about summary refs log tree commit diff
path: root/compiler/rustc_hir_analysis/src/collect.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/collect.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/collect.rs3403
1 files changed, 3403 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/collect.rs b/compiler/rustc_hir_analysis/src/collect.rs
new file mode 100644
index 00000000000..e7deae2b557
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect.rs
@@ -0,0 +1,3403 @@
+//! "Collection" is the process of determining the type and other external
+//! details of each item in Rust. Collection is specifically concerned
+//! with *inter-procedural* things -- for example, for a function
+//! definition, collection will figure out the type and signature of the
+//! function, but it will not visit the *body* of the function in any way,
+//! nor examine type annotations on local variables (that's the job of
+//! type *checking*).
+//!
+//! Collecting is ultimately defined by a bundle of queries that
+//! inquire after various facts about the items in the crate (e.g.,
+//! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
+//! for the full set.
+//!
+//! At present, however, we do run collection across all items in the
+//! crate as a kind of pass. This should eventually be factored away.
+
+use crate::astconv::AstConv;
+use crate::bounds::Bounds;
+use crate::check::intrinsic::intrinsic_operation_unsafety;
+use crate::constrained_generic_params as cgp;
+use crate::errors;
+use crate::middle::resolve_lifetime as rl;
+use rustc_ast as ast;
+use rustc_ast::{MetaItemKind, NestedMetaItem};
+use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
+use rustc_data_structures::captures::Captures;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
+use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, StashKey};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind};
+use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::weak_lang_items;
+use rustc_hir::{GenericParamKind, HirId, Node};
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
+use rustc_middle::mir::mono::Linkage;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::util::Discr;
+use rustc_middle::ty::util::IntTypeExt;
+use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
+use rustc_middle::ty::{ReprOptions, ToPredicate};
+use rustc_session::lint;
+use rustc_session::parse::feature_err;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::spec::{abi, SanitizerSet};
+use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
+use std::iter;
+
+mod item_bounds;
+mod type_of;
+
+#[derive(Debug)]
+struct OnlySelfBounds(bool);
+
+///////////////////////////////////////////////////////////////////////////
+// Main entry point
+
+fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+    tcx.hir().visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
+}
+
+pub fn provide(providers: &mut Providers) {
+    *providers = Providers {
+        opt_const_param_of: type_of::opt_const_param_of,
+        type_of: type_of::type_of,
+        item_bounds: item_bounds::item_bounds,
+        explicit_item_bounds: item_bounds::explicit_item_bounds,
+        generics_of,
+        predicates_of,
+        predicates_defined_on,
+        explicit_predicates_of,
+        super_predicates_of,
+        super_predicates_that_define_assoc_type,
+        trait_explicit_predicates_and_bounds,
+        type_param_predicates,
+        trait_def,
+        adt_def,
+        fn_sig,
+        impl_trait_ref,
+        impl_polarity,
+        is_foreign_item,
+        generator_kind,
+        codegen_fn_attrs,
+        asm_target_features,
+        collect_mod_item_types,
+        should_inherit_track_caller,
+        ..*providers
+    };
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+/// Context specific to some particular item. This is what implements
+/// [`AstConv`].
+///
+/// # `ItemCtxt` vs `FnCtxt`
+///
+/// `ItemCtxt` is primarily used to type-check item signatures and lower them
+/// from HIR to their [`ty::Ty`] representation, which is exposed using [`AstConv`].
+/// It's also used for the bodies of items like structs where the body (the fields)
+/// are just signatures.
+///
+/// This is in contrast to [`FnCtxt`], which is used to type-check bodies of
+/// functions, closures, and `const`s -- anywhere that expressions and statements show up.
+///
+/// An important thing to note is that `ItemCtxt` does no inference -- it has no [`InferCtxt`] --
+/// while `FnCtxt` does do inference.
+///
+/// [`FnCtxt`]: crate::check::FnCtxt
+/// [`InferCtxt`]: rustc_infer::infer::InferCtxt
+///
+/// # Trait predicates
+///
+/// `ItemCtxt` has information about the predicates that are defined
+/// on the trait. Unfortunately, this predicate information is
+/// available in various different forms at various points in the
+/// process. So we can't just store a pointer to e.g., the AST or the
+/// parsed ty form, we have to be more flexible. To this end, the
+/// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
+/// `get_type_parameter_bounds` requests, drawing the information from
+/// the AST (`hir::Generics`), recursively.
+pub struct ItemCtxt<'tcx> {
+    tcx: TyCtxt<'tcx>,
+    item_def_id: DefId,
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+#[derive(Default)]
+pub(crate) struct HirPlaceholderCollector(pub(crate) Vec<Span>);
+
+impl<'v> Visitor<'v> for HirPlaceholderCollector {
+    fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
+        if let hir::TyKind::Infer = t.kind {
+            self.0.push(t.span);
+        }
+        intravisit::walk_ty(self, t)
+    }
+    fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
+        match generic_arg {
+            hir::GenericArg::Infer(inf) => {
+                self.0.push(inf.span);
+                intravisit::walk_inf(self, inf);
+            }
+            hir::GenericArg::Type(t) => self.visit_ty(t),
+            _ => {}
+        }
+    }
+    fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
+        if let &hir::ArrayLen::Infer(_, span) = length {
+            self.0.push(span);
+        }
+        intravisit::walk_array_len(self, length)
+    }
+}
+
+struct CollectItemTypesVisitor<'tcx> {
+    tcx: TyCtxt<'tcx>,
+}
+
+/// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
+/// and suggest adding type parameters in the appropriate place, taking into consideration any and
+/// all already existing generic type parameters to avoid suggesting a name that is already in use.
+pub(crate) fn placeholder_type_error<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    generics: Option<&hir::Generics<'_>>,
+    placeholder_types: Vec<Span>,
+    suggest: bool,
+    hir_ty: Option<&hir::Ty<'_>>,
+    kind: &'static str,
+) {
+    if placeholder_types.is_empty() {
+        return;
+    }
+
+    placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
+        .emit();
+}
+
+pub(crate) fn placeholder_type_error_diag<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    generics: Option<&hir::Generics<'_>>,
+    placeholder_types: Vec<Span>,
+    additional_spans: Vec<Span>,
+    suggest: bool,
+    hir_ty: Option<&hir::Ty<'_>>,
+    kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+    if placeholder_types.is_empty() {
+        return bad_placeholder(tcx, additional_spans, kind);
+    }
+
+    let params = generics.map(|g| g.params).unwrap_or_default();
+    let type_name = params.next_type_param_name(None);
+    let mut sugg: Vec<_> =
+        placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
+
+    if let Some(generics) = generics {
+        if let Some(arg) = params.iter().find(|arg| {
+            matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
+        }) {
+            // Account for `_` already present in cases like `struct S<_>(_);` and suggest
+            // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
+            sugg.push((arg.span, (*type_name).to_string()));
+        } else if let Some(span) = generics.span_for_param_suggestion() {
+            // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
+            sugg.push((span, format!(", {}", type_name)));
+        } else {
+            sugg.push((generics.span, format!("<{}>", type_name)));
+        }
+    }
+
+    let mut err =
+        bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
+
+    // Suggest, but only if it is not a function in const or static
+    if suggest {
+        let mut is_fn = false;
+        let mut is_const_or_static = false;
+
+        if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
+            is_fn = true;
+
+            // Check if parent is const or static
+            let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
+            let parent_node = tcx.hir().get(parent_id);
+
+            is_const_or_static = matches!(
+                parent_node,
+                Node::Item(&hir::Item {
+                    kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
+                    ..
+                }) | Node::TraitItem(&hir::TraitItem {
+                    kind: hir::TraitItemKind::Const(..),
+                    ..
+                }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
+            );
+        }
+
+        // if function is wrapped around a const or static,
+        // then don't show the suggestion
+        if !(is_fn && is_const_or_static) {
+            err.multipart_suggestion(
+                "use type parameters instead",
+                sugg,
+                Applicability::HasPlaceholders,
+            );
+        }
+    }
+
+    err
+}
+
+fn reject_placeholder_type_signatures_in_item<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    item: &'tcx hir::Item<'tcx>,
+) {
+    let (generics, suggest) = match &item.kind {
+        hir::ItemKind::Union(_, generics)
+        | hir::ItemKind::Enum(_, generics)
+        | hir::ItemKind::TraitAlias(generics, _)
+        | hir::ItemKind::Trait(_, _, generics, ..)
+        | hir::ItemKind::Impl(hir::Impl { generics, .. })
+        | hir::ItemKind::Struct(_, generics) => (generics, true),
+        hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
+        | hir::ItemKind::TyAlias(_, generics) => (generics, false),
+        // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
+        _ => return,
+    };
+
+    let mut visitor = HirPlaceholderCollector::default();
+    visitor.visit_item(item);
+
+    placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
+}
+
+impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
+    type NestedFilter = nested_filter::OnlyBodies;
+
+    fn nested_visit_map(&mut self) -> Self::Map {
+        self.tcx.hir()
+    }
+
+    fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+        convert_item(self.tcx, item.item_id());
+        reject_placeholder_type_signatures_in_item(self.tcx, item);
+        intravisit::walk_item(self, item);
+    }
+
+    fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+        for param in generics.params {
+            match param.kind {
+                hir::GenericParamKind::Lifetime { .. } => {}
+                hir::GenericParamKind::Type { default: Some(_), .. } => {
+                    let def_id = self.tcx.hir().local_def_id(param.hir_id);
+                    self.tcx.ensure().type_of(def_id);
+                }
+                hir::GenericParamKind::Type { .. } => {}
+                hir::GenericParamKind::Const { default, .. } => {
+                    let def_id = self.tcx.hir().local_def_id(param.hir_id);
+                    self.tcx.ensure().type_of(def_id);
+                    if let Some(default) = default {
+                        let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
+                        // need to store default and type of default
+                        self.tcx.ensure().type_of(default_def_id);
+                        self.tcx.ensure().const_param_default(def_id);
+                    }
+                }
+            }
+        }
+        intravisit::walk_generics(self, generics);
+    }
+
+    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+        if let hir::ExprKind::Closure { .. } = expr.kind {
+            let def_id = self.tcx.hir().local_def_id(expr.hir_id);
+            self.tcx.ensure().generics_of(def_id);
+            // We do not call `type_of` for closures here as that
+            // depends on typecheck and would therefore hide
+            // any further errors in case one typeck fails.
+        }
+        intravisit::walk_expr(self, expr);
+    }
+
+    fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
+        convert_trait_item(self.tcx, trait_item.trait_item_id());
+        intravisit::walk_trait_item(self, trait_item);
+    }
+
+    fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
+        convert_impl_item(self.tcx, impl_item.impl_item_id());
+        intravisit::walk_impl_item(self, impl_item);
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Utility types and common code for the above passes.
+
+fn bad_placeholder<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    mut spans: Vec<Span>,
+    kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+    let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
+
+    spans.sort();
+    let mut err = struct_span_err!(
+        tcx.sess,
+        spans.clone(),
+        E0121,
+        "the placeholder `_` is not allowed within types on item signatures for {}",
+        kind
+    );
+    for span in spans {
+        err.span_label(span, "not allowed in type signatures");
+    }
+    err
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+    pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
+        ItemCtxt { tcx, item_def_id }
+    }
+
+    pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+        <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
+    }
+
+    pub fn hir_id(&self) -> hir::HirId {
+        self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
+    }
+
+    pub fn node(&self) -> hir::Node<'tcx> {
+        self.tcx.hir().get(self.hir_id())
+    }
+}
+
+impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn item_def_id(&self) -> Option<DefId> {
+        Some(self.item_def_id)
+    }
+
+    fn get_type_parameter_bounds(
+        &self,
+        span: Span,
+        def_id: DefId,
+        assoc_name: Ident,
+    ) -> ty::GenericPredicates<'tcx> {
+        self.tcx.at(span).type_param_predicates((
+            self.item_def_id,
+            def_id.expect_local(),
+            assoc_name,
+        ))
+    }
+
+    fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
+        None
+    }
+
+    fn allow_ty_infer(&self) -> bool {
+        false
+    }
+
+    fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
+        self.tcx().ty_error_with_message(span, "bad placeholder type")
+    }
+
+    fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
+        let ty = self.tcx.fold_regions(ty, |r, _| match *r {
+            ty::ReErased => self.tcx.lifetimes.re_static,
+            _ => r,
+        });
+        self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
+    }
+
+    fn projected_ty_from_poly_trait_ref(
+        &self,
+        span: Span,
+        item_def_id: DefId,
+        item_segment: &hir::PathSegment<'_>,
+        poly_trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Ty<'tcx> {
+        if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
+            let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
+                self,
+                span,
+                item_def_id,
+                item_segment,
+                trait_ref.substs,
+            );
+            self.tcx().mk_projection(item_def_id, item_substs)
+        } else {
+            // There are no late-bound regions; we can just ignore the binder.
