about summary refs log tree commit diff
path: root/compiler/rustc_hir_analysis/src/collect
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_hir_analysis/src/collect')
-rw-r--r--compiler/rustc_hir_analysis/src/collect/item_bounds.rs110
-rw-r--r--compiler/rustc_hir_analysis/src/collect/type_of.rs879
2 files changed, 989 insertions, 0 deletions
diff --git a/compiler/rustc_hir_analysis/src/collect/item_bounds.rs b/compiler/rustc_hir_analysis/src/collect/item_bounds.rs
new file mode 100644
index 00000000000..0d34a8bfee3
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/item_bounds.rs
@@ -0,0 +1,110 @@
+use super::ItemCtxt;
+use crate::astconv::AstConv;
+use rustc_hir as hir;
+use rustc_infer::traits::util;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::{self, DefIdTree, TyCtxt};
+use rustc_span::def_id::DefId;
+use rustc_span::Span;
+
+/// For associated types we include both bounds written on the type
+/// (`type X: Trait`) and predicates from the trait: `where Self::X: Trait`.
+///
+/// Note that this filtering is done with the items identity substs to
+/// simplify checking that these bounds are met in impls. This means that
+/// a bound such as `for<'b> <Self as X<'b>>::U: Clone` can't be used, as in
+/// `hr-associated-type-bound-1.rs`.
+fn associated_type_bounds<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    assoc_item_def_id: DefId,
+    ast_bounds: &'tcx [hir::GenericBound<'tcx>],
+    span: Span,
+) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
+    let item_ty = tcx.mk_projection(
+        assoc_item_def_id,
+        InternalSubsts::identity_for_item(tcx, assoc_item_def_id),
+    );
+
+    let icx = ItemCtxt::new(tcx, assoc_item_def_id);
+    let mut bounds = <dyn AstConv<'_>>::compute_bounds(&icx, item_ty, ast_bounds);
+    // Associated types are implicitly sized unless a `?Sized` bound is found
+    <dyn AstConv<'_>>::add_implicitly_sized(&icx, &mut bounds, ast_bounds, None, span);
+
+    let trait_def_id = tcx.parent(assoc_item_def_id);
+    let trait_predicates = tcx.trait_explicit_predicates_and_bounds(trait_def_id.expect_local());
+
+    let bounds_from_parent = trait_predicates.predicates.iter().copied().filter(|(pred, _)| {
+        match pred.kind().skip_binder() {
+            ty::PredicateKind::Trait(tr) => tr.self_ty() == item_ty,
+            ty::PredicateKind::Projection(proj) => proj.projection_ty.self_ty() == item_ty,
+            ty::PredicateKind::TypeOutlives(outlives) => outlives.0 == item_ty,
+            _ => false,
+        }
+    });
+
+    let all_bounds = tcx
+        .arena
+        .alloc_from_iter(bounds.predicates(tcx, item_ty).into_iter().chain(bounds_from_parent));
+    debug!("associated_type_bounds({}) = {:?}", tcx.def_path_str(assoc_item_def_id), all_bounds);
+    all_bounds
+}
+
+/// Opaque types don't inherit bounds from their parent: for return position
+/// impl trait it isn't possible to write a suitable predicate on the
+/// containing function and for type-alias impl trait we don't have a backwards
+/// compatibility issue.
+#[instrument(level = "trace", skip(tcx), ret)]
+fn opaque_type_bounds<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    opaque_def_id: DefId,
+    ast_bounds: &'tcx [hir::GenericBound<'tcx>],
+    span: Span,
+    in_trait: bool,
+) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
+    ty::print::with_no_queries!({
+        let substs = InternalSubsts::identity_for_item(tcx, opaque_def_id);
+        let item_ty = if in_trait {
+            tcx.mk_projection(opaque_def_id, substs)
+        } else {
+            tcx.mk_opaque(opaque_def_id, substs)
+        };
+
+        let icx = ItemCtxt::new(tcx, opaque_def_id);
+        let mut bounds = <dyn AstConv<'_>>::compute_bounds(&icx, item_ty, ast_bounds);
+        // Opaque types are implicitly sized unless a `?Sized` bound is found
+        <dyn AstConv<'_>>::add_implicitly_sized(&icx, &mut bounds, ast_bounds, None, span);
+        debug!(?bounds);
+
+        tcx.arena.alloc_from_iter(bounds.predicates(tcx, item_ty))
+    })
+}
+
+pub(super) fn explicit_item_bounds(
+    tcx: TyCtxt<'_>,
+    def_id: DefId,
+) -> &'_ [(ty::Predicate<'_>, Span)] {
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+    match tcx.hir().get(hir_id) {
+        hir::Node::TraitItem(hir::TraitItem {
+            kind: hir::TraitItemKind::Type(bounds, _),
+            span,
+            ..
