cx FnCtxt<'cx, 'tcx>,
+
+    typeck_results: ty::TypeckResults<'tcx>,
+
+    body: &'tcx hir::Body<'tcx>,
+
+    rustc_dump_user_substs: bool,
+}
+
+impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
+    fn new(
+        fcx: &'cx FnCtxt<'cx, 'tcx>,
+        body: &'tcx hir::Body<'tcx>,
+        rustc_dump_user_substs: bool,
+    ) -> WritebackCx<'cx, 'tcx> {
+        let owner = body.id().hir_id.owner;
+
+        WritebackCx {
+            fcx,
+            typeck_results: ty::TypeckResults::new(owner),
+            body,
+            rustc_dump_user_substs,
+        }
+    }
+
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.fcx.tcx
+    }
+
+    fn write_ty_to_typeck_results(&mut self, hir_id: hir::HirId, ty: Ty<'tcx>) {
+        debug!("write_ty_to_typeck_results({:?}, {:?})", hir_id, ty);
+        assert!(!ty.needs_infer() && !ty.has_placeholders() && !ty.has_free_regions());
+        self.typeck_results.node_types_mut().insert(hir_id, ty);
+    }
+
+    // Hacky hack: During type-checking, we treat *all* operators
+    // as potentially overloaded. But then, during writeback, if
+    // we observe that something like `a+b` is (known to be)
+    // operating on scalars, we clear the overload.
+    fn fix_scalar_builtin_expr(&mut self, e: &hir::Expr<'_>) {
+        match e.kind {
+            hir::ExprKind::Unary(hir::UnOp::Neg | hir::UnOp::Not, inner) => {
+                let inner_ty = self.fcx.node_ty(inner.hir_id);
+                let inner_ty = self.fcx.resolve_vars_if_possible(inner_ty);
+
+                if inner_ty.is_scalar() {
+                    let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+                    typeck_results.node_substs_mut().remove(e.hir_id);
+                }
+            }
+            hir::ExprKind::Binary(ref op, lhs, rhs) | hir::ExprKind::AssignOp(ref op, lhs, rhs) => {
+                let lhs_ty = self.fcx.node_ty(lhs.hir_id);
+                let lhs_ty = self.fcx.resolve_vars_if_possible(lhs_ty);
+
+                let rhs_ty = self.fcx.node_ty(rhs.hir_id);
+                let rhs_ty = self.fcx.resolve_vars_if_possible(rhs_ty);
+
+                if lhs_ty.is_scalar() && rhs_ty.is_scalar() {
+                    let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+                    typeck_results.node_substs_mut().remove(e.hir_id);
+
+                    match e.kind {
+                        hir::ExprKind::Binary(..) => {
+                            if !op.node.is_by_value() {
+                                let mut adjustments = typeck_results.adjustments_mut();
+                                if let Some(a) = adjustments.get_mut(lhs.hir_id) {
+                                    a.pop();
+                                }
+                                if let Some(a) = adjustments.get_mut(rhs.hir_id) {
+                                    a.pop();
+                                }
+                            }
+                        }
+                        hir::ExprKind::AssignOp(..)
+                            if let Some(a) = typeck_results.adjustments_mut().get_mut(lhs.hir_id) =>
+                        {
+                            a.pop();
+                        }
+                        _ => {}
+                    }
+                }
+            }
+            _ => {}
+        }
+    }
+
+    // (ouz-a 1005988): Normally `[T] : std::ops::Index<usize>` should be normalized
+    // into [T] but currently `Where` clause stops the normalization process for it,
+    // here we compare types of expr and base in a code without `Where` clause they would be equal
+    // if they are not we don't modify the expr, hence we bypass the ICE
+    fn is_builtin_index(
+        &mut self,
+        typeck_results: &TypeckResults<'tcx>,
+        e: &hir::Expr<'_>,
+        base_ty: Ty<'tcx>,
+        index_ty: Ty<'tcx>,
+    ) -> bool {
+        if let Some(elem_ty) = base_ty.builtin_index() {
+            let Some(exp_ty) = typeck_results.expr_ty_opt(e) else {return false;};
+            let resolved_exp_ty = self.resolve(exp_ty, &e.span);
+
+            elem_ty == resolved_exp_ty && index_ty == self.fcx.tcx.types.usize
+        } else {
+            false
+        }
+    }
+
+    // Similar to operators, indexing is always assumed to be overloaded
+    // Here, correct cases where an indexing expression can be simplified
+    // to use builtin indexing because the index type is known to be
+    // usize-ish
+    fn fix_index_builtin_expr(&mut self, e: &hir::Expr<'_>) {
+        if let hir::ExprKind::Index(ref base, ref index) = e.kind {
+            let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+
+            // All valid indexing looks like this; might encounter non-valid indexes at this point.