+            let mut err = struct_span_err!(
+                self.tcx().sess,
+                span,
+                E0212,
+                "cannot use the associated type of a trait \
+                 with uninferred generic parameters"
+            );
+
+            match self.node() {
+                hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
+                    let item = self
+                        .tcx
+                        .hir()
+                        .expect_item(self.tcx.hir().get_parent_item(self.hir_id()).def_id);
+                    match &item.kind {
+                        hir::ItemKind::Enum(_, generics)
+                        | hir::ItemKind::Struct(_, generics)
+                        | hir::ItemKind::Union(_, generics) => {
+                            let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
+                            let (lt_sp, sugg) = match generics.params {
+                                [] => (generics.span, format!("<{}>", lt_name)),
+                                [bound, ..] => {
+                                    (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
+                                }
+                            };
+                            let suggestions = vec![
+                                (lt_sp, sugg),
+                                (
+                                    span.with_hi(item_segment.ident.span.lo()),
+                                    format!(
+                                        "{}::",
+                                        // Replace the existing lifetimes with a new named lifetime.
+                                        self.tcx.replace_late_bound_regions_uncached(
+                                            poly_trait_ref,
+                                            |_| {
+                                                self.tcx.mk_region(ty::ReEarlyBound(
+                                                    ty::EarlyBoundRegion {
+                                                        def_id: item_def_id,
+                                                        index: 0,
+                                                        name: Symbol::intern(&lt_name),
+                                                    },
+                                                ))
+                                            }
+                                        ),
+                                    ),
+                                ),
+                            ];
+                            err.multipart_suggestion(
+                                "use a fully qualified path with explicit lifetimes",
+                                suggestions,
+                                Applicability::MaybeIncorrect,
+                            );
+                        }
+                        _ => {}
+                    }
+                }
+                hir::Node::Item(hir::Item {
+                    kind:
+                        hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
+                    ..
+                }) => {}
+                hir::Node::Item(_)
+                | hir::Node::ForeignItem(_)
+                | hir::Node::TraitItem(_)
+                | hir::Node::ImplItem(_) => {
+                    err.span_suggestion_verbose(
+                        span.with_hi(item_segment.ident.span.lo()),
+                        "use a fully qualified path with inferred lifetimes",
+                        format!(
+                            "{}::",
+                            // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
+                            self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
+                        ),
+                        Applicability::MaybeIncorrect,
+                    );
+                }
+                _ => {}
+            }
+            err.emit();
+            self.tcx().ty_error()
+        }
+    }
+
+    fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
+        // Types in item signatures are not normalized to avoid undue dependencies.
+        ty
+    }
+
+    fn set_tainted_by_errors(&self) {
+        // There's no obvious place to track this, so just let it go.
+    }
+
+    fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
+        // There's no place to record types from signatures?
+    }
+}
+
+/// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
+fn get_new_lifetime_name<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    poly_trait_ref: ty::PolyTraitRef<'tcx>,
+    generics: &hir::Generics<'tcx>,
+) -> String {
+    let existing_lifetimes = tcx
+        .collect_referenced_late_bound_regions(&poly_trait_ref)
+        .into_iter()
+        .filter_map(|lt| {
+            if let ty::BoundRegionKind::BrNamed(_, name) = lt {
+                Some(name.as_str().to_string())
+            } else {
+                None
+            }
+        })
+        .chain(generics.params.iter().filter_map(|param| {
+            if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
+                Some(param.name.ident().as_str().to_string())
+            } else {
+                None
+            }
+        }))
+        .collect::<FxHashSet<String>>();
+
+    let a_to_z_repeat_n = |n| {
+        (b'a'..=b'z').map(move |c| {
+            let mut s = '\''.to_string();
+            s.extend(std::iter::repeat(char::from(c)).take(n));
+            s
+        })
+    };
+
+    // If all single char lifetime names are present, we wrap around and double the chars.
+    (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
+}
+
+/// Returns the predicates defined on `item_def_id` of the form
+/// `X: Foo` where `X` is the type parameter `def_id`.
+#[instrument(level = "trace", skip(tcx))]
+fn type_param_predicates(
+    tcx: TyCtxt<'_>,
+    (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
+) -> ty::GenericPredicates<'_> {
+    use rustc_hir::*;
+
+    // In the AST, bounds can derive from two places. Either
+    // written inline like `<T: Foo>` or in a where-clause like
+    // `where T: Foo`.
+
+    let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
+    let param_owner = tcx.hir().ty_param_owner(def_id);
+    let generics = tcx.generics_of(param_owner);
+    let index = generics.param_def_id_to_index[&def_id.to_def_id()];
+    let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
+
+    // Don't look for bounds where the type parameter isn't in scope.
+    let parent = if item_def_id == param_owner.to_def_id() {
+        None
+    } else {
+        tcx.generics_of(item_def_id).parent
+    };
+
+    let mut result = parent
+        .map(|parent| {
+            let icx = ItemCtxt::new(tcx, parent);
+            icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
+        })
+        .unwrap_or_default();
+    let mut extend = None;
+
+    let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
+    let ast_generics = match tcx.hir().get(item_hir_id) {
+        Node::TraitItem(item) => &item.generics,
+
+        Node::ImplItem(item) => &item.generics,
+
+        Node::Item(item) => {
+            match item.kind {
+                ItemKind::Fn(.., ref generics, _)
+                | ItemKind::Impl(hir::Impl { ref generics, .. })
+                | ItemKind::TyAlias(_, ref generics)
+                | ItemKind::OpaqueTy(OpaqueTy {
+                    ref generics,
+                    origin: hir::OpaqueTyOrigin::TyAlias,
+                    ..
+                })
+                | ItemKind::Enum(_, ref generics)
+                | ItemKind::Struct(_, ref generics)
+                | ItemKind::Union(_, ref generics) => generics,
+                ItemKind::Trait(_, _, ref generics, ..) => {
+                    // Implied `Self: Trait` and supertrait bounds.
+                    if param_id == item_hir_id {
+                        let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
+                        extend =
+                            Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
+                    }
+                    generics
+                }
+                _ => return result,
+            }
+        }
+
+        Node::ForeignItem(item) => match item.kind {
+            ForeignItemKind::Fn(_, _, ref generics) => generics,
+            _ => return result,
+        },
+
+        _ => return result,
+    };
+
+    let icx = ItemCtxt::new(tcx, item_def_id);
+    let extra_predicates = extend.into_iter().chain(
+        icx.type_parameter_bounds_in_generics(
+            ast_generics,
+            param_id,
+            ty,
+            OnlySelfBounds(true),
+            Some(assoc_name),
+        )
+        .into_iter()
+        .filter(|(predicate, _)| match predicate.kind().skip_binder() {
+            ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
+            _ => false,
+        }),
+    );
+    result.predicates =
+        tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
+    result
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+    /// Finds bounds from `hir::Generics`. This requires scanning through the
+    /// AST. We do this to avoid having to convert *all* the bounds, which
+    /// would create artificial cycles. Instead, we can only convert the
+    /// bounds for a type parameter `X` if `X::Foo` is used.
+    #[instrument(level = "trace", skip(self, ast_generics))]
+    fn type_parameter_bounds_in_generics(
+        &self,
+        ast_generics: &'tcx hir::Generics<'tcx>,
+        param_id: hir::HirId,
+        ty: Ty<'tcx>,
+        only_self_bounds: OnlySelfBounds,
+        assoc_name: Option<Ident>,
+    ) -> Vec<(ty::Predicate<'tcx>, Span)> {
+        let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
+        trace!(?param_def_id);
+        ast_generics
+            .predicates
+            .iter()
+            .filter_map(|wp| match *wp {
+                hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
+                _ => None,
+            })
+            .flat_map(|bp| {
+                let bt = if bp.is_param_bound(param_def_id) {
+                    Some(ty)
+                } else if !only_self_bounds.0 {
+                    Some(self.to_ty(bp.bounded_ty))
+                } else {
+                    None
+                };
+                let bvars = self.tcx.late_bound_vars(bp.bounded_ty.hir_id);
+
+                bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
+                    |(_, b, _)| match assoc_name {
+                        Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
+                        None => true,
+                    },
+                )
+            })
+            .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
+            .collect()
+    }
+
+    #[instrument(level = "trace", skip(self))]
+    fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
+        match b {
+            hir::GenericBound::Trait(poly_trait_ref, _) => {
+                let trait_ref = &poly_trait_ref.trait_ref;
+                if let Some(trait_did) = trait_ref.trait_def_id() {
+                    self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
+                } else {
+                    false
+                }
+            }
+            _ => false,
+        }
+    }
+}
+
+fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
+    let it = tcx.hir().item(item_id);
+    debug!("convert: item {} with id {}", it.ident, it.hir_id());
+    let def_id = item_id.def_id.def_id;
+
+    match it.kind {
+        // These don't define types.
+        hir::ItemKind::ExternCrate(_)
+        | hir::ItemKind::Use(..)
+        | hir::ItemKind::Macro(..)
+        | hir::ItemKind::Mod(_)
+        | hir::ItemKind::GlobalAsm(_) => {}
+        hir::ItemKind::ForeignMod { items, .. } => {
+            for item in items {
+                let item = tcx.hir().foreign_item(item.id);
+                tcx.ensure().generics_of(item.def_id);
+                tcx.ensure().type_of(item.def_id);
+                tcx.ensure().predicates_of(item.def_id);
+                match item.kind {
+                    hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
+                    hir::ForeignItemKind::Static(..) => {
+                        let mut visitor = HirPlaceholderCollector::default();
+                        visitor.visit_foreign_item(item);
+                        placeholder_type_error(
+                            tcx,
+                            None,
+                            visitor.0,
+                            false,
+                            None,
+                            "static variable",
+                        );
+                    }
+                    _ => (),
+                }
+            }
+        }
+        hir::ItemKind::Enum(ref enum_definition, _) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+            convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
+        }
+        hir::ItemKind::Impl { .. } => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().impl_trait_ref(def_id);
+            tcx.ensure().predicates_of(def_id);
+        }
+        hir::ItemKind::Trait(..) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().trait_def(def_id);
+            tcx.at(it.span).super_predicates_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+        }
+        hir::ItemKind::TraitAlias(..) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.at(it.span).super_predicates_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+        }
+        hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+
+            for f in struct_def.fields() {
+                let def_id = tcx.hir().local_def_id(f.hir_id);
+                tcx.ensure().generics_of(def_id);
+                tcx.ensure().type_of(def_id);
+                tcx.ensure().predicates_of(def_id);
+            }
+
+            if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
+                convert_variant_ctor(tcx, ctor_hir_id);
+            }
+        }
+
+        // Desugared from `impl Trait`, so visited by the function's return type.
+        hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+            origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
+            ..
+        }) => {}
+
+        // Don't call `type_of` on opaque types, since that depends on type
+        // checking function bodies. `check_item_type` ensures that it's called
+        // instead.
+        hir::ItemKind::OpaqueTy(..) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+            tcx.ensure().explicit_item_bounds(def_id);
+        }
+        hir::ItemKind::TyAlias(..)
+        | hir::ItemKind::Static(..)
+        | hir::ItemKind::Const(..)
+        | hir::ItemKind::Fn(..) => {
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+            match it.kind {
+                hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
+                hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
+                hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
+                    if !is_suggestable_infer_ty(ty) {
+                        let mut visitor = HirPlaceholderCollector::default();
+                        visitor.visit_item(it);
+                        placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
+                    }
+                }
+                _ => (),
+            }
+        }
+    }
+}
+
+fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
+    let trait_item = tcx.hir().trait_item(trait_item_id);
+    let def_id = trait_item_id.def_id;
+    tcx.ensure().generics_of(def_id);
+
+    match trait_item.kind {
+        hir::TraitItemKind::Fn(..) => {
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().fn_sig(def_id);
+        }
+
+        hir::TraitItemKind::Const(.., Some(_)) => {
+            tcx.ensure().type_of(def_id);
+        }
+
+        hir::TraitItemKind::Const(hir_ty, _) => {
+            tcx.ensure().type_of(def_id);
+            // Account for `const C: _;`.
+            let mut visitor = HirPlaceholderCollector::default();
+            visitor.visit_trait_item(trait_item);
+            if !tcx.sess.diagnostic().has_stashed_diagnostic(hir_ty.span, StashKey::ItemNoType) {
+                placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
+            }
+        }
+
+        hir::TraitItemKind::Type(_, Some(_)) => {
+            tcx.ensure().item_bounds(def_id);
+            tcx.ensure().type_of(def_id);
+            // Account for `type T = _;`.