+        }) => associated_type_bounds(tcx, def_id, bounds, *span),
+        hir::Node::Item(hir::Item {
+            kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, in_trait, .. }),
+            span,
+            ..
+        }) => opaque_type_bounds(tcx, def_id, bounds, *span, *in_trait),
+        _ => bug!("item_bounds called on {:?}", def_id),
+    }
+}
+
+pub(super) fn item_bounds(tcx: TyCtxt<'_>, def_id: DefId) -> &'_ ty::List<ty::Predicate<'_>> {
+    tcx.mk_predicates(
+        util::elaborate_predicates(
+            tcx,
+            tcx.explicit_item_bounds(def_id).iter().map(|&(bound, _span)| bound),
+        )
+        .map(|obligation| obligation.predicate),
+    )
+}
diff --git a/compiler/rustc_hir_analysis/src/collect/type_of.rs b/compiler/rustc_hir_analysis/src/collect/type_of.rs
new file mode 100644
index 00000000000..24fb0b1fd26
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/type_of.rs
@@ -0,0 +1,879 @@
+use rustc_errors::{Applicability, StashKey};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::{HirId, Node};
+use rustc_middle::hir::nested_filter;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::util::IntTypeExt;
+use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeVisitable};
+use rustc_span::symbol::Ident;
+use rustc_span::{Span, DUMMY_SP};
+
+use super::ItemCtxt;
+use super::{bad_placeholder, is_suggestable_infer_ty};
+use crate::errors::UnconstrainedOpaqueType;
+
+/// Computes the relevant generic parameter for a potential generic const argument.
+///
+/// This should be called using the query `tcx.opt_const_param_of`.
+pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<DefId> {
+    use hir::*;
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+    match tcx.hir().get(hir_id) {
+        Node::AnonConst(_) => (),
+        _ => return None,
+    };
+
+    let parent_node_id = tcx.hir().get_parent_node(hir_id);
+    let parent_node = tcx.hir().get(parent_node_id);
+
+    let (generics, arg_idx) = match parent_node {
+        // This match arm is for when the def_id appears in a GAT whose
+        // path can't be resolved without typechecking e.g.
+        //
+        // trait Foo {
+        //   type Assoc<const N: usize>;
+        //   fn foo() -> Self::Assoc<3>;
+        // }
+        //
+        // In the above code we would call this query with the def_id of 3 and
+        // the parent_node we match on would be the hir node for Self::Assoc<3>
+        //
+        // `Self::Assoc<3>` cant be resolved without typechecking here as we
+        // didnt write <Self as Foo>::Assoc<3>. If we did then another match
+        // arm would handle this.
+        //
+        // I believe this match arm is only needed for GAT but I am not 100% sure - BoxyUwU
+        Node::Ty(hir_ty @ Ty { kind: TyKind::Path(QPath::TypeRelative(_, segment)), .. }) => {
+            // Find the Item containing the associated type so we can create an ItemCtxt.
+            // Using the ItemCtxt convert the HIR for the unresolved assoc type into a
+            // ty which is a fully resolved projection.
+            // For the code example above, this would mean converting Self::Assoc<3>
+            // into a ty::Projection(<Self as Foo>::Assoc<3>)
+            let item_hir_id = tcx
+                .hir()
+                .parent_iter(hir_id)
+                .filter(|(_, node)| matches!(node, Node::Item(_)))
+                .map(|(id, _)| id)
+                .next()
+                .unwrap();
+            let item_did = tcx.hir().local_def_id(item_hir_id).to_def_id();
+            let item_ctxt = &ItemCtxt::new(tcx, item_did) as &dyn crate::astconv::AstConv<'_>;
+            let ty = item_ctxt.ast_ty_to_ty(hir_ty);
+
+            // Iterate through the generics of the projection to find the one that corresponds to
+            // the def_id that this query was called with. We filter to only type and const args here
+            // as a precaution for if it's ever allowed to elide lifetimes in GAT's. It currently isn't
+            // but it can't hurt to be safe ^^
+            if let ty::Projection(projection) = ty.kind() {
+                let generics = tcx.generics_of(projection.item_def_id);
+
+                let arg_index = segment
+                    .args
+                    .and_then(|args| {
+                        args.args
+                            .iter()
+                            .filter(|arg| arg.is_ty_or_const())
+                            .position(|arg| arg.hir_id() == hir_id)
+                    })
+                    .unwrap_or_else(|| {
+                        bug!("no arg matching AnonConst in segment");
+                    });
+
+                (generics, arg_index)
+            } else {
+                // I dont think it's possible to reach this but I'm not 100% sure - BoxyUwU
+                tcx.sess.delay_span_bug(
+                    tcx.def_span(def_id),
+                    "unexpected non-GAT usage of an anon const",
+                );
+                return None;
+            }
+        }
+        Node::Expr(&Expr {
+            kind:
+                ExprKind::MethodCall(segment, ..) | ExprKind::Path(QPath::TypeRelative(_, segment)),
+            ..