+            let base_ty = typeck_results
+                .expr_ty_adjusted_opt(base)
+                .map(|t| self.fcx.resolve_vars_if_possible(t).kind());
+            if base_ty.is_none() {
+                // When encountering `return [0][0]` outside of a `fn` body we can encounter a base
+                // that isn't in the type table. We assume more relevant errors have already been
+                // emitted, so we delay an ICE if none have. (#64638)
+                self.tcx().sess.delay_span_bug(e.span, &format!("bad base: `{:?}`", base));
+            }
+            if let Some(ty::Ref(_, base_ty, _)) = base_ty {
+                let index_ty = typeck_results.expr_ty_adjusted_opt(index).unwrap_or_else(|| {
+                    // When encountering `return [0][0]` outside of a `fn` body we would attempt
+                    // to access an nonexistent index. We assume that more relevant errors will
+                    // already have been emitted, so we only gate on this with an ICE if no
+                    // error has been emitted. (#64638)
+                    self.fcx.tcx.ty_error_with_message(
+                        e.span,
+                        &format!("bad index {:?} for base: `{:?}`", index, base),
+                    )
+                });
+                let index_ty = self.fcx.resolve_vars_if_possible(index_ty);
+                let resolved_base_ty = self.resolve(*base_ty, &base.span);
+
+                if self.is_builtin_index(&typeck_results, e, resolved_base_ty, index_ty) {
+                    // Remove the method call record
+                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+                    typeck_results.node_substs_mut().remove(e.hir_id);
+
+                    if let Some(a) = typeck_results.adjustments_mut().get_mut(base.hir_id) {
+                        // Discard the need for a mutable borrow
+
+                        // Extra adjustment made when indexing causes a drop
+                        // of size information - we need to get rid of it
+                        // Since this is "after" the other adjustment to be
+                        // discarded, we do an extra `pop()`
+                        if let Some(Adjustment {
+                            kind: Adjust::Pointer(PointerCast::Unsize), ..
+                        }) = a.pop()
+                        {
+                            // So the borrow discard actually happens here
+                            a.pop();
+                        }
+                    }
+                }
+            }
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Impl of Visitor for Resolver
+//
+// This is the master code which walks the AST. It delegates most of
+// the heavy lifting to the generic visit and resolve functions
+// below. In general, a function is made into a `visitor` if it must
+// traffic in node-ids or update typeck results in the type context etc.