+            let mut visitor = HirPlaceholderCollector::default();
+            visitor.visit_trait_item(trait_item);
+            placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+        }
+
+        hir::TraitItemKind::Type(_, None) => {
+            tcx.ensure().item_bounds(def_id);
+            // #74612: Visit and try to find bad placeholders
+            // even if there is no concrete type.
+            let mut visitor = HirPlaceholderCollector::default();
+            visitor.visit_trait_item(trait_item);
+
+            placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+        }
+    };
+
+    tcx.ensure().predicates_of(def_id);
+}
+
+fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
+    let def_id = impl_item_id.def_id;
+    tcx.ensure().generics_of(def_id);
+    tcx.ensure().type_of(def_id);
+    tcx.ensure().predicates_of(def_id);
+    let impl_item = tcx.hir().impl_item(impl_item_id);
+    match impl_item.kind {
+        hir::ImplItemKind::Fn(..) => {
+            tcx.ensure().fn_sig(def_id);
+        }
+        hir::ImplItemKind::TyAlias(_) => {
+            // Account for `type T = _;`
+            let mut visitor = HirPlaceholderCollector::default();
+            visitor.visit_impl_item(impl_item);
+
+            placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+        }
+        hir::ImplItemKind::Const(..) => {}
+    }
+}
+
+fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
+    let def_id = tcx.hir().local_def_id(ctor_id);
+    tcx.ensure().generics_of(def_id);
+    tcx.ensure().type_of(def_id);
+    tcx.ensure().predicates_of(def_id);
+}
+
+fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
+    let def = tcx.adt_def(def_id);
+    let repr_type = def.repr().discr_type();
+    let initial = repr_type.initial_discriminant(tcx);
+    let mut prev_discr = None::<Discr<'_>>;
+
+    // fill the discriminant values and field types
+    for variant in variants {
+        let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
+        prev_discr = Some(
+            if let Some(ref e) = variant.disr_expr {
+                let expr_did = tcx.hir().local_def_id(e.hir_id);
+                def.eval_explicit_discr(tcx, expr_did.to_def_id())
+            } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
+                Some(discr)
+            } else {
+                struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
+                    .span_label(
+                        variant.span,
+                        format!("overflowed on value after {}", prev_discr.unwrap()),
+                    )
+                    .note(&format!(
+                        "explicitly set `{} = {}` if that is desired outcome",
+                        variant.ident, wrapped_discr
+                    ))
+                    .emit();
+                None
+            }
+            .unwrap_or(wrapped_discr),
+        );
+
+        for f in variant.data.fields() {
+            let def_id = tcx.hir().local_def_id(f.hir_id);
+            tcx.ensure().generics_of(def_id);
+            tcx.ensure().type_of(def_id);
+            tcx.ensure().predicates_of(def_id);
+        }
+
+        // Convert the ctor, if any. This also registers the variant as
+        // an item.
+        if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
+            convert_variant_ctor(tcx, ctor_hir_id);
+        }
+    }
+}
+
+fn convert_variant(
+    tcx: TyCtxt<'_>,
+    variant_did: Option<LocalDefId>,
+    ctor_did: Option<LocalDefId>,
+    ident: Ident,
+    discr: ty::VariantDiscr,
+    def: &hir::VariantData<'_>,
+    adt_kind: ty::AdtKind,
+    parent_did: LocalDefId,
+) -> ty::VariantDef {
+    let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
+    let fields = def
+        .fields()
+        .iter()
+        .map(|f| {
+            let fid = tcx.hir().local_def_id(f.hir_id);
+            let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
+            if let Some(prev_span) = dup_span {
+                tcx.sess.emit_err(errors::FieldAlreadyDeclared {
+                    field_name: f.ident,
+                    span: f.span,
+                    prev_span,
+                });
+            } else {
+                seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
+            }
+
+            ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
+        })
+        .collect();
+    let recovered = match def {
+        hir::VariantData::Struct(_, r) => *r,
+        _ => false,
+    };
+    ty::VariantDef::new(
+        ident.name,
+        variant_did.map(LocalDefId::to_def_id),
+        ctor_did.map(LocalDefId::to_def_id),
+        discr,
+        fields,
+        CtorKind::from_hir(def),
+        adt_kind,
+        parent_did.to_def_id(),
+        recovered,
+        adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
+            || variant_did.map_or(false, |variant_did| {
+                tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
+            }),
+    )
+}
+
+fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
+    use rustc_hir::*;
+
+    let def_id = def_id.expect_local();
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+    let Node::Item(item) = tcx.hir().get(hir_id) else {
+        bug!();
+    };
+
+    let repr = ReprOptions::new(tcx, def_id.to_def_id());
+    let (kind, variants) = match item.kind {
+        ItemKind::Enum(ref def, _) => {
+            let mut distance_from_explicit = 0;
+            let variants = def
+                .variants
+                .iter()
+                .map(|v| {
+                    let variant_did = Some(tcx.hir().local_def_id(v.id));
+                    let ctor_did =
+                        v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+                    let discr = if let Some(ref e) = v.disr_expr {
+                        distance_from_explicit = 0;
+                        ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
+                    } else {
+                        ty::VariantDiscr::Relative(distance_from_explicit)
+                    };
+                    distance_from_explicit += 1;
+
+                    convert_variant(
+                        tcx,
+                        variant_did,
+                        ctor_did,
+                        v.ident,
+                        discr,
+                        &v.data,
+                        AdtKind::Enum,
+                        def_id,
+                    )
+                })
+                .collect();
+
+            (AdtKind::Enum, variants)
+        }
+        ItemKind::Struct(ref def, _) => {
+            let variant_did = None::<LocalDefId>;
+            let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+            let variants = std::iter::once(convert_variant(
+                tcx,
+                variant_did,
+                ctor_did,
+                item.ident,
+                ty::VariantDiscr::Relative(0),
+                def,
+                AdtKind::Struct,
+                def_id,
+            ))
+            .collect();
+
+            (AdtKind::Struct, variants)
+        }
+        ItemKind::Union(ref def, _) => {
+            let variant_did = None;
+            let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+            let variants = std::iter::once(convert_variant(
+                tcx,
+                variant_did,
+                ctor_did,
+                item.ident,
+                ty::VariantDiscr::Relative(0),
+                def,
+                AdtKind::Union,
+                def_id,
+            ))
+            .collect();
+
+            (AdtKind::Union, variants)
+        }
+        _ => bug!(),
+    };
+    tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
+    debug!("super_predicates(trait_def_id={:?})", trait_def_id);
+    tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+fn super_predicates_that_define_assoc_type(
+    tcx: TyCtxt<'_>,
+    (trait_def_id, assoc_name): (DefId, Option<Ident>),
+) -> ty::GenericPredicates<'_> {
+    debug!(
+        "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
+        trait_def_id, assoc_name
+    );
+    if trait_def_id.is_local() {
+        debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
+        let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
+
+        let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
+            bug!("trait_node_id {} is not an item", trait_hir_id);
+        };
+
+        let (generics, bounds) = match item.kind {
+            hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
+            hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
+            _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
+        };
+
+        let icx = ItemCtxt::new(tcx, trait_def_id);
+
+        // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
+        let self_param_ty = tcx.types.self_param;
+        let superbounds1 = if let Some(assoc_name) = assoc_name {
+            <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
+                &icx,
+                self_param_ty,
+                bounds,
+                assoc_name,
+            )
+        } else {
+            <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
+        };
+
+        let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
+
+        // Convert any explicit superbounds in the where-clause,
+        // e.g., `trait Foo where Self: Bar`.
+        // In the case of trait aliases, however, we include all bounds in the where-clause,
+        // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
+        // as one of its "superpredicates".
+        let is_trait_alias = tcx.is_trait_alias(trait_def_id);
+        let superbounds2 = icx.type_parameter_bounds_in_generics(
+            generics,
+            item.hir_id(),
+            self_param_ty,
+            OnlySelfBounds(!is_trait_alias),
+            assoc_name,
+        );
+
+        // Combine the two lists to form the complete set of superbounds:
+        let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
+        debug!(?superbounds);
+
+        // Now require that immediate supertraits are converted,
+        // which will, in turn, reach indirect supertraits.
+        if assoc_name.is_none() {
+            // Now require that immediate supertraits are converted,
+            // which will, in turn, reach indirect supertraits.
+            for &(pred, span) in superbounds {
+                debug!("superbound: {:?}", pred);
+                if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
+                    tcx.at(span).super_predicates_of(bound.def_id());
+                }
+            }
+        }
+
+        ty::GenericPredicates { parent: None, predicates: superbounds }
+    } else {
+        // if `assoc_name` is None, then the query should've been redirected to an
+        // external provider
+        assert!(assoc_name.is_some());
+        tcx.super_predicates_of(trait_def_id)
+    }
+}
+
+fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
+    let item = tcx.hir().expect_item(def_id.expect_local());
+
+    let (is_auto, unsafety, items) = match item.kind {
+        hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
+            (is_auto == hir::IsAuto::Yes, unsafety, items)
+        }
+        hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
+        _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
+    };
+
+    let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
+    if paren_sugar && !tcx.features().unboxed_closures {
+        tcx.sess
+            .struct_span_err(
+                item.span,
+                "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
+                 which traits can use parenthetical notation",
+            )
+            .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
+            .emit();
+    }
+
+    let is_marker = tcx.has_attr(def_id, sym::marker);
+    let skip_array_during_method_dispatch =
+        tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
+    let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
+        ty::trait_def::TraitSpecializationKind::Marker
+    } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
+        ty::trait_def::TraitSpecializationKind::AlwaysApplicable
+    } else {
+        ty::trait_def::TraitSpecializationKind::None
+    };
+    let must_implement_one_of = tcx
+        .get_attr(def_id, sym::rustc_must_implement_one_of)
+        // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
+        // and that they are all identifiers
+        .and_then(|attr| match attr.meta_item_list() {
+            Some(items) if items.len() < 2 => {
+                tcx.sess
+                    .struct_span_err(
+                        attr.span,
+                        "the `#[rustc_must_implement_one_of]` attribute must be \
+                        used with at least 2 args",
+                    )
+                    .emit();
+
+                None
+            }
+            Some(items) => items
+                .into_iter()
+                .map(|item| item.ident().ok_or(item.span()))
+                .collect::<Result<Box<[_]>, _>>()
+                .map_err(|span| {
+                    tcx.sess
+                        .struct_span_err(span, "must be a name of an associated function")
+                        .emit();
+                })
+                .ok()
+                .zip(Some(attr.span)),
+            // Error is reported by `rustc_attr!`
+            None => None,
+        })
+        // Check that all arguments of `#[rustc_must_implement_one_of]` reference
+        // functions in the trait with default implementations
+        .and_then(|(list, attr_span)| {
+            let errors = list.iter().filter_map(|ident| {
+                let item = items.iter().find(|item| item.ident == *ident);
+
+                match item {
+                    Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
+                        if !tcx.impl_defaultness(item.id.def_id).has_value() {
+                            tcx.sess
+                                .struct_span_err(
+                                    item.span,
+                                    "This function doesn't have a default implementation",
+                                )
+                                .span_note(attr_span, "required by this annotation")
+                                .emit();
+
+                            return Some(());
+                        }
+
+                        return None;
+                    }
+                    Some(item) => {
+                        tcx.sess
+                            .struct_span_err(item.span, "Not a function")
+                            .span_note(attr_span, "required by this annotation")
+                            .note(
+                                "All `#[rustc_must_implement_one_of]` arguments \
+                            must be associated function names",
+                            )
+                            .emit();
+                    }
+                    None => {
+                        tcx.sess
+                            .struct_span_err(ident.span, "Function not found in this trait")
+                            .emit();
+                    }
+                }
+
+                Some(())
+            });
+
+            (errors.count() == 0).then_some(list)
+        })
+        // Check for duplicates
+        .and_then(|list| {
+            let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
+            let mut no_dups = true;
+
+            for ident in &*list {
+                if let Some(dup) = set.insert(ident.name, ident.span) {
+                    tcx.sess
+                        .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
+                        .note(
+                            "All `#[rustc_must_implement_one_of]` arguments \
+                            must be unique",
+                        )
+                        .emit();
+
+                    no_dups = false;
+                }
+            }
+
+            no_dups.then_some(list)
+        });
+
+    ty::TraitDef::new(
+        def_id,
+        unsafety,
+        paren_sugar,
+        is_auto,
+        is_marker,
+        skip_array_during_method_dispatch,
+        spec_kind,
+        must_implement_one_of,
+    )
+}
+
+fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
+    struct LateBoundRegionsDetector<'tcx> {
+        tcx: TyCtxt<'tcx>,
+        outer_index: ty::DebruijnIndex,
+        has_late_bound_regions: Option<Span>,
+    }
+
+    impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
+        fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
+            if self.has_late_bound_regions.is_some() {
+                return;
+            }
+            match ty.kind {
+                hir::TyKind::BareFn(..) => {
+                    self.outer_index.shift_in(1);
+                    intravisit::walk_ty(self, ty);
+                    self.outer_index.shift_out(1);
+                }
+                _ => intravisit::walk_ty(self, ty),
+            }
+        }
+
+        fn visit_poly_trait_ref(&mut self, tr: &'tcx hir::PolyTraitRef<'tcx>) {
+            if self.has_late_bound_regions.is_some() {
+                return;
+            }
+            self.outer_index.shift_in(1);
+            intravisit::walk_poly_trait_ref(self, tr);
+            self.outer_index.shift_out(1);
+        }
+
+        fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
+            if self.has_late_bound_regions.is_some() {
+                return;
+            }
+
+            match self.tcx.named_region(lt.hir_id) {
+                Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
+                Some(rl::Region::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {}
+                Some(rl::Region::LateBound(..) | rl::Region::Free(..)) | None => {
+                    self.has_late_bound_regions = Some(lt.span);
+                }
+            }
+        }
+    }
+
+    fn has_late_bound_regions<'tcx>(
+        tcx: TyCtxt<'tcx>,
+        generics: &'tcx hir::Generics<'tcx>,
+        decl: &'tcx hir::FnDecl<'tcx>,
+    ) -> Option<Span> {
+        let mut visitor = LateBoundRegionsDetector {
+            tcx,
+            outer_index: ty::INNERMOST,
+            has_late_bound_regions: None,
+        };
+        for param in generics.params {
+            if let GenericParamKind::Lifetime { .. } = param.kind {
+                if tcx.is_late_bound(param.hir_id) {
+                    return Some(param.span);
+                }
+            }
+        }
+        visitor.visit_fn_decl(decl);
+        visitor.has_late_bound_regions
+    }
+
+    match node {
+        Node::TraitItem(item) => match item.kind {
+            hir::TraitItemKind::Fn(ref sig, _) => {
+                has_late_bound_regions(tcx, &item.generics, sig.decl)
+            }
+            _ => None,
+        },
+        Node::ImplItem(item) => match item.kind {
+            hir::ImplItemKind::Fn(ref sig, _) => {
+                has_late_bound_regions(tcx, &item.generics, sig.decl)
+            }
+            _ => None,
+        },
+        Node::ForeignItem(item) => match item.kind {
+            hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
+                has_late_bound_regions(tcx, generics, fn_decl)
+            }
+            _ => None,
+        },
+        Node::Item(item) => match item.kind {
+            hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
+                has_late_bound_regions(tcx, generics, sig.decl)
+            }
+            _ => None,
+        },
+        _ => None,
+    }
+}
+
+struct AnonConstInParamTyDetector {
+    in_param_ty: bool,
+    found_anon_const_in_param_ty: bool,
+    ct: HirId,
+}
+
+impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
+    fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
+        if let GenericParamKind::Const { ty, default: _ } = p.kind {
+            let prev = self.in_param_ty;
+            self.in_param_ty = true;
+            self.visit_ty(ty);
+            self.in_param_ty = prev;
+        }
+    }
+
+    fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
+        if self.in_param_ty && self.ct == c.hir_id {
+            self.found_anon_const_in_param_ty = true;
+        } else {
+            intravisit::walk_anon_const(self, c)
+        }
+    }
+}
+
+fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
+    use rustc_hir::*;
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+
+    let node = tcx.hir().get(hir_id);
+    let parent_def_id = match node {
+        Node::ImplItem(_)
+        | Node::TraitItem(_)
+        | Node::Variant(_)
+        | Node::Ctor(..)