+        }) => {
+            let body_owner = tcx.hir().enclosing_body_owner(hir_id);
+            let tables = tcx.typeck(body_owner);
+            // This may fail in case the method/path does not actually exist.
+            // As there is no relevant param for `def_id`, we simply return
+            // `None` here.
+            let type_dependent_def = tables.type_dependent_def_id(parent_node_id)?;
+            let idx = segment
+                .args
+                .and_then(|args| {
+                    args.args
+                        .iter()
+                        .filter(|arg| arg.is_ty_or_const())
+                        .position(|arg| arg.hir_id() == hir_id)
+                })
+                .unwrap_or_else(|| {
+                    bug!("no arg matching AnonConst in segment");
+                });
+
+            (tcx.generics_of(type_dependent_def), idx)
+        }
+
+        Node::Ty(&Ty { kind: TyKind::Path(_), .. })
+        | Node::Expr(&Expr { kind: ExprKind::Path(_) | ExprKind::Struct(..), .. })
+        | Node::TraitRef(..)
+        | Node::Pat(_) => {
+            let path = match parent_node {
+                Node::Ty(&Ty { kind: TyKind::Path(QPath::Resolved(_, path)), .. })
+                | Node::TraitRef(&TraitRef { path, .. }) => &*path,
+                Node::Expr(&Expr {
+                    kind:
+                        ExprKind::Path(QPath::Resolved(_, path))
+                        | ExprKind::Struct(&QPath::Resolved(_, path), ..),
+                    ..
+                }) => {
+                    let body_owner = tcx.hir().enclosing_body_owner(hir_id);
+                    let _tables = tcx.typeck(body_owner);
+                    &*path
+                }
+                Node::Pat(pat) => {
+                    if let Some(path) = get_path_containing_arg_in_pat(pat, hir_id) {
+                        path
+                    } else {
+                        tcx.sess.delay_span_bug(
+                            tcx.def_span(def_id),
+                            &format!("unable to find const parent for {} in pat {:?}", hir_id, pat),
+                        );
+                        return None;
+                    }
+                }
+                _ => {
+                    tcx.sess.delay_span_bug(
+                        tcx.def_span(def_id),
+                        &format!("unexpected const parent path {:?}", parent_node),
+                    );
+                    return None;
+                }
+            };
+
+            // We've encountered an `AnonConst` in some path, so we need to
+            // figure out which generic parameter it corresponds to and return
+            // the relevant type.