+
+impl<'cx, 'tcx> Visitor<'tcx> for WritebackCx<'cx, 'tcx> {
+    fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
+        self.fix_scalar_builtin_expr(e);
+        self.fix_index_builtin_expr(e);
+
+        match e.kind {
+            hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
+                let body = self.fcx.tcx.hir().body(body);
+                for param in body.params {
+                    self.visit_node_id(e.span, param.hir_id);
+                }
+
+                self.visit_body(body);
+            }
+            hir::ExprKind::Struct(_, fields, _) => {
+                for field in fields {
+                    self.visit_field_id(field.hir_id);
+                }
+            }
+            hir::ExprKind::Field(..) => {
+                self.visit_field_id(e.hir_id);
+            }
+            hir::ExprKind::ConstBlock(anon_const) => {
+                self.visit_node_id(e.span, anon_const.hir_id);
+
+                let body = self.tcx().hir().body(anon_const.body);
+                self.visit_body(body);
+            }
+            _ => {}
+        }
+
+        self.visit_node_id(e.span, e.hir_id);
+        intravisit::walk_expr(self, e);
+    }
+
+    fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
+        match &p.kind {
+            hir::GenericParamKind::Lifetime { .. } => {
+                // Nothing to write back here
+            }
+            hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
+                self.tcx().sess.delay_span_bug(p.span, format!("unexpected generic param: {p:?}"));
+            }
+        }
+    }
+
+    fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
+        self.visit_node_id(b.span, b.hir_id);
+        intravisit::walk_block(self, b);
+    }
+
+    fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
+        match p.kind {
+            hir::PatKind::Binding(..) => {
+                let typeck_results = self.fcx.typeck_results.borrow();
+                if let Some(bm) =
+                    typeck_results.extract_binding_mode(self.tcx().sess, p.hir_id, p.span)
+                {
+                    self.typeck_results.pat_binding_modes_mut().insert(p.hir_id, bm);
+                }
+            }
+            hir::PatKind::Struct(_, fields, _) => {
+                for field in fields {
+                    self.visit_field_id(field.hir_id);
+                }
+            }
+            _ => {}
+        };
+
+        self.visit_pat_adjustments(p.span, p.hir_id);
+
+        self.visit_node_id(p.span, p.hir_id);
+        intravisit::walk_pat(self, p);
+    }
+
+    fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) {
+        intravisit::walk_local(self, l);
+        let var_ty = self.fcx.local_ty(l.span, l.hir_id).decl_ty;
+        let var_ty = self.resolve(var_ty, &l.span);
+        self.write_ty_to_typeck_results(l.hir_id, var_ty);
+    }
+
+    fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
+        intravisit::walk_ty(self, hir_ty);
+        let ty = self.fcx.node_ty(hir_ty.hir_id);
+        let ty = self.resolve(ty, &hir_ty.span);
+        self.write_ty_to_typeck_results(hir_ty.hir_id, ty);
+    }
+
+    fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
+        intravisit::walk_inf(self, inf);
+        // Ignore cases where the inference is a const.
+        if let Some(ty) = self.fcx.node_ty_opt(inf.hir_id) {
+            let ty = self.resolve(ty, &inf.span);
+            self.write_ty_to_typeck_results(inf.hir_id, ty);
+        }
+    }
+}
+
+impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
+    fn eval_closure_size(&mut self) {
+        let mut res: FxHashMap<LocalDefId, ClosureSizeProfileData<'tcx>> = Default::default();
+        for (&closure_def_id, data) in self.fcx.typeck_results.borrow().closure_size_eval.iter() {
+            let closure_hir_id = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);
+
+            let data = self.resolve(*data, &closure_hir_id);
+
+            res.insert(closure_def_id, data);
+        }
+
+        self.typeck_results.closure_size_eval = res;
+    }
+    fn visit_min_capture_map(&mut self) {
+        let mut min_captures_wb = ty::MinCaptureInformationMap::with_capacity_and_hasher(
+            self.fcx.typeck_results.borrow().closure_min_captures.len(),
+            Default::default(),
+        );
+        for (&closure_def_id, root_min_captures) in
+            self.fcx.typeck_results.borrow().closure_min_captures.iter()
+        {
+            let mut root_var_map_wb = ty::RootVariableMinCaptureList::with_capacity_and_hasher(
+                root_min_captures.len(),
+                Default::default(),
+            );
+            for (var_hir_id, min_list) in root_min_captures.iter() {
+                let min_list_wb = min_list
+                    .iter()
+                    .map(|captured_place| {
+                        let locatable = captured_place.info.path_expr_id.unwrap_or_else(|| {
+                            self.tcx().hir().local_def_id_to_hir_id(closure_def_id)
+                        });
+
+                        self.resolve(captured_place.clone(), &locatable)
+                    })
+                    .collect();
+                root_var_map_wb.insert(*var_hir_id, min_list_wb);
+            }
+            min_captures_wb.insert(closure_def_id, root_var_map_wb);
+        }
+
+        self.typeck_results.closure_min_captures = min_captures_wb;
+    }
+
+    fn visit_fake_reads_map(&mut self) {
+        let mut resolved_closure_fake_reads: FxHashMap<
+            LocalDefId,
+            Vec<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>,
+        > = Default::default();
+        for (&closure_def_id, fake_reads) in
+            self.fcx.typeck_results.borrow().closure_fake_reads.iter()
+        {
+            let mut resolved_fake_reads = Vec::<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>::new();