+        | Node::Field(_) => {
+            let parent_id = tcx.hir().get_parent_item(hir_id);
+            Some(parent_id.to_def_id())
+        }
+        // FIXME(#43408) always enable this once `lazy_normalization` is
+        // stable enough and does not need a feature gate anymore.
+        Node::AnonConst(_) => {
+            let parent_def_id = tcx.hir().get_parent_item(hir_id);
+
+            let mut in_param_ty = false;
+            for (_parent, node) in tcx.hir().parent_iter(hir_id) {
+                if let Some(generics) = node.generics() {
+                    let mut visitor = AnonConstInParamTyDetector {
+                        in_param_ty: false,
+                        found_anon_const_in_param_ty: false,
+                        ct: hir_id,
+                    };
+
+                    visitor.visit_generics(generics);
+                    in_param_ty = visitor.found_anon_const_in_param_ty;
+                    break;
+                }
+            }
+
+            if in_param_ty {
+                // We do not allow generic parameters in anon consts if we are inside
+                // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
+                None
+            } else if tcx.lazy_normalization() {
+                if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
+                    // If the def_id we are calling generics_of on is an anon ct default i.e:
+                    //
+                    // struct Foo<const N: usize = { .. }>;
+                    //        ^^^       ^          ^^^^^^ def id of this anon const
+                    //        ^         ^ param_id
+                    //        ^ parent_def_id
+                    //
+                    // then we only want to return generics for params to the left of `N`. If we don't do that we
+                    // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
+                    //
+                    // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
+                    // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
+                    // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
+                    //
+                    // We fix this by having this function return the parent's generics ourselves and truncating the
+                    // generics to only include non-forward declared params (with the exception of the `Self` ty)
+                    //
+                    // For the above code example that means we want `substs: []`
+                    // For the following struct def we want `substs: [N#0]` when generics_of is called on
+                    // the def id of the `{ N + 1 }` anon const
+                    // struct Foo<const N: usize, const M: usize = { N + 1 }>;
+                    //
+                    // This has some implications for how we get the predicates available to the anon const
+                    // see `explicit_predicates_of` for more information on this
+                    let generics = tcx.generics_of(parent_def_id.to_def_id());
+                    let param_def = tcx.hir().local_def_id(param_id).to_def_id();
+                    let param_def_idx = generics.param_def_id_to_index[&param_def];
+                    // In the above example this would be .params[..N#0]
+                    let params = generics.params[..param_def_idx as usize].to_owned();
+                    let param_def_id_to_index =
+                        params.iter().map(|param| (param.def_id, param.index)).collect();
+
+                    return ty::Generics {
+                        // we set the parent of these generics to be our parent's parent so that we
+                        // dont end up with substs: [N, M, N] for the const default on a struct like this:
+                        // struct Foo<const N: usize, const M: usize = { ... }>;
+                        parent: generics.parent,
+                        parent_count: generics.parent_count,
+                        params,
+                        param_def_id_to_index,
+                        has_self: generics.has_self,
+                        has_late_bound_regions: generics.has_late_bound_regions,
+                    };
+                }
+
+                // HACK(eddyb) this provides the correct generics when
+                // `feature(generic_const_expressions)` is enabled, so that const expressions
+                // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
+                //
+                // Note that we do not supply the parent generics when using
+                // `min_const_generics`.
+                Some(parent_def_id.to_def_id())
+            } else {
+                let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+                match parent_node {
+                    // HACK(eddyb) this provides the correct generics for repeat
+                    // expressions' count (i.e. `N` in `[x; N]`), and explicit
+                    // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
+                    // as they shouldn't be able to cause query cycle errors.
+                    Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
+                        if constant.hir_id() == hir_id =>
+                    {
+                        Some(parent_def_id.to_def_id())
+                    }
+                    Node::Variant(Variant { disr_expr: Some(ref constant), .. })
+                        if constant.hir_id == hir_id =>
+                    {
+                        Some(parent_def_id.to_def_id())
+                    }
+                    Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
+                        Some(tcx.typeck_root_def_id(def_id))
+                    }
+                    // Exclude `GlobalAsm` here which cannot have generics.
+                    Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
+                        if asm.operands.iter().any(|(op, _op_sp)| match op {
+                            hir::InlineAsmOperand::Const { anon_const }
+                            | hir::InlineAsmOperand::SymFn { anon_const } => {
+                                anon_const.hir_id == hir_id
+                            }
+                            _ => false,
+                        }) =>
+                    {
+                        Some(parent_def_id.to_def_id())
+                    }
+                    _ => None,
+                }
+            }
+        }
+        Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+            Some(tcx.typeck_root_def_id(def_id))
+        }
+        Node::Item(item) => match item.kind {
+            ItemKind::OpaqueTy(hir::OpaqueTy {
+                origin:
+                    hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
+                in_trait,
+                ..
+            }) => {
+                if in_trait {
+                    assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn))
+                } else {
+                    assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn | DefKind::Fn))
+                }
+                Some(fn_def_id.to_def_id())
+            }
+            ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
+                let parent_id = tcx.hir().get_parent_item(hir_id);
+                assert_ne!(parent_id, hir::CRATE_OWNER_ID);
+                debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
+                // Opaque types are always nested within another item, and
+                // inherit the generics of the item.
+                Some(parent_id.to_def_id())
+            }
+            _ => None,
+        },
+        _ => None,
+    };
+
+    enum Defaults {
+        Allowed,
+        // See #36887
+        FutureCompatDisallowed,
+        Deny,
+    }
+
+    let no_generics = hir::Generics::empty();
+    let ast_generics = node.generics().unwrap_or(&no_generics);
+    let (opt_self, allow_defaults) = match node {
+        Node::Item(item) => {
+            match item.kind {
+                ItemKind::Trait(..) | ItemKind::TraitAlias(..) => {
+                    // Add in the self type parameter.
+                    //
+                    // Something of a hack: use the node id for the trait, also as
+                    // the node id for the Self type parameter.
+                    let opt_self = Some(ty::GenericParamDef {
+                        index: 0,
+                        name: kw::SelfUpper,
+                        def_id,
+                        pure_wrt_drop: false,
+                        kind: ty::GenericParamDefKind::Type {
+                            has_default: false,
+                            synthetic: false,
+                        },
+                    });
+
+                    (opt_self, Defaults::Allowed)
+                }
+                ItemKind::TyAlias(..)
+                | ItemKind::Enum(..)
+                | ItemKind::Struct(..)
+                | ItemKind::OpaqueTy(..)
+                | ItemKind::Union(..) => (None, Defaults::Allowed),
+                _ => (None, Defaults::FutureCompatDisallowed),
+            }
+        }
+
+        // GATs
+        Node::TraitItem(item) if matches!(item.kind, TraitItemKind::Type(..)) => {
+            (None, Defaults::Deny)
+        }
+        Node::ImplItem(item) if matches!(item.kind, ImplItemKind::TyAlias(..)) => {
+            (None, Defaults::Deny)
+        }
+
+        _ => (None, Defaults::FutureCompatDisallowed),
+    };
+
+    let has_self = opt_self.is_some();
+    let mut parent_has_self = false;
+    let mut own_start = has_self as u32;
+    let parent_count = parent_def_id.map_or(0, |def_id| {
+        let generics = tcx.generics_of(def_id);
+        assert!(!has_self);
+        parent_has_self = generics.has_self;
+        own_start = generics.count() as u32;
+        generics.parent_count + generics.params.len()
+    });
+
+    let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
+
+    if let Some(opt_self) = opt_self {
+        params.push(opt_self);
+    }
+
+    let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
+    params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
+        name: param.name.ident().name,
+        index: own_start + i as u32,
+        def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+        pure_wrt_drop: param.pure_wrt_drop,
+        kind: ty::GenericParamDefKind::Lifetime,
+    }));
+
+    // Now create the real type and const parameters.
+    let type_start = own_start - has_self as u32 + params.len() as u32;
+    let mut i = 0;
+
+    const TYPE_DEFAULT_NOT_ALLOWED: &'static str = "defaults for type parameters are only allowed in \
+    `struct`, `enum`, `type`, or `trait` definitions";
+
+    params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
+        GenericParamKind::Lifetime { .. } => None,
+        GenericParamKind::Type { ref default, synthetic, .. } => {
+            if default.is_some() {
+                match allow_defaults {
+                    Defaults::Allowed => {}
+                    Defaults::FutureCompatDisallowed
+                        if tcx.features().default_type_parameter_fallback => {}
+                    Defaults::FutureCompatDisallowed => {
+                        tcx.struct_span_lint_hir(
+                            lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
+                            param.hir_id,
+                            param.span,
+                            |lint| {
+                                lint.build(TYPE_DEFAULT_NOT_ALLOWED).emit();
+                            },
+                        );
+                    }
+                    Defaults::Deny => {
+                        tcx.sess.span_err(param.span, TYPE_DEFAULT_NOT_ALLOWED);
+                    }
+                }
+            }
+
+            let kind = ty::GenericParamDefKind::Type { has_default: default.is_some(), synthetic };
+
+            let param_def = ty::GenericParamDef {
+                index: type_start + i as u32,
+                name: param.name.ident().name,
+                def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+                pure_wrt_drop: param.pure_wrt_drop,
+                kind,
+            };
+            i += 1;
+            Some(param_def)
+        }
+        GenericParamKind::Const { default, .. } => {
+            if !matches!(allow_defaults, Defaults::Allowed) && default.is_some() {
+                tcx.sess.span_err(
+                    param.span,
+                    "defaults for const parameters are only allowed in \
+                    `struct`, `enum`, `type`, or `trait` definitions",
+                );
+            }
+
+            let param_def = ty::GenericParamDef {
+                index: type_start + i as u32,
+                name: param.name.ident().name,
+                def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+                pure_wrt_drop: param.pure_wrt_drop,
+                kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
+            };
+            i += 1;
+            Some(param_def)
+        }
+    }));
+
+    // provide junk type parameter defs - the only place that
+    // cares about anything but the length is instantiation,
+    // and we don't do that for closures.