+            let Some((arg_index, segment)) = path.segments.iter().find_map(|seg| {
+                let args = seg.args?;
+                args.args
+                .iter()
+                .filter(|arg| arg.is_ty_or_const())
+                .position(|arg| arg.hir_id() == hir_id)
+                .map(|index| (index, seg)).or_else(|| args.bindings
+                    .iter()
+                    .filter_map(TypeBinding::opt_const)
+                    .position(|ct| ct.hir_id == hir_id)
+                    .map(|idx| (idx, seg)))
+            }) else {
+                tcx.sess.delay_span_bug(
+                    tcx.def_span(def_id),
+                    "no arg matching AnonConst in path",
+                );
+                return None;
+            };
+
+            let generics = match tcx.res_generics_def_id(segment.res) {
+                Some(def_id) => tcx.generics_of(def_id),
+                None => {
+                    tcx.sess.delay_span_bug(
+                        tcx.def_span(def_id),
+                        &format!("unexpected anon const res {:?} in path: {:?}", segment.res, path),
+                    );
+                    return None;
+                }
+            };
+
+            (generics, arg_index)
+        }
+        _ => return None,
+    };
+
+    debug!(?parent_node);
+    debug!(?generics, ?arg_idx);
+    generics
+        .params
+        .iter()
+        .filter(|param| param.kind.is_ty_or_const())
+        .nth(match generics.has_self && generics.parent.is_none() {
+            true => arg_idx + 1,
+            false => arg_idx,
+        })
+        .and_then(|param| match param.kind {
+            ty::GenericParamDefKind::Const { .. } => {
+                debug!(?param);
+                Some(param.def_id)
+            }
+            _ => None,
+        })
+}
+
+fn get_path_containing_arg_in_pat<'hir>(
+    pat: &'hir hir::Pat<'hir>,
+    arg_id: HirId,
+) -> Option<&'hir hir::Path<'hir>> {
+    use hir::*;
+
+    let is_arg_in_path = |p: &hir::Path<'_>| {
+        p.segments
+            .iter()
+            .filter_map(|seg| seg.args)
+            .flat_map(|args| args.args)
+            .any(|arg| arg.hir_id() == arg_id)
+    };
+    let mut arg_path = None;
+    pat.walk(|pat| match pat.kind {
+        PatKind::Struct(QPath::Resolved(_, path), _, _)
+        | PatKind::TupleStruct(QPath::Resolved(_, path), _, _)
+        | PatKind::Path(QPath::Resolved(_, path))
+            if is_arg_in_path(path) =>
+        {
+            arg_path = Some(path);
+            false
+        }
+        _ => true,
+    });
+    arg_path
+}
+
+pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
+    let def_id = def_id.expect_local();
+    use rustc_hir::*;
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+    let icx = ItemCtxt::new(tcx, def_id.to_def_id());
+
+    match tcx.hir().get(hir_id) {
+        Node::TraitItem(item) => match item.kind {
+            TraitItemKind::Fn(..) => {
+                let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                tcx.mk_fn_def(def_id.to_def_id(), substs)
+            }
+            TraitItemKind::Const(ty, body_id) => body_id
+                .and_then(|body_id| {
+                    if is_suggestable_infer_ty(ty) {
+                        Some(infer_placeholder_type(
+                            tcx, def_id, body_id, ty.span, item.ident, "constant",
+                        ))
+                    } else {
+                        None
+                    }
+                })
+                .unwrap_or_else(|| icx.to_ty(ty)),
+            TraitItemKind::Type(_, Some(ty)) => icx.to_ty(ty),
+            TraitItemKind::Type(_, None) => {
+                span_bug!(item.span, "associated type missing default");
+            }
+        },
+
+        Node::ImplItem(item) => match item.kind {
+            ImplItemKind::Fn(..) => {
+                let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                tcx.mk_fn_def(def_id.to_def_id(), substs)
+            }
+            ImplItemKind::Const(ty, body_id) => {
+                if is_suggestable_infer_ty(ty) {
+                    infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident, "constant")
+                } else {
+                    icx.to_ty(ty)
+                }
+            }
+            ImplItemKind::TyAlias(ty) => {
+                if tcx.impl_trait_ref(tcx.hir().get_parent_item(hir_id)).is_none() {
+                    check_feature_inherent_assoc_ty(tcx, item.span);
+                }
+
+                icx.to_ty(ty)
+            }
+        },
+
+        Node::Item(item) => {
+            match item.kind {
+                ItemKind::Static(ty, .., body_id) => {
+                    if is_suggestable_infer_ty(ty) {
+                        infer_placeholder_type(
+                            tcx,
+                            def_id,
+                            body_id,
+                            ty.span,
+                            item.ident,
+                            "static variable",
+                        )
+                    } else {
+                        icx.to_ty(ty)
+                    }
+                }
+                ItemKind::Const(ty, body_id) => {
+                    if is_suggestable_infer_ty(ty) {
+                        infer_placeholder_type(
+                            tcx, def_id, body_id, ty.span, item.ident, "constant",
+                        )
+                    } else {
+                        icx.to_ty(ty)
+                    }
+                }
+                ItemKind::TyAlias(self_ty, _) => icx.to_ty(self_ty),
+                ItemKind::Impl(hir::Impl { self_ty, .. }) => icx.to_ty(*self_ty),
+                ItemKind::Fn(..) => {
+                    let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                    tcx.mk_fn_def(def_id.to_def_id(), substs)
+                }
+                ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
+                    let def = tcx.adt_def(def_id);
+                    let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                    tcx.mk_adt(def, substs)
+                }
+                ItemKind::OpaqueTy(OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
+                    find_opaque_ty_constraints_for_tait(tcx, def_id)
+                }
+                // Opaque types desugared from `impl Trait`.