+            for (place, cause, hir_id) in fake_reads.iter() {
+                let locatable = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);
+
+                let resolved_fake_read = self.resolve(place.clone(), &locatable);
+                resolved_fake_reads.push((resolved_fake_read, *cause, *hir_id));
+            }
+            resolved_closure_fake_reads.insert(closure_def_id, resolved_fake_reads);
+        }
+        self.typeck_results.closure_fake_reads = resolved_closure_fake_reads;
+    }
+
+    fn visit_closures(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+        let common_hir_owner = fcx_typeck_results.hir_owner;
+
+        for (id, origin) in fcx_typeck_results.closure_kind_origins().iter() {
+            let hir_id = hir::HirId { owner: common_hir_owner, local_id: *id };
+            let place_span = origin.0;
+            let place = self.resolve(origin.1.clone(), &place_span);
+            self.typeck_results.closure_kind_origins_mut().insert(hir_id, (place_span, place));
+        }
+    }
+
+    fn visit_coercion_casts(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        let fcx_coercion_casts = fcx_typeck_results.coercion_casts();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+
+        for local_id in fcx_coercion_casts {
+            self.typeck_results.set_coercion_cast(*local_id);
+        }
+    }
+
+    fn visit_user_provided_tys(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+        let common_hir_owner = fcx_typeck_results.hir_owner;
+
+        let mut errors_buffer = Vec::new();
+        for (&local_id, c_ty) in fcx_typeck_results.user_provided_types().iter() {
+            let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+
+            if cfg!(debug_assertions) && c_ty.needs_infer() {
+                span_bug!(
+                    hir_id.to_span(self.fcx.tcx),
+                    "writeback: `{:?}` has inference variables",
+                    c_ty
+                );
+            };
+
+            self.typeck_results.user_provided_types_mut().insert(hir_id, *c_ty);
+
+            if let ty::UserType::TypeOf(_, user_substs) = c_ty.value {
+                if self.rustc_dump_user_substs {
+                    // This is a unit-testing mechanism.
+                    let span = self.tcx().hir().span(hir_id);
+                    // We need to buffer the errors in order to guarantee a consistent
+                    // order when emitting them.
+                    let err = self
+                        .tcx()
+                        .sess
+                        .struct_span_err(span, &format!("user substs: {:?}", user_substs));
+                    err.buffer(&mut errors_buffer);
+                }
+            }
+        }
+
+        if !errors_buffer.is_empty() {
+            errors_buffer.sort_by_key(|diag| diag.span.primary_span());
+            for mut diag in errors_buffer {
+                self.tcx().sess.diagnostic().emit_diagnostic(&mut diag);
+            }
+        }
+    }
+
+    fn visit_user_provided_sigs(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+
+        for (&def_id, c_sig) in fcx_typeck_results.user_provided_sigs.iter() {
+            if cfg!(debug_assertions) && c_sig.needs_infer() {
+                span_bug!(
+                    self.fcx.tcx.hir().span_if_local(def_id).unwrap(),
+                    "writeback: `{:?}` has inference variables",
+                    c_sig
+                );
+            };
+
+            self.typeck_results.user_provided_sigs.insert(def_id, *c_sig);
+        }
+    }
+
+    fn visit_generator_interior_types(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+        self.typeck_results.generator_interior_types =
+            fcx_typeck_results.generator_interior_types.clone();
+    }
+
+    #[instrument(skip(self), level = "debug")]
+    fn visit_opaque_types(&mut self) {
+        let opaque_types =
+            self.fcx.infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+        for (opaque_type_key, decl) in opaque_types {
+            let hidden_type = match decl.origin {
+                hir::OpaqueTyOrigin::FnReturn(_) | hir::OpaqueTyOrigin::AsyncFn(_) => {
+                    let ty = self.resolve(decl.hidden_type.ty, &decl.hidden_type.span);
+                    struct RecursionChecker {
+                        def_id: LocalDefId,
+                    }
+                    impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker {
+                        type BreakTy = ();
+                        fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+                            if let ty::Opaque(def_id, _) = *t.kind() {
+                                if def_id == self.def_id.to_def_id() {
+                                    return ControlFlow::Break(());
+                                }
+                            }
+                            t.super_visit_with(self)
+                        }
+                    }
+                    if ty
+                        .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id })
+                        .is_break()
+                    {
+                        return;
+                    }
+                    Some(ty)
+                }
+                hir::OpaqueTyOrigin::TyAlias => None,
+            };
+            self.typeck_results.concrete_opaque_types.insert(opaque_type_key.def_id, hidden_type);
+        }
+    }
+
+    fn visit_field_id(&mut self, hir_id: hir::HirId) {
+        if let Some(index) = self.fcx.typeck_results.borrow_mut().field_indices_mut().remove(hir_id)
+        {
+            self.typeck_results.field_indices_mut().insert(hir_id, index);
+        }
+    }
+
+    #[instrument(skip(self, span), level = "debug")]
+    fn visit_node_id(&mut self, span: Span, hir_id: hir::HirId) {
+        // Export associated path extensions and method resolutions.