+    if let Node::Expr(&hir::Expr {
+        kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }),
+        ..
+    }) = node
+    {
+        let dummy_args = if gen.is_some() {
+            &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
+        } else {
+            &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
+        };
+
+        params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
+            index: type_start + i as u32,
+            name: Symbol::intern(arg),
+            def_id,
+            pure_wrt_drop: false,
+            kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
+        }));
+    }
+
+    // provide junk type parameter defs for const blocks.
+    if let Node::AnonConst(_) = node {
+        let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+        if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
+            params.push(ty::GenericParamDef {
+                index: type_start,
+                name: Symbol::intern("<const_ty>"),
+                def_id,
+                pure_wrt_drop: false,
+                kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
+            });
+        }
+    }
+
+    let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
+
+    ty::Generics {
+        parent: parent_def_id,
+        parent_count,
+        params,
+        param_def_id_to_index,
+        has_self: has_self || parent_has_self,
+        has_late_bound_regions: has_late_bound_regions(tcx, node),
+    }
+}
+
+fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
+    generic_args.iter().any(|arg| match arg {
+        hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
+        hir::GenericArg::Infer(_) => true,
+        _ => false,
+    })
+}
+
+/// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
+/// use inference to provide suggestions for the appropriate type if possible.
+fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
+    debug!(?ty);
+    use hir::TyKind::*;
+    match &ty.kind {
+        Infer => true,
+        Slice(ty) => is_suggestable_infer_ty(ty),
+        Array(ty, length) => {
+            is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
+        }
+        Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
+        Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
+        OpaqueDef(_, generic_args, _) => are_suggestable_generic_args(generic_args),
+        Path(hir::QPath::TypeRelative(ty, segment)) => {
+            is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
+        }
+        Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
+            ty_opt.map_or(false, is_suggestable_infer_ty)
+                || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
+        }
+        _ => false,
+    }
+}
+
+pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
+    if let hir::FnRetTy::Return(ty) = output {
+        if is_suggestable_infer_ty(ty) {
+            return Some(&*ty);
+        }
+    }
+    None
+}
+
+#[instrument(level = "debug", skip(tcx))]
+fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
+    use rustc_hir::Node::*;
+    use rustc_hir::*;
+
+    let def_id = def_id.expect_local();
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+    let icx = ItemCtxt::new(tcx, def_id.to_def_id());
+
+    match tcx.hir().get(hir_id) {
+        TraitItem(hir::TraitItem {
+            kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
+            generics,
+            ..
+        })
+        | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
+            infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+        }
+
+        ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
+            // Do not try to inference the return type for a impl method coming from a trait
+            if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
+                tcx.hir().get(tcx.hir().get_parent_node(hir_id))
+                && i.of_trait.is_some()
+            {
+                <dyn AstConv<'_>>::ty_of_fn(
+                    &icx,
+                    hir_id,
+                    sig.header.unsafety,
+                    sig.header.abi,
+                    sig.decl,
+                    Some(generics),
+                    None,
+                )
+            } else {
+                infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+            }
+        }
+
+        TraitItem(hir::TraitItem {
+            kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
+            generics,
+            ..
+        }) => <dyn AstConv<'_>>::ty_of_fn(
+            &icx,
+            hir_id,
+            header.unsafety,
+            header.abi,
+            decl,
+            Some(generics),
+            None,
+        ),
+
+        ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
+            let abi = tcx.hir().get_foreign_abi(hir_id);
+            compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
+        }
+
+        Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
+            let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
+            let inputs =
+                data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
+            ty::Binder::dummy(tcx.mk_fn_sig(
+                inputs,
+                ty,
+                false,
+                hir::Unsafety::Normal,
+                abi::Abi::Rust,
+            ))
+        }
+
+        Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+            // Closure signatures are not like other function
+            // signatures and cannot be accessed through `fn_sig`. For
+            // example, a closure signature excludes the `self`
+            // argument. In any case they are embedded within the
+            // closure type as part of the `ClosureSubsts`.
+            //
+            // To get the signature of a closure, you should use the
+            // `sig` method on the `ClosureSubsts`:
+            //
+            //    substs.as_closure().sig(def_id, tcx)
+            bug!(
+                "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
+            );
+        }
+
+        x => {
+            bug!("unexpected sort of node in fn_sig(): {:?}", x);
+        }
+    }
+}
+
+fn infer_return_ty_for_fn_sig<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    sig: &hir::FnSig<'_>,
+    generics: &hir::Generics<'_>,
+    def_id: LocalDefId,
+    icx: &ItemCtxt<'tcx>,
+) -> ty::PolyFnSig<'tcx> {
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+    match get_infer_ret_ty(&sig.decl.output) {
+        Some(ty) => {
+            let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
+            // Typeck doesn't expect erased regions to be returned from `type_of`.
+            let fn_sig = tcx.fold_regions(fn_sig, |r, _| match *r {
+                ty::ReErased => tcx.lifetimes.re_static,
+                _ => r,
+            });
+            let fn_sig = ty::Binder::dummy(fn_sig);
+
+            let mut visitor = HirPlaceholderCollector::default();
+            visitor.visit_ty(ty);
+            let mut diag = bad_placeholder(tcx, visitor.0, "return type");
+            let ret_ty = fn_sig.skip_binder().output();
+            if ret_ty.is_suggestable(tcx, false) {
+                diag.span_suggestion(
+                    ty.span,
+                    "replace with the correct return type",
+                    ret_ty,
+                    Applicability::MachineApplicable,
+                );
+            } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
+                let fn_sig = ret_ty.fn_sig(tcx);
+                if fn_sig
+                    .skip_binder()
+                    .inputs_and_output
+                    .iter()
+                    .all(|t| t.is_suggestable(tcx, false))
+                {
+                    diag.span_suggestion(
+                        ty.span,
+                        "replace with the correct return type",
+                        fn_sig,
+                        Applicability::MachineApplicable,
+                    );
+                }
+            } else if ret_ty.is_closure() {
+                // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
+                // to prevent the user from getting a papercut while trying to use the unique closure
+                // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
+                diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
+                diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
+            }
+            diag.emit();
+
+            fn_sig
+        }
+        None => <dyn AstConv<'_>>::ty_of_fn(
+            icx,
+            hir_id,
+            sig.header.unsafety,
+            sig.header.abi,
+            sig.decl,
+            Some(generics),
+            None,
+        ),
+    }
+}
+
+fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
+    let icx = ItemCtxt::new(tcx, def_id);
+    match tcx.hir().expect_item(def_id.expect_local()).kind {
+        hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
+            let selfty = tcx.type_of(def_id);
+            <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
+        }),
+        _ => bug!(),
+    }
+}
+
+fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
+    let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
+    let item = tcx.hir().expect_item(def_id.expect_local());
+    match &item.kind {
+        hir::ItemKind::Impl(hir::Impl {
+            polarity: hir::ImplPolarity::Negative(span),
+            of_trait,
+            ..
+        }) => {
+            if is_rustc_reservation {
+                let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
+                tcx.sess.span_err(span, "reservation impls can't be negative");
+            }
+            ty::ImplPolarity::Negative
+        }
+        hir::ItemKind::Impl(hir::Impl {
+            polarity: hir::ImplPolarity::Positive,
+            of_trait: None,
+            ..
+        }) => {
+            if is_rustc_reservation {
+                tcx.sess.span_err(item.span, "reservation impls can't be inherent");
+            }
+            ty::ImplPolarity::Positive
+        }
+        hir::ItemKind::Impl(hir::Impl {
+            polarity: hir::ImplPolarity::Positive,
+            of_trait: Some(_),
+            ..
+        }) => {
+            if is_rustc_reservation {
+                ty::ImplPolarity::Reservation
+            } else {
+                ty::ImplPolarity::Positive
+            }
+        }
+        item => bug!("impl_polarity: {:?} not an impl", item),
+    }
+}
+
+/// Returns the early-bound lifetimes declared in this generics
+/// listing. For anything other than fns/methods, this is just all
+/// the lifetimes that are declared. For fns or methods, we have to
+/// screen out those that do not appear in any where-clauses etc using
+/// `resolve_lifetime::early_bound_lifetimes`.
+fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
+    tcx: TyCtxt<'tcx>,
+    generics: &'a hir::Generics<'a>,
+) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
+    generics.params.iter().filter(move |param| match param.kind {
+        GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
+        _ => false,
+    })
+}
+
+/// Returns a list of type predicates for the definition with ID `def_id`, including inferred
+/// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
+/// inferred constraints concerning which regions outlive other regions.
+#[instrument(level = "debug", skip(tcx))]
+fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+    let mut result = tcx.explicit_predicates_of(def_id);
+    debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
+    let inferred_outlives = tcx.inferred_outlives_of(def_id);
+    if !inferred_outlives.is_empty() {
+        debug!(
+            "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
+            def_id, inferred_outlives,
+        );
+        if result.predicates.is_empty() {
+            result.predicates = inferred_outlives;
+        } else {
+            result.predicates = tcx
+                .arena
+                .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
+        }
+    }
+
+    debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
+    result
+}
+
+/// Returns a list of all type predicates (explicit and implicit) for the definition with
+/// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
+/// `Self: Trait` predicates for traits.
+fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+    let mut result = tcx.predicates_defined_on(def_id);
+
+    if tcx.is_trait(def_id) {
+        // For traits, add `Self: Trait` predicate. This is
+        // not part of the predicates that a user writes, but it
+        // is something that one must prove in order to invoke a
+        // method or project an associated type.
+        //
+        // In the chalk setup, this predicate is not part of the
+        // "predicates" for a trait item. But it is useful in
+        // rustc because if you directly (e.g.) invoke a trait
+        // method like `Trait::method(...)`, you must naturally
+        // prove that the trait applies to the types that were
+        // used, and adding the predicate into this list ensures
+        // that this is done.
+        //
+        // We use a DUMMY_SP here as a way to signal trait bounds that come
+        // from the trait itself that *shouldn't* be shown as the source of
+        // an obligation and instead be skipped. Otherwise we'd use
+        // `tcx.def_span(def_id);`
+
+        let constness = if tcx.has_attr(def_id, sym::const_trait) {
+            ty::BoundConstness::ConstIfConst
+        } else {
+            ty::BoundConstness::NotConst
+        };
+
+        let span = rustc_span::DUMMY_SP;
+        result.predicates =
+            tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
+                ty::TraitRef::identity(tcx, def_id).with_constness(constness).to_predicate(tcx),
+                span,
+            ))));
+    }
+    debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
+    result
+}
+
+/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
+/// N.B., this does not include any implied/inferred constraints.
+#[instrument(level = "trace", skip(tcx), ret)]
+fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+    use rustc_hir::*;
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+    let node = tcx.hir().get(hir_id);
+
+    let mut is_trait = None;
+    let mut is_default_impl_trait = None;
+
+    let icx = ItemCtxt::new(tcx, def_id);
+
+    const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
+
+    // We use an `IndexSet` to preserves order of insertion.
+    // Preserving the order of insertion is important here so as not to break UI tests.
+    let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
+
+    let ast_generics = match node {
+        Node::TraitItem(item) => item.generics,
+
+        Node::ImplItem(item) => item.generics,
+
+        Node::Item(item) => {
+            match item.kind {
+                ItemKind::Impl(ref impl_) => {
+                    if impl_.defaultness.is_default() {
+                        is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
+                    }
+                    &impl_.generics
+                }
+                ItemKind::Fn(.., ref generics, _)
+                | ItemKind::TyAlias(_, ref generics)
+                | ItemKind::Enum(_, ref generics)
+                | ItemKind::Struct(_, ref generics)
+                | ItemKind::Union(_, ref generics) => *generics,
+
+                ItemKind::Trait(_, _, ref generics, ..) => {
+                    is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+                    *generics
+                }
+                ItemKind::TraitAlias(ref generics, _) => {
+                    is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+                    *generics
+                }
+                ItemKind::OpaqueTy(OpaqueTy {
+                    origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
+                    ..