+                ItemKind::OpaqueTy(OpaqueTy { origin: hir::OpaqueTyOrigin::FnReturn(owner) | hir::OpaqueTyOrigin::AsyncFn(owner), in_trait, .. }) => {
+                    if in_trait {
+                        span_bug!(item.span, "impl-trait in trait has no default")
+                    } else {
+                        find_opaque_ty_constraints_for_rpit(tcx, def_id, owner)
+                    }
+                }
+                ItemKind::Trait(..)
+                | ItemKind::TraitAlias(..)
+                | ItemKind::Macro(..)
+                | ItemKind::Mod(..)
+                | ItemKind::ForeignMod { .. }
+                | ItemKind::GlobalAsm(..)
+                | ItemKind::ExternCrate(..)
+                | ItemKind::Use(..) => {
+                    span_bug!(
+                        item.span,
+                        "compute_type_of_item: unexpected item type: {:?}",
+                        item.kind
+                    );
+                }
+            }
+        }
+
+        Node::ForeignItem(foreign_item) => match foreign_item.kind {
+            ForeignItemKind::Fn(..) => {
+                let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                tcx.mk_fn_def(def_id.to_def_id(), substs)
+            }
+            ForeignItemKind::Static(t, _) => icx.to_ty(t),
+            ForeignItemKind::Type => tcx.mk_foreign(def_id.to_def_id()),
+        },
+
+        Node::Ctor(&ref def) | Node::Variant(Variant { data: ref def, .. }) => match *def {
+            VariantData::Unit(..) | VariantData::Struct(..) => {
+                tcx.type_of(tcx.hir().get_parent_item(hir_id))
+            }
+            VariantData::Tuple(..) => {
+                let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                tcx.mk_fn_def(def_id.to_def_id(), substs)
+            }
+        },
+
+        Node::Field(field) => icx.to_ty(field.ty),
+
+        Node::Expr(&Expr { kind: ExprKind::Closure{..}, .. }) => tcx.typeck(def_id).node_type(hir_id),
+
+        Node::AnonConst(_) if let Some(param) = tcx.opt_const_param_of(def_id) => {
+            // We defer to `type_of` of the corresponding parameter
+            // for generic arguments.
+            tcx.type_of(param)
+        }
+
+        Node::AnonConst(_) => {
+            let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+            match parent_node {
+                Node::Ty(&Ty { kind: TyKind::Array(_, ref constant), .. })
+                | Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
+                    if constant.hir_id() == hir_id =>
+                {
+                    tcx.types.usize
+                }
+                Node::Ty(&Ty { kind: TyKind::Typeof(ref e), .. }) if e.hir_id == hir_id => {
+                    tcx.typeck(def_id).node_type(e.hir_id)
+                }
+
+                Node::Expr(&Expr { kind: ExprKind::ConstBlock(ref anon_const), .. })
+                    if anon_const.hir_id == hir_id =>
+                {
+                    let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
+                    substs.as_inline_const().ty()
+                }
+
+                Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
+                | Node::Item(&Item { kind: ItemKind::GlobalAsm(asm), .. })
+                    if asm.operands.iter().any(|(op, _op_sp)| match op {
+                        hir::InlineAsmOperand::Const { anon_const }
+                        | hir::InlineAsmOperand::SymFn { anon_const } => anon_const.hir_id == hir_id,
+                        _ => false,
+                    }) =>
+                {
+                    tcx.typeck(def_id).node_type(hir_id)
+                }
+
+                Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => tcx
+                    .adt_def(tcx.hir().get_parent_item(hir_id))
+                    .repr()
+                    .discr_type()
+                    .to_ty(tcx),
+
+                Node::TypeBinding(binding @ &TypeBinding { hir_id: binding_id, ..  })
+                    if let Node::TraitRef(trait_ref) = tcx.hir().get(
+                        tcx.hir().get_parent_node(binding_id)
+                    ) =>
+                {
+                  let Some(trait_def_id) = trait_ref.trait_def_id() else {
+                    return tcx.ty_error_with_message(DUMMY_SP, "Could not find trait");
+                  };
+                  let assoc_items = tcx.associated_items(trait_def_id);
+                  let assoc_item = assoc_items.find_by_name_and_kind(
+                    tcx, binding.ident, ty::AssocKind::Const, def_id.to_def_id(),
+                  );
+                  if let Some(assoc_item) = assoc_item {
+                    tcx.type_of(assoc_item.def_id)
+                  } else {
+                      // FIXME(associated_const_equality): add a useful error message here.