+        if let Some(def) =
+            self.fcx.typeck_results.borrow_mut().type_dependent_defs_mut().remove(hir_id)
+        {
+            self.typeck_results.type_dependent_defs_mut().insert(hir_id, def);
+        }
+
+        // Resolve any borrowings for the node with id `node_id`
+        self.visit_adjustments(span, hir_id);
+
+        // Resolve the type of the node with id `node_id`
+        let n_ty = self.fcx.node_ty(hir_id);
+        let n_ty = self.resolve(n_ty, &span);
+        self.write_ty_to_typeck_results(hir_id, n_ty);
+        debug!(?n_ty);
+
+        // Resolve any substitutions
+        if let Some(substs) = self.fcx.typeck_results.borrow().node_substs_opt(hir_id) {
+            let substs = self.resolve(substs, &span);
+            debug!("write_substs_to_tcx({:?}, {:?})", hir_id, substs);
+            assert!(!substs.needs_infer() && !substs.has_placeholders());
+            self.typeck_results.node_substs_mut().insert(hir_id, substs);
+        }
+    }
+
+    #[instrument(skip(self, span), level = "debug")]
+    fn visit_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
+        let adjustment = self.fcx.typeck_results.borrow_mut().adjustments_mut().remove(hir_id);
+        match adjustment {
+            None => {
+                debug!("no adjustments for node");
+            }
+
+            Some(adjustment) => {
+                let resolved_adjustment = self.resolve(adjustment, &span);
+                debug!(?resolved_adjustment);
+                self.typeck_results.adjustments_mut().insert(hir_id, resolved_adjustment);
+            }
+        }
+    }
+
+    #[instrument(skip(self, span), level = "debug")]
+    fn visit_pat_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
+        let adjustment = self.fcx.typeck_results.borrow_mut().pat_adjustments_mut().remove(hir_id);
+        match adjustment {
+            None => {
+                debug!("no pat_adjustments for node");
+            }
+
+            Some(adjustment) => {
+                let resolved_adjustment = self.resolve(adjustment, &span);
+                debug!(?resolved_adjustment);
+                self.typeck_results.pat_adjustments_mut().insert(hir_id, resolved_adjustment);
+            }
+        }
+    }
+
+    fn visit_liberated_fn_sigs(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+        let common_hir_owner = fcx_typeck_results.hir_owner;
+
+        for (&local_id, &fn_sig) in fcx_typeck_results.liberated_fn_sigs().iter() {
+            let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+            let fn_sig = self.resolve(fn_sig, &hir_id);
+            self.typeck_results.liberated_fn_sigs_mut().insert(hir_id, fn_sig);
+        }
+    }
+
+    fn visit_fru_field_types(&mut self) {
+        let fcx_typeck_results = self.fcx.typeck_results.borrow();
+        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+        let common_hir_owner = fcx_typeck_results.hir_owner;
+
+        for (&local_id, ftys) in fcx_typeck_results.fru_field_types().iter() {
+            let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+            let ftys = self.resolve(ftys.clone(), &hir_id);
+            self.typeck_results.fru_field_types_mut().insert(hir_id, ftys);
+        }
+    }
+
+    fn resolve<T>(&mut self, x: T, span: &dyn Locatable) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        let mut resolver = Resolver::new(self.fcx, span, self.body);
+        let x = x.fold_with(&mut resolver);
+        if cfg!(debug_assertions) && x.needs_infer() {
+            span_bug!(span.to_span(self.fcx.tcx), "writeback: `{:?}` has inference variables", x);
+        }
+
+        // We may have introduced e.g. `ty::Error`, if inference failed, make sure
+        // to mark the `TypeckResults` as tainted in that case, so that downstream
+        // users of the typeck results don't produce extra errors, or worse, ICEs.