+                }) => {
+                    // return-position impl trait
+                    //
+                    // We don't inherit predicates from the parent here:
+                    // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
+                    // then the return type is `f::<'static, T>::{{opaque}}`.
+                    //
+                    // If we inherited the predicates of `f` then we would
+                    // require that `T: 'static` to show that the return
+                    // type is well-formed.
+                    //
+                    // The only way to have something with this opaque type
+                    // is from the return type of the containing function,
+                    // which will ensure that the function's predicates
+                    // hold.
+                    return ty::GenericPredicates { parent: None, predicates: &[] };
+                }
+                ItemKind::OpaqueTy(OpaqueTy {
+                    ref generics,
+                    origin: hir::OpaqueTyOrigin::TyAlias,
+                    ..
+                }) => {
+                    // type-alias impl trait
+                    generics
+                }
+
+                _ => NO_GENERICS,
+            }
+        }
+
+        Node::ForeignItem(item) => match item.kind {
+            ForeignItemKind::Static(..) => NO_GENERICS,
+            ForeignItemKind::Fn(_, _, ref generics) => *generics,
+            ForeignItemKind::Type => NO_GENERICS,
+        },
+
+        _ => NO_GENERICS,
+    };
+
+    let generics = tcx.generics_of(def_id);
+    let parent_count = generics.parent_count as u32;
+    let has_own_self = generics.has_self && parent_count == 0;
+
+    // Below we'll consider the bounds on the type parameters (including `Self`)
+    // and the explicit where-clauses, but to get the full set of predicates
+    // on a trait we need to add in the supertrait bounds and bounds found on
+    // associated types.
+    if let Some(_trait_ref) = is_trait {
+        predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
+    }
+
+    // In default impls, we can assume that the self type implements
+    // the trait. So in:
+    //
+    //     default impl Foo for Bar { .. }
+    //
+    // we add a default where clause `Foo: Bar`. We do a similar thing for traits
+    // (see below). Recall that a default impl is not itself an impl, but rather a
+    // set of defaults that can be incorporated into another impl.
+    if let Some(trait_ref) = is_default_impl_trait {
+        predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
+    }
+
+    // Collect the region predicates that were declared inline as
+    // well. In the case of parameters declared on a fn or method, we
+    // have to be careful to only iterate over early-bound regions.
+    let mut index = parent_count
+        + has_own_self as u32
+        + early_bound_lifetimes_from_generics(tcx, ast_generics).count() as u32;
+
+    trace!(?predicates);
+    trace!(?ast_generics);
+
+    // Collect the predicates that were written inline by the user on each
+    // type parameter (e.g., `<T: Foo>`).
+    for param in ast_generics.params {
+        match param.kind {
+            // We already dealt with early bound lifetimes above.
+            GenericParamKind::Lifetime { .. } => (),
+            GenericParamKind::Type { .. } => {
+                let name = param.name.ident().name;
+                let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
+                index += 1;
+
+                let mut bounds = Bounds::default();
+                // Params are implicitly sized unless a `?Sized` bound is found
+                <dyn AstConv<'_>>::add_implicitly_sized(
+                    &icx,
+                    &mut bounds,
+                    &[],
+                    Some((param.hir_id, ast_generics.predicates)),
+                    param.span,
+                );
+                trace!(?bounds);
+                predicates.extend(bounds.predicates(tcx, param_ty));
+                trace!(?predicates);
+            }
+            GenericParamKind::Const { .. } => {
+                // Bounds on const parameters are currently not possible.
+                index += 1;
+            }
+        }
+    }
+
+    trace!(?predicates);
+    // Add in the bounds that appear in the where-clause.
+    for predicate in ast_generics.predicates {
+        match predicate {
+            hir::WherePredicate::BoundPredicate(bound_pred) => {
+                let ty = icx.to_ty(bound_pred.bounded_ty);
+                let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
+
+                // Keep the type around in a dummy predicate, in case of no bounds.
+                // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
+                // is still checked for WF.
+                if bound_pred.bounds.is_empty() {
+                    if let ty::Param(_) = ty.kind() {
+                        // This is a `where T:`, which can be in the HIR from the
+                        // transformation that moves `?Sized` to `T`'s declaration.
+                        // We can skip the predicate because type parameters are
+                        // trivially WF, but also we *should*, to avoid exposing
+                        // users who never wrote `where Type:,` themselves, to
+                        // compiler/tooling bugs from not handling WF predicates.
+                    } else {
+                        let span = bound_pred.bounded_ty.span;
+                        let predicate = ty::Binder::bind_with_vars(
+                            ty::PredicateKind::WellFormed(ty.into()),
+                            bound_vars,
+                        );
+                        predicates.insert((predicate.to_predicate(tcx), span));
+                    }
+                }
+
+                let mut bounds = Bounds::default();
+                <dyn AstConv<'_>>::add_bounds(
+                    &icx,
+                    ty,
+                    bound_pred.bounds.iter(),
+                    &mut bounds,
+                    bound_vars,
+                );
+                predicates.extend(bounds.predicates(tcx, ty));
+            }
+
+            hir::WherePredicate::RegionPredicate(region_pred) => {
+                let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
+                predicates.extend(region_pred.bounds.iter().map(|bound| {
+                    let (r2, span) = match bound {
+                        hir::GenericBound::Outlives(lt) => {
+                            (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
+                        }
+                        _ => bug!(),
+                    };
+                    let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
+                        ty::OutlivesPredicate(r1, r2),
+                    ))
+                    .to_predicate(icx.tcx);
+
+                    (pred, span)
+                }))
+            }
+
+            hir::WherePredicate::EqPredicate(..) => {
+                // FIXME(#20041)
+            }
+        }
+    }
+
+    if tcx.features().generic_const_exprs {
+        predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
+    }
+
+    let mut predicates: Vec<_> = predicates.into_iter().collect();
+
+    // Subtle: before we store the predicates into the tcx, we
+    // sort them so that predicates like `T: Foo<Item=U>` come
+    // before uses of `U`.  This avoids false ambiguity errors
+    // in trait checking. See `setup_constraining_predicates`
+    // for details.
+    if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
+        let self_ty = tcx.type_of(def_id);
+        let trait_ref = tcx.impl_trait_ref(def_id);
+        cgp::setup_constraining_predicates(
+            tcx,
+            &mut predicates,
+            trait_ref,
+            &mut cgp::parameters_for_impl(self_ty, trait_ref),
+        );
+    }
+
+    ty::GenericPredicates {
+        parent: generics.parent,
+        predicates: tcx.arena.alloc_from_iter(predicates),
+    }
+}
+
+fn const_evaluatable_predicates_of<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: LocalDefId,
+) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
+    struct ConstCollector<'tcx> {
+        tcx: TyCtxt<'tcx>,
+        preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
+    }
+
+    impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
+        fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
+            let def_id = self.tcx.hir().local_def_id(c.hir_id);
+            let ct = ty::Const::from_anon_const(self.tcx, def_id);
+            if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
+                let span = self.tcx.hir().span(c.hir_id);
+                self.preds.insert((
+                    ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv))
+                        .to_predicate(self.tcx),
+                    span,
+                ));
+            }
+        }
+
+        fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
+            // Do not look into const param defaults,
+            // these get checked when they are actually instantiated.
+            //
+            // We do not want the following to error:
+            //
+            //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
+            //     struct Bar<const N: usize>(Foo<N, 3>);
+        }
+    }
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+    let node = tcx.hir().get(hir_id);
+
+    let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
+    if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
+        if let Some(of_trait) = &impl_.of_trait {
+            debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
+            collector.visit_trait_ref(of_trait);
+        }
+
+        debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
+        collector.visit_ty(impl_.self_ty);
+    }
+
+    if let Some(generics) = node.generics() {
+        debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
+        collector.visit_generics(generics);
+    }
+
+    if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
+        debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
+        collector.visit_fn_decl(fn_sig.decl);
+    }
+    debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
+
+    collector.preds
+}
+
+fn trait_explicit_predicates_and_bounds(
+    tcx: TyCtxt<'_>,
+    def_id: LocalDefId,
+) -> ty::GenericPredicates<'_> {
+    assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
+    gather_explicit_predicates_of(tcx, def_id.to_def_id())
+}
+
+fn explicit_predicates_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::GenericPredicates<'tcx> {
+    let def_kind = tcx.def_kind(def_id);
+    if let DefKind::Trait = def_kind {
+        // Remove bounds on associated types from the predicates, they will be
+        // returned by `explicit_item_bounds`.
+        let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
+        let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
+
+        let is_assoc_item_ty = |ty: Ty<'tcx>| {
+            // For a predicate from a where clause to become a bound on an
+            // associated type:
+            // * It must use the identity substs of the item.
+            //     * Since any generic parameters on the item are not in scope,
+            //       this means that the item is not a GAT, and its identity
+            //       substs are the same as the trait's.
+            // * It must be an associated type for this trait (*not* a
+            //   supertrait).
+            if let ty::Projection(projection) = ty.kind() {
+                projection.substs == trait_identity_substs
+                    && tcx.associated_item(projection.item_def_id).container_id(tcx) == def_id
+            } else {
+                false
+            }
+        };
+
+        let predicates: Vec<_> = predicates_and_bounds
+            .predicates
+            .iter()
+            .copied()
+            .filter(|(pred, _)| match pred.kind().skip_binder() {
+                ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
+                ty::PredicateKind::Projection(proj) => {
+                    !is_assoc_item_ty(proj.projection_ty.self_ty())
+                }
+                ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
+                _ => true,
+            })
+            .collect();
+        if predicates.len() == predicates_and_bounds.predicates.len() {
+            predicates_and_bounds
+        } else {
+            ty::GenericPredicates {
+                parent: predicates_and_bounds.parent,
+                predicates: tcx.arena.alloc_slice(&predicates),
+            }
+        }
+    } else {
+        if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
+            let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+            if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
+                // In `generics_of` we set the generics' parent to be our parent's parent which means that
+                // we lose out on the predicates of our actual parent if we dont return those predicates here.
+                // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
+                //
+                // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
+                //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
+                //        ^^^                                             explicit_predicates_of on
+                //        parent item we dont have set as the
+                //        parent of generics returned by `generics_of`
+                //
+                // In the above code we want the anon const to have predicates in its param env for `T: Trait`
+                let item_def_id = tcx.hir().get_parent_item(hir_id);
+                // In the above code example we would be calling `explicit_predicates_of(Foo)` here
+                return tcx.explicit_predicates_of(item_def_id);
+            }
+        }
+        gather_explicit_predicates_of(tcx, def_id)
+    }
+}
+
+/// Converts a specific `GenericBound` from the AST into a set of
+/// predicates that apply to the self type. A vector is returned
+/// because this can be anywhere from zero predicates (`T: ?Sized` adds no
+/// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
+/// and `<T as Bar>::X == i32`).
+fn predicates_from_bound<'tcx>(
+    astconv: &dyn AstConv<'tcx>,
+    param_ty: Ty<'tcx>,
+    bound: &'tcx hir::GenericBound<'tcx>,
+    bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
+) -> Vec<(ty::Predicate<'tcx>, Span)> {
+    let mut bounds = Bounds::default();
+    astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
+    bounds.predicates(astconv.tcx(), param_ty).collect()
+}
+
+fn compute_sig_of_foreign_fn_decl<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: DefId,
+    decl: &'tcx hir::FnDecl<'tcx>,
+    abi: abi::Abi,
+) -> ty::PolyFnSig<'tcx> {
+    let unsafety = if abi == abi::Abi::RustIntrinsic {
+        intrinsic_operation_unsafety(tcx.item_name(def_id))
+    } else {
+        hir::Unsafety::Unsafe
+    };
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+    let fty = <dyn AstConv<'_>>::ty_of_fn(
+        &ItemCtxt::new(tcx, def_id),
+        hir_id,
+        unsafety,
+        abi,
+        decl,
+        None,
+        None,
+    );
+
+    // Feature gate SIMD types in FFI, since I am not sure that the
+    // ABIs are handled at all correctly. -huonw
+    if abi != abi::Abi::RustIntrinsic
+        && abi != abi::Abi::PlatformIntrinsic
+        && !tcx.features().simd_ffi
+    {
+        let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
+            if ty.is_simd() {
+                let snip = tcx
+                    .sess
+                    .source_map()
+                    .span_to_snippet(ast_ty.span)
+                    .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
+                tcx.sess
+                    .struct_span_err(
+                        ast_ty.span,
+                        &format!(
+                            "use of SIMD type{} in FFI is highly experimental and \
+                             may result in invalid code",
+                            snip
+                        ),
+                    )
+                    .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
+                    .emit();
+            }
+        };
+        for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
+            check(input, *ty)
+        }
+        if let hir::FnRetTy::Return(ref ty) = decl.output {
+            check(ty, fty.output().skip_binder())
+        }
+    }
+
+    fty
+}
+
+fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+    match tcx.hir().get_if_local(def_id) {
+        Some(Node::ForeignItem(..)) => true,
+        Some(_) => false,
+        _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
+    }
+}
+
+fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
+    match tcx.hir().get_if_local(def_id) {
+        Some(Node::Expr(&rustc_hir::Expr {
+            kind: rustc_hir::ExprKind::Closure(&rustc_hir::Closure { body, .. }),
+            ..