+                      tcx.ty_error_with_message(
+                        DUMMY_SP,
+                        "Could not find associated const on trait",
+                    )
+                  }
+                }
+
+                Node::GenericParam(&GenericParam {
+                    hir_id: param_hir_id,
+                    kind: GenericParamKind::Const { default: Some(ct), .. },
+                    ..
+                }) if ct.hir_id == hir_id => tcx.type_of(tcx.hir().local_def_id(param_hir_id)),
+
+                x =>
+                  tcx.ty_error_with_message(
+                    DUMMY_SP,
+                    &format!("unexpected const parent in type_of(): {x:?}"),
+                ),
+            }
+        }
+
+        Node::GenericParam(param) => match &param.kind {
+            GenericParamKind::Type { default: Some(ty), .. }
+            | GenericParamKind::Const { ty, .. } => icx.to_ty(ty),
+            x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
+        },
+
+        x => {
+            bug!("unexpected sort of node in type_of(): {:?}", x);
+        }
+    }
+}
+
+#[instrument(skip(tcx), level = "debug")]
+/// Checks "defining uses" of opaque `impl Trait` types to ensure that they meet the restrictions
+/// laid for "higher-order pattern unification".
+/// This ensures that inference is tractable.
+/// In particular, definitions of opaque types can only use other generics as arguments,
+/// and they cannot repeat an argument. Example:
+///
+/// ```ignore (illustrative)
+/// type Foo<A, B> = impl Bar<A, B>;
+///
+/// // Okay -- `Foo` is applied to two distinct, generic types.
+/// fn a<T, U>() -> Foo<T, U> { .. }
+///
+/// // Not okay -- `Foo` is applied to `T` twice.
+/// fn b<T>() -> Foo<T, T> { .. }
+///
+/// // Not okay -- `Foo` is applied to a non-generic type.
+/// fn b<T>() -> Foo<T, u32> { .. }
+/// ```
+///
+fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Ty<'_> {
+    use rustc_hir::{Expr, ImplItem, Item, TraitItem};
+
+    struct ConstraintLocator<'tcx> {
+        tcx: TyCtxt<'tcx>,
+
+        /// def_id of the opaque type whose defining uses are being checked
+        def_id: LocalDefId,
+
+        /// as we walk the defining uses, we are checking that all of them
+        /// define the same hidden type. This variable is set to `Some`
+        /// with the first type that we find, and then later types are
+        /// checked against it (we also carry the span of that first
+        /// type).
+        found: Option<ty::OpaqueHiddenType<'tcx>>,
+    }
+
+    impl ConstraintLocator<'_> {
+        #[instrument(skip(self), level = "debug")]
+        fn check(&mut self, item_def_id: LocalDefId) {
+            // Don't try to check items that cannot possibly constrain the type.
+            if !self.tcx.has_typeck_results(item_def_id) {
+                debug!("no constraint: no typeck results");
+                return;
+            }
+            // Calling `mir_borrowck` can lead to cycle errors through
+            // const-checking, avoid calling it if we don't have to.
+            // ```rust
+            // type Foo = impl Fn() -> usize; // when computing type for this
+            // const fn bar() -> Foo {
+            //     || 0usize
+            // }
+            // const BAZR: Foo = bar(); // we would mir-borrowck this, causing cycles
+            // // because we again need to reveal `Foo` so we can check whether the
+            // // constant does not contain interior mutability.
+            // ```
+            let tables = self.tcx.typeck(item_def_id);
+            if let Some(_) = tables.tainted_by_errors {
+                self.found = Some(ty::OpaqueHiddenType { span: DUMMY_SP, ty: self.tcx.ty_error() });
+                return;
+            }
+            if !tables.concrete_opaque_types.contains_key(&self.def_id) {
+                debug!("no constraints in typeck results");
+                return;
+            }
+            // Use borrowck to get the type with unerased regions.