+        if resolver.replaced_with_error {
+            // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
+            self.typeck_results.tainted_by_errors =
+                Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
+        }
+
+        x
+    }
+}
+
+pub(crate) trait Locatable {
+    fn to_span(&self, tcx: TyCtxt<'_>) -> Span;
+}
+
+impl Locatable for Span {
+    fn to_span(&self, _: TyCtxt<'_>) -> Span {
+        *self
+    }
+}
+
+impl Locatable for hir::HirId {
+    fn to_span(&self, tcx: TyCtxt<'_>) -> Span {
+        tcx.hir().span(*self)
+    }
+}
+
+/// The Resolver. This is the type folding engine that detects
+/// unresolved types and so forth.
+struct Resolver<'cx, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    infcx: &'cx InferCtxt<'cx, 'tcx>,
+    span: &'cx dyn Locatable,
+    body: &'tcx hir::Body<'tcx>,
+
+    /// Set to `true` if any `Ty` or `ty::Const` had to be replaced with an `Error`.
+    replaced_with_error: bool,
+}
+
+impl<'cx, 'tcx> Resolver<'cx, 'tcx> {
+    fn new(
+        fcx: &'cx FnCtxt<'cx, 'tcx>,
+        span: &'cx dyn Locatable,
+        body: &'tcx hir::Body<'tcx>,
+    ) -> Resolver<'cx, 'tcx> {
+        Resolver { tcx: fcx.tcx, infcx: fcx, span, body, replaced_with_error: false }
+    }
+
+    fn report_error(&self, p: impl Into<ty::GenericArg<'tcx>>) {
+        if !self.tcx.sess.has_errors().is_some() {
+            self.infcx
+                .emit_inference_failure_err(
+                    Some(self.body.id()),
+                    self.span.to_span(self.tcx),
+                    p.into(),
+                    E0282,
+                    false,
+                )
+                .emit();
+        }
+    }
+}
+
+struct EraseEarlyRegions<'tcx> {
+    tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> TypeFolder<'tcx> for EraseEarlyRegions<'tcx> {
+    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+        if ty.has_type_flags(ty::TypeFlags::HAS_FREE_REGIONS) {
+            ty.super_fold_with(self)
+        } else {
+            ty
+        }
+    }
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        if r.is_late_bound() { r } else { self.tcx.lifetimes.re_erased }
+    }
+}
+
+impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> {
+    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+        match self.infcx.fully_resolve(t) {
+            Ok(t) => {
+                // Do not anonymize late-bound regions
+                // (e.g. keep `for<'a>` named `for<'a>`).
+                // This allows NLL to generate error messages that
+                // refer to the higher-ranked lifetime names written by the user.
+                EraseEarlyRegions { tcx: self.tcx }.fold_ty(t)
+            }
+            Err(_) => {
+                debug!("Resolver::fold_ty: input type `{:?}` not fully resolvable", t);
+                self.report_error(t);
+                self.replaced_with_error = true;
+                self.tcx().ty_error()
+            }
+        }
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        debug_assert!(!r.is_late_bound(), "Should not be resolving bound region.");
+        self.tcx.lifetimes.re_erased
+    }
+
+    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
+        match self.infcx.fully_resolve(ct) {
+            Ok(ct) => self.tcx.erase_regions(ct),
+            Err(_) => {
+                debug!("Resolver::fold_const: input const `{:?}` not fully resolvable", ct);
+                self.report_error(ct);
+                self.replaced_with_error = true;
+                self.tcx().const_error(ct.ty())
+            }
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// During type check, we store promises with the result of trait
+// lookup rather than the actual results (because the results are not
+// necessarily available immediately). These routines unwind the
+// promises. It is expected that we will have already reported any
+// errors that may be encountered, so if the promises store an error,
+// a dummy result is returned.