+        })) => tcx.hir().body(body).generator_kind(),
+        Some(_) => None,
+        _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
+    }
+}
+
+fn from_target_feature(
+    tcx: TyCtxt<'_>,
+    attr: &ast::Attribute,
+    supported_target_features: &FxHashMap<String, Option<Symbol>>,
+    target_features: &mut Vec<Symbol>,
+) {
+    let Some(list) = attr.meta_item_list() else { return };
+    let bad_item = |span| {
+        let msg = "malformed `target_feature` attribute input";
+        let code = "enable = \"..\"";
+        tcx.sess
+            .struct_span_err(span, msg)
+            .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
+            .emit();
+    };
+    let rust_features = tcx.features();
+    for item in list {
+        // Only `enable = ...` is accepted in the meta-item list.
+        if !item.has_name(sym::enable) {
+            bad_item(item.span());
+            continue;
+        }
+
+        // Must be of the form `enable = "..."` (a string).
+        let Some(value) = item.value_str() else {
+            bad_item(item.span());
+            continue;
+        };
+
+        // We allow comma separation to enable multiple features.
+        target_features.extend(value.as_str().split(',').filter_map(|feature| {
+            let Some(feature_gate) = supported_target_features.get(feature) else {
+                let msg =
+                    format!("the feature named `{}` is not valid for this target", feature);
+                let mut err = tcx.sess.struct_span_err(item.span(), &msg);
+                err.span_label(
+                    item.span(),
+                    format!("`{}` is not valid for this target", feature),
+                );
+                if let Some(stripped) = feature.strip_prefix('+') {
+                    let valid = supported_target_features.contains_key(stripped);
+                    if valid {
+                        err.help("consider removing the leading `+` in the feature name");
+                    }
+                }
+                err.emit();
+                return None;
+            };
+
+            // Only allow features whose feature gates have been enabled.
+            let allowed = match feature_gate.as_ref().copied() {
+                Some(sym::arm_target_feature) => rust_features.arm_target_feature,
+                Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
+                Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
+                Some(sym::mips_target_feature) => rust_features.mips_target_feature,
+                Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
+                Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
+                Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
+                Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
+                Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
+                Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
+                Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
+                Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
+                Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
+                Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
+                Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
+                Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
+                Some(name) => bug!("unknown target feature gate {}", name),
+                None => true,
+            };
+            if !allowed {
+                feature_err(
+                    &tcx.sess.parse_sess,
+                    feature_gate.unwrap(),
+                    item.span(),
+                    &format!("the target feature `{}` is currently unstable", feature),
+                )
+                .emit();
+            }
+            Some(Symbol::intern(feature))
+        }));
+    }
+}
+
+fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
+    use rustc_middle::mir::mono::Linkage::*;
+
+    // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
+    // applicable to variable declarations and may not really make sense for
+    // Rust code in the first place but allow them anyway and trust that the
+    // user knows what they're doing. Who knows, unanticipated use cases may pop
+    // up in the future.
+    //
+    // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
+    // and don't have to be, LLVM treats them as no-ops.
+    match name {
+        "appending" => Appending,
+        "available_externally" => AvailableExternally,
+        "common" => Common,
+        "extern_weak" => ExternalWeak,
+        "external" => External,
+        "internal" => Internal,
+        "linkonce" => LinkOnceAny,
+        "linkonce_odr" => LinkOnceODR,
+        "private" => Private,
+        "weak" => WeakAny,
+        "weak_odr" => WeakODR,
+        _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
+    }
+}
+
+fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
+    if cfg!(debug_assertions) {
+        let def_kind = tcx.def_kind(did);
+        assert!(
+            def_kind.has_codegen_attrs(),
+            "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
+        );
+    }
+
+    let did = did.expect_local();
+    let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
+    let mut codegen_fn_attrs = CodegenFnAttrs::new();
+    if tcx.should_inherit_track_caller(did) {
+        codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+    }
+
+    // The panic_no_unwind function called by TerminatorKind::Abort will never
+    // unwind. If the panic handler that it invokes unwind then it will simply
+    // call the panic handler again.
+    if Some(did.to_def_id()) == tcx.lang_items().panic_no_unwind() {
+        codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+    }
+
+    let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
+
+    let mut inline_span = None;
+    let mut link_ordinal_span = None;
+    let mut no_sanitize_span = None;
+    for attr in attrs.iter() {
+        if attr.has_name(sym::cold) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
+        } else if attr.has_name(sym::rustc_allocator) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
+        } else if attr.has_name(sym::ffi_returns_twice) {
+            if tcx.is_foreign_item(did) {
+                codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
+            } else {
+                // `#[ffi_returns_twice]` is only allowed `extern fn`s.
+                struct_span_err!(
+                    tcx.sess,
+                    attr.span,
+                    E0724,
+                    "`#[ffi_returns_twice]` may only be used on foreign functions"
+                )
+                .emit();
+            }
+        } else if attr.has_name(sym::ffi_pure) {
+            if tcx.is_foreign_item(did) {
+                if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
+                    // `#[ffi_const]` functions cannot be `#[ffi_pure]`
+                    struct_span_err!(
+                        tcx.sess,
+                        attr.span,
+                        E0757,
+                        "`#[ffi_const]` function cannot be `#[ffi_pure]`"
+                    )
+                    .emit();
+                } else {
+                    codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
+                }
+            } else {
+                // `#[ffi_pure]` is only allowed on foreign functions
+                struct_span_err!(
+                    tcx.sess,
+                    attr.span,
+                    E0755,
+                    "`#[ffi_pure]` may only be used on foreign functions"
+                )
+                .emit();
+            }
+        } else if attr.has_name(sym::ffi_const) {
+            if tcx.is_foreign_item(did) {
+                codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
+            } else {
+                // `#[ffi_const]` is only allowed on foreign functions
+                struct_span_err!(
+                    tcx.sess,
+                    attr.span,
+                    E0756,
+                    "`#[ffi_const]` may only be used on foreign functions"
+                )
+                .emit();
+            }
+        } else if attr.has_name(sym::rustc_allocator_nounwind) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+        } else if attr.has_name(sym::rustc_reallocator) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR;
+        } else if attr.has_name(sym::rustc_deallocator) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR;
+        } else if attr.has_name(sym::rustc_allocator_zeroed) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED;
+        } else if attr.has_name(sym::naked) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
+        } else if attr.has_name(sym::no_mangle) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+        } else if attr.has_name(sym::no_coverage) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
+        } else if attr.has_name(sym::rustc_std_internal_symbol) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+        } else if attr.has_name(sym::used) {
+            let inner = attr.meta_item_list();
+            match inner.as_deref() {
+                Some([item]) if item.has_name(sym::linker) => {
+                    if !tcx.features().used_with_arg {
+                        feature_err(
+                            &tcx.sess.parse_sess,
+                            sym::used_with_arg,
+                            attr.span,
+                            "`#[used(linker)]` is currently unstable",
+                        )
+                        .emit();
+                    }
+                    codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
+                }
+                Some([item]) if item.has_name(sym::compiler) => {
+                    if !tcx.features().used_with_arg {
+                        feature_err(
+                            &tcx.sess.parse_sess,
+                            sym::used_with_arg,
+                            attr.span,
+                            "`#[used(compiler)]` is currently unstable",
+                        )
+                        .emit();
+                    }
+                    codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
+                }
+                Some(_) => {
+                    tcx.sess.emit_err(errors::ExpectedUsedSymbol { span: attr.span });
+                }
+                None => {
+                    // Unfortunately, unconditionally using `llvm.used` causes
+                    // issues in handling `.init_array` with the gold linker,
+                    // but using `llvm.compiler.used` caused a nontrival amount
+                    // of unintentional ecosystem breakage -- particularly on
+                    // Mach-O targets.
+                    //
+                    // As a result, we emit `llvm.compiler.used` only on ELF
+                    // targets. This is somewhat ad-hoc, but actually follows
+                    // our pre-LLVM 13 behavior (prior to the ecosystem
+                    // breakage), and seems to match `clang`'s behavior as well
+                    // (both before and after LLVM 13), possibly because they
+                    // have similar compatibility concerns to us. See
+                    // https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
+                    // and following comments for some discussion of this, as
+                    // well as the comments in `rustc_codegen_llvm` where these
+                    // flags are handled.
+                    //
+                    // Anyway, to be clear: this is still up in the air
+                    // somewhat, and is subject to change in the future (which
+                    // is a good thing, because this would ideally be a bit
+                    // more firmed up).
+                    let is_like_elf = !(tcx.sess.target.is_like_osx
+                        || tcx.sess.target.is_like_windows
+                        || tcx.sess.target.is_like_wasm);
+                    codegen_fn_attrs.flags |= if is_like_elf {
+                        CodegenFnAttrFlags::USED
+                    } else {
+                        CodegenFnAttrFlags::USED_LINKER
+                    };
+                }
+            }
+        } else if attr.has_name(sym::cmse_nonsecure_entry) {
+            if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
+                struct_span_err!(
+                    tcx.sess,
+                    attr.span,
+                    E0776,
+                    "`#[cmse_nonsecure_entry]` requires C ABI"
+                )
+                .emit();
+            }
+            if !tcx.sess.target.llvm_target.contains("thumbv8m") {
+                struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
+                    .emit();
+            }
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
+        } else if attr.has_name(sym::thread_local) {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
+        } else if attr.has_name(sym::track_caller) {
+            if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
+                struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
+                    .emit();
+            }
+            if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
+                feature_err(
+                    &tcx.sess.parse_sess,
+                    sym::closure_track_caller,
+                    attr.span,
+                    "`#[track_caller]` on closures is currently unstable",
+                )
+                .emit();
+            }
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+        } else if attr.has_name(sym::export_name) {
+            if let Some(s) = attr.value_str() {
+                if s.as_str().contains('\0') {
+                    // `#[export_name = ...]` will be converted to a null-terminated string,
+                    // so it may not contain any null characters.
+                    struct_span_err!(
+                        tcx.sess,
+                        attr.span,
+                        E0648,
+                        "`export_name` may not contain null characters"
+                    )
+                    .emit();
+                }
+                codegen_fn_attrs.export_name = Some(s);
+            }
+        } else if attr.has_name(sym::target_feature) {
+            if !tcx.is_closure(did.to_def_id())
+                && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
+            {
+                if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
+                    // The `#[target_feature]` attribute is allowed on
+                    // WebAssembly targets on all functions, including safe
+                    // ones. Other targets require that `#[target_feature]` is
+                    // only applied to unsafe functions (pending the
+                    // `target_feature_11` feature) because on most targets
+                    // execution of instructions that are not supported is
+                    // considered undefined behavior. For WebAssembly which is a
+                    // 100% safe target at execution time it's not possible to
+                    // execute undefined instructions, and even if a future
+                    // feature was added in some form for this it would be a
+                    // deterministic trap. There is no undefined behavior when
+                    // executing WebAssembly so `#[target_feature]` is allowed
+                    // on safe functions (but again, only for WebAssembly)
+                    //
+                    // Note that this is also allowed if `actually_rustdoc` so
+                    // if a target is documenting some wasm-specific code then
+                    // it's not spuriously denied.