+            let concrete_opaque_types = &self.tcx.mir_borrowck(item_def_id).concrete_opaque_types;
+            debug!(?concrete_opaque_types);
+            if let Some(&concrete_type) = concrete_opaque_types.get(&self.def_id) {
+                debug!(?concrete_type, "found constraint");
+                if let Some(prev) = self.found {
+                    if concrete_type.ty != prev.ty && !(concrete_type, prev).references_error() {
+                        prev.report_mismatch(&concrete_type, self.tcx);
+                    }
+                } else {
+                    self.found = Some(concrete_type);
+                }
+            }
+        }
+    }
+
+    impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
+        type NestedFilter = nested_filter::All;
+
+        fn nested_visit_map(&mut self) -> Self::Map {
+            self.tcx.hir()
+        }
+        fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
+            if let hir::ExprKind::Closure { .. } = ex.kind {
+                let def_id = self.tcx.hir().local_def_id(ex.hir_id);
+                self.check(def_id);
+            }
+            intravisit::walk_expr(self, ex);
+        }
+        fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
+            trace!(?it.def_id);
+            // The opaque type itself or its children are not within its reveal scope.
+            if it.def_id.def_id != self.def_id {
+                self.check(it.def_id.def_id);
+                intravisit::walk_item(self, it);
+            }
+        }
+        fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
+            trace!(?it.def_id);
+            // The opaque type itself or its children are not within its reveal scope.
+            if it.def_id.def_id != self.def_id {
+                self.check(it.def_id.def_id);
+                intravisit::walk_impl_item(self, it);
+            }
+        }
+        fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
+            trace!(?it.def_id);
+            self.check(it.def_id.def_id);
+            intravisit::walk_trait_item(self, it);
+        }
+    }
+
+    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+    let scope = tcx.hir().get_defining_scope(hir_id);
+    let mut locator = ConstraintLocator { def_id: def_id, tcx, found: None };
+
+    debug!(?scope);
+
+    if scope == hir::CRATE_HIR_ID {
+        tcx.hir().walk_toplevel_module(&mut locator);
+    } else {
+        trace!("scope={:#?}", tcx.hir().get(scope));
+        match tcx.hir().get(scope) {
+            // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
+            // This allows our visitor to process the defining item itself, causing
+            // it to pick up any 'sibling' defining uses.
+            //
+            // For example, this code:
+            // ```
+            // fn foo() {
+            //     type Blah = impl Debug;
+            //     let my_closure = || -> Blah { true };
+            // }
+            // ```
+            //
+            // requires us to explicitly process `foo()` in order
+            // to notice the defining usage of `Blah`.
+            Node::Item(it) => locator.visit_item(it),
+            Node::ImplItem(it) => locator.visit_impl_item(it),
+            Node::TraitItem(it) => locator.visit_trait_item(it),
+            other => bug!("{:?} is not a valid scope for an opaque type item", other),
+        }
+    }
+
+    match locator.found {
+        Some(hidden) => hidden.ty,
+        None => {
+            tcx.sess.emit_err(UnconstrainedOpaqueType {
+                span: tcx.def_span(def_id),
+                name: tcx.item_name(tcx.local_parent(def_id).to_def_id()),
+            });
+            tcx.ty_error()
+        }
+    }
+}
+
+fn find_opaque_ty_constraints_for_rpit(
+    tcx: TyCtxt<'_>,
+    def_id: LocalDefId,
+    owner_def_id: LocalDefId,
+) -> Ty<'_> {
+    use rustc_hir::{Expr, ImplItem, Item, TraitItem};
+
+    struct ConstraintChecker<'tcx> {
+        tcx: TyCtxt<'tcx>,
+
+        /// def_id of the opaque type whose defining uses are being checked
+        def_id: LocalDefId,
+
+        found: ty::OpaqueHiddenType<'tcx>,
+    }
+
+    impl ConstraintChecker<'_> {
+        #[instrument(skip(self), level = "debug")]
+        fn check(&self, def_id: LocalDefId) {
+            // Use borrowck to get the type with unerased regions.
+            let concrete_opaque_types = &self.tcx.mir_borrowck(def_id).concrete_opaque_types;
+            debug!(?concrete_opaque_types);
+            for &(def_id, concrete_type) in concrete_opaque_types {
+                if def_id != self.def_id {
+                    // Ignore constraints for other opaque types.