+                } else if !tcx.features().target_feature_11 {
+                    let mut err = feature_err(
+                        &tcx.sess.parse_sess,
+                        sym::target_feature_11,
+                        attr.span,
+                        "`#[target_feature(..)]` can only be applied to `unsafe` functions",
+                    );
+                    err.span_label(tcx.def_span(did), "not an `unsafe` function");
+                    err.emit();
+                } else {
+                    check_target_feature_trait_unsafe(tcx, did, attr.span);
+                }
+            }
+            from_target_feature(
+                tcx,
+                attr,
+                supported_target_features,
+                &mut codegen_fn_attrs.target_features,
+            );
+        } else if attr.has_name(sym::linkage) {
+            if let Some(val) = attr.value_str() {
+                codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
+            }
+        } else if attr.has_name(sym::link_section) {
+            if let Some(val) = attr.value_str() {
+                if val.as_str().bytes().any(|b| b == 0) {
+                    let msg = format!(
+                        "illegal null byte in link_section \
+                         value: `{}`",
+                        &val
+                    );
+                    tcx.sess.span_err(attr.span, &msg);
+                } else {
+                    codegen_fn_attrs.link_section = Some(val);
+                }
+            }
+        } else if attr.has_name(sym::link_name) {
+            codegen_fn_attrs.link_name = attr.value_str();
+        } else if attr.has_name(sym::link_ordinal) {
+            link_ordinal_span = Some(attr.span);
+            if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
+                codegen_fn_attrs.link_ordinal = ordinal;
+            }
+        } else if attr.has_name(sym::no_sanitize) {
+            no_sanitize_span = Some(attr.span);
+            if let Some(list) = attr.meta_item_list() {
+                for item in list.iter() {
+                    if item.has_name(sym::address) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
+                    } else if item.has_name(sym::cfi) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
+                    } else if item.has_name(sym::memory) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
+                    } else if item.has_name(sym::memtag) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
+                    } else if item.has_name(sym::shadow_call_stack) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK;
+                    } else if item.has_name(sym::thread) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
+                    } else if item.has_name(sym::hwaddress) {
+                        codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
+                    } else {
+                        tcx.sess
+                            .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
+                            .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, `shadow-call-stack`, or `thread`")
+                            .emit();
+                    }
+                }
+            }
+        } else if attr.has_name(sym::instruction_set) {
+            codegen_fn_attrs.instruction_set = match attr.meta_kind() {
+                Some(MetaItemKind::List(ref items)) => match items.as_slice() {
+                    [NestedMetaItem::MetaItem(set)] => {
+                        let segments =
+                            set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
+                        match segments.as_slice() {
+                            [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
+                                if !tcx.sess.target.has_thumb_interworking {
+                                    struct_span_err!(
+                                        tcx.sess.diagnostic(),
+                                        attr.span,
+                                        E0779,
+                                        "target does not support `#[instruction_set]`"
+                                    )
+                                    .emit();
+                                    None
+                                } else if segments[1] == sym::a32 {
+                                    Some(InstructionSetAttr::ArmA32)
+                                } else if segments[1] == sym::t32 {
+                                    Some(InstructionSetAttr::ArmT32)
+                                } else {
+                                    unreachable!()
+                                }
+                            }
+                            _ => {
+                                struct_span_err!(
+                                    tcx.sess.diagnostic(),
+                                    attr.span,
+                                    E0779,
+                                    "invalid instruction set specified",
+                                )
+                                .emit();
+                                None
+                            }
+                        }
+                    }
+                    [] => {
+                        struct_span_err!(
+                            tcx.sess.diagnostic(),
+                            attr.span,
+                            E0778,
+                            "`#[instruction_set]` requires an argument"
+                        )
+                        .emit();
+                        None
+                    }
+                    _ => {
+                        struct_span_err!(
+                            tcx.sess.diagnostic(),
+                            attr.span,
+                            E0779,
+                            "cannot specify more than one instruction set"
+                        )
+                        .emit();
+                        None
+                    }
+                },
+                _ => {
+                    struct_span_err!(
+                        tcx.sess.diagnostic(),
+                        attr.span,
+                        E0778,
+                        "must specify an instruction set"
+                    )
+                    .emit();
+                    None
+                }
+            };
+        } else if attr.has_name(sym::repr) {
+            codegen_fn_attrs.alignment = match attr.meta_item_list() {
+                Some(items) => match items.as_slice() {
+                    [item] => match item.name_value_literal() {
+                        Some((sym::align, literal)) => {
+                            let alignment = rustc_attr::parse_alignment(&literal.kind);
+
+                            match alignment {
+                                Ok(align) => Some(align),
+                                Err(msg) => {
+                                    struct_span_err!(
+                                        tcx.sess.diagnostic(),
+                                        attr.span,
+                                        E0589,
+                                        "invalid `repr(align)` attribute: {}",
+                                        msg
+                                    )
+                                    .emit();
+
+                                    None
+                                }
+                            }
+                        }
+                        _ => None,
+                    },
+                    [] => None,
+                    _ => None,
+                },
+                None => None,
+            };
+        }
+    }
+
+    codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
+        if !attr.has_name(sym::inline) {
+            return ia;
+        }
+        match attr.meta_kind() {
+            Some(MetaItemKind::Word) => InlineAttr::Hint,
+            Some(MetaItemKind::List(ref items)) => {
+                inline_span = Some(attr.span);
+                if items.len() != 1 {
+                    struct_span_err!(
+                        tcx.sess.diagnostic(),
+                        attr.span,
+                        E0534,
+                        "expected one argument"
+                    )
+                    .emit();
+                    InlineAttr::None
+                } else if list_contains_name(&items, sym::always) {
+                    InlineAttr::Always
+                } else if list_contains_name(&items, sym::never) {
+                    InlineAttr::Never
+                } else {
+                    struct_span_err!(
+                        tcx.sess.diagnostic(),
+                        items[0].span(),
+                        E0535,
+                        "invalid argument"
+                    )
+                    .help("valid inline arguments are `always` and `never`")
+                    .emit();
+
+                    InlineAttr::None
+                }
+            }
+            Some(MetaItemKind::NameValue(_)) => ia,
+            None => ia,
+        }
+    });
+
+    codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
+        if !attr.has_name(sym::optimize) {
+            return ia;
+        }
+        let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
+        match attr.meta_kind() {
+            Some(MetaItemKind::Word) => {
+                err(attr.span, "expected one argument");
+                ia
+            }
+            Some(MetaItemKind::List(ref items)) => {
+                inline_span = Some(attr.span);
+                if items.len() != 1 {
+                    err(attr.span, "expected one argument");
+                    OptimizeAttr::None
+                } else if list_contains_name(&items, sym::size) {
+                    OptimizeAttr::Size
+                } else if list_contains_name(&items, sym::speed) {
+                    OptimizeAttr::Speed
+                } else {
+                    err(items[0].span(), "invalid argument");
+                    OptimizeAttr::None
+                }
+            }
+            Some(MetaItemKind::NameValue(_)) => ia,
+            None => ia,
+        }
+    });
+
+    // #73631: closures inherit `#[target_feature]` annotations
+    if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
+        let owner_id = tcx.parent(did.to_def_id());
+        if tcx.def_kind(owner_id).has_codegen_attrs() {
+            codegen_fn_attrs
+                .target_features
+                .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
+        }
+    }
+
+    // If a function uses #[target_feature] it can't be inlined into general
+    // purpose functions as they wouldn't have the right target features
+    // enabled. For that reason we also forbid #[inline(always)] as it can't be
+    // respected.
+    if !codegen_fn_attrs.target_features.is_empty() {
+        if codegen_fn_attrs.inline == InlineAttr::Always {
+            if let Some(span) = inline_span {
+                tcx.sess.span_err(
+                    span,
+                    "cannot use `#[inline(always)]` with \
+                     `#[target_feature]`",
+                );
+            }
+        }
+    }
+
+    if !codegen_fn_attrs.no_sanitize.is_empty() {
+        if codegen_fn_attrs.inline == InlineAttr::Always {
+            if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
+                let hir_id = tcx.hir().local_def_id_to_hir_id(did);
+                tcx.struct_span_lint_hir(
+                    lint::builtin::INLINE_NO_SANITIZE,
+                    hir_id,
+                    no_sanitize_span,
+                    |lint| {
+                        lint.build("`no_sanitize` will have no effect after inlining")
+                            .span_note(inline_span, "inlining requested here")
+                            .emit();
+                    },
+                )
+            }
+        }
+    }
+
+    // Weak lang items have the same semantics as "std internal" symbols in the
+    // sense that they're preserved through all our LTO passes and only
+    // strippable by the linker.
+    //
+    // Additionally weak lang items have predetermined symbol names.
+    if tcx.is_weak_lang_item(did.to_def_id()) {
+        codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+    }
+    if let Some(name) = weak_lang_items::link_name(attrs) {
+        codegen_fn_attrs.export_name = Some(name);
+        codegen_fn_attrs.link_name = Some(name);
+    }
+    check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
+
+    // Internal symbols to the standard library all have no_mangle semantics in
+    // that they have defined symbol names present in the function name. This
+    // also applies to weak symbols where they all have known symbol names.
+    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
+        codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+    }
+
+    // Any linkage to LLVM intrinsics for now forcibly marks them all as never
+    // unwinds since LLVM sometimes can't handle codegen which `invoke`s
+    // intrinsic functions.
+    if let Some(name) = &codegen_fn_attrs.link_name {
+        if name.as_str().starts_with("llvm.") {
+            codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+        }
+    }
+
+    codegen_fn_attrs
+}
+
+/// Computes the set of target features used in a function for the purposes of
+/// inline assembly.
+fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
+    let mut target_features = tcx.sess.unstable_target_features.clone();
+    if tcx.def_kind(did).has_codegen_attrs() {
+        let attrs = tcx.codegen_fn_attrs(did);
+        target_features.extend(&attrs.target_features);
+        match attrs.instruction_set {
+            None => {}
+            Some(InstructionSetAttr::ArmA32) => {
+                target_features.remove(&sym::thumb_mode);
+            }
+            Some(InstructionSetAttr::ArmT32) => {
+                target_features.insert(sym::thumb_mode);
+            }
+        }
+    }
+
+    tcx.arena.alloc(target_features)
+}
+
+/// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
+/// applied to the method prototype.
+fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+    if let Some(impl_item) = tcx.opt_associated_item(def_id)
+        && let ty::AssocItemContainer::ImplContainer = impl_item.container
+        && let Some(trait_item) = impl_item.trait_item_def_id
+    {
+        return tcx
+            .codegen_fn_attrs(trait_item)
+            .flags
+            .intersects(CodegenFnAttrFlags::TRACK_CALLER);
+    }
+
+    false
+}
+
+fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
+    use rustc_ast::{Lit, LitIntType, LitKind};
+    if !tcx.features().raw_dylib && tcx.sess.target.arch == "x86" {
+        feature_err(
+            &tcx.sess.parse_sess,
+            sym::raw_dylib,
+            attr.span,
+            "`#[link_ordinal]` is unstable on x86",
+        )
+        .emit();
+    }
+    let meta_item_list = attr.meta_item_list();
+    let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
+    let sole_meta_list = match meta_item_list {
+        Some([item]) => item.literal(),
+        Some(_) => {
+            tcx.sess
+                .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
+                .note("the attribute requires exactly one argument")
+                .emit();
+            return None;
+        }
+        _ => None,
+    };
+    if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
+        // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
+        // the ordinal must fit into 16 bits.  Similarly, the Ordinal field in COFFShortExport (defined
+        // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
+        // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
+        //
+        // FIXME: should we allow an ordinal of 0?  The MSVC toolchain has inconsistent support for this:
+        // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
+        // a zero ordinal.  However, llvm-dlltool is perfectly happy to generate an import library
+        // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
+        // library produced by LLVM with an ordinal of 0, and it generates an .EXE.  (I don't know yet
+        // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
+        // about LINK.EXE failing.)
+        if *ordinal <= u16::MAX as u128 {
+            Some(*ordinal as u16)
+        } else {
+            let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
+            tcx.sess
+                .struct_span_err(attr.span, &msg)
+                .note("the value may not exceed `u16::MAX`")
+                .emit();
+            None
+        }
+    } else {
+        tcx.sess
+            .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
+            .note("an unsuffixed integer value, e.g., `1`, is expected")
+            .emit();
+        None
+    }
+}
+
+fn check_link_name_xor_ordinal(
+    tcx: TyCtxt<'_>,
+    codegen_fn_attrs: &CodegenFnAttrs,
+    inline_span: Option<Span>,
+) {
+    if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
+        return;
+    }
+    let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
+    if let Some(span) = inline_span {
+        tcx.sess.span_err(span, msg);
+    } else {
+        tcx.sess.err(msg);
+    }
+}
+
+/// Checks the function annotated with `#[target_feature]` is not a safe
+/// trait method implementation, reporting an error if it is.
+fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
+    let hir_id = tcx.hir().local_def_id_to_hir_id(id);
+    let node = tcx.hir().get(hir_id);
+    if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
+        let parent_id = tcx.hir().get_parent_item(hir_id);
+        let parent_item = tcx.hir().expect_item(parent_id.def_id);
+        if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
+            tcx.sess
+                .struct_span_err(
+                    attr_span,
+                    "`#[target_feature(..)]` cannot be applied to safe trait method",
+                )
+                .span_label(attr_span, "cannot be applied to safe trait method")
+                .span_label(tcx.def_span(id), "not an `unsafe` function")
+                .emit();
+        }
+    }
+}