+                    continue;
+                }
+
+                debug!(?concrete_type, "found constraint");
+
+                if concrete_type.ty != self.found.ty
+                    && !(concrete_type, self.found).references_error()
+                {
+                    self.found.report_mismatch(&concrete_type, self.tcx);
+                }
+            }
+        }
+    }
+
+    impl<'tcx> intravisit::Visitor<'tcx> for ConstraintChecker<'tcx> {
+        type NestedFilter = nested_filter::OnlyBodies;
+
+        fn nested_visit_map(&mut self) -> Self::Map {
+            self.tcx.hir()
+        }
+        fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
+            if let hir::ExprKind::Closure { .. } = ex.kind {
+                let def_id = self.tcx.hir().local_def_id(ex.hir_id);
+                self.check(def_id);
+            }
+            intravisit::walk_expr(self, ex);
+        }
+        fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
+            trace!(?it.def_id);
+            // The opaque type itself or its children are not within its reveal scope.
+            if it.def_id.def_id != self.def_id {
+                self.check(it.def_id.def_id);
+                intravisit::walk_item(self, it);
+            }
+        }
+        fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
+            trace!(?it.def_id);
+            // The opaque type itself or its children are not within its reveal scope.
+            if it.def_id.def_id != self.def_id {
+                self.check(it.def_id.def_id);
+                intravisit::walk_impl_item(self, it);
+            }
+        }
+        fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
+            trace!(?it.def_id);
+            self.check(it.def_id.def_id);
+            intravisit::walk_trait_item(self, it);
+        }
+    }
+
+    let concrete = tcx.mir_borrowck(owner_def_id).concrete_opaque_types.get(&def_id).copied();
+
+    if let Some(concrete) = concrete {
+        let scope = tcx.hir().local_def_id_to_hir_id(owner_def_id);
+        debug!(?scope);
+        let mut locator = ConstraintChecker { def_id: def_id, tcx, found: concrete };
+
+        match tcx.hir().get(scope) {
+            Node::Item(it) => intravisit::walk_item(&mut locator, it),
+            Node::ImplItem(it) => intravisit::walk_impl_item(&mut locator, it),
+            Node::TraitItem(it) => intravisit::walk_trait_item(&mut locator, it),
+            other => bug!("{:?} is not a valid scope for an opaque type item", other),
+        }
+    }
+
+    concrete.map(|concrete| concrete.ty).unwrap_or_else(|| {
+        let table = tcx.typeck(owner_def_id);
+        if let Some(_) = table.tainted_by_errors {
+            // Some error in the
+            // owner fn prevented us from populating
+            // the `concrete_opaque_types` table.
+            tcx.ty_error()
+        } else {
+            table
+                .concrete_opaque_types
+                .get(&def_id)
+                .copied()
+                .unwrap_or_else(|| {
+                    // We failed to resolve the opaque type or it
+                    // resolves to itself. We interpret this as the
+                    // no values of the hidden type ever being constructed,
+                    // so we can just make the hidden type be `!`.
+                    // For backwards compatibility reasons, we fall back to
+                    // `()` until we the diverging default is changed.
+                    Some(tcx.mk_diverging_default())
+                })
+                .expect("RPIT always have a hidden type from typeck")
+        }
+    })
+}
+
+fn infer_placeholder_type<'a>(
+    tcx: TyCtxt<'a>,
+    def_id: LocalDefId,
+    body_id: hir::BodyId,
+    span: Span,
+    item_ident: Ident,
+    kind: &'static str,
+) -> Ty<'a> {
+    // Attempts to make the type nameable by turning FnDefs into FnPtrs.
+    struct MakeNameable<'tcx> {
+        success: bool,
+        tcx: TyCtxt<'tcx>,
+    }
+
+    impl<'tcx> MakeNameable<'tcx> {
+        fn new(tcx: TyCtxt<'tcx>) -> Self {
+            MakeNameable { success: true, tcx }
+        }
+    }
+
+    impl<'tcx> TypeFolder<'tcx> for MakeNameable<'tcx> {
+        fn tcx(&self) -> TyCtxt<'tcx> {
+            self.tcx
+        }
+
+        fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+            if !self.success {
+                return ty;
+            }
+
+            match ty.kind() {
+                ty::FnDef(def_id, _) => self.tcx.mk_fn_ptr(self.tcx.fn_sig(*def_id)),
+                // FIXME: non-capturing closures should also suggest a function pointer
+                ty::Closure(..) | ty::Generator(..) => {
+                    self.success = false;
+                    ty
+                }
+                _ => ty.super_fold_with(self),
+            }
+        }
+    }
+
+    let ty = tcx.diagnostic_only_typeck(def_id).node_type(body_id.hir_id);
+
+    // If this came from a free `const` or `static mut?` item,
+    // then the user may have written e.g. `const A = 42;`.
+    // In this case, the parser has stashed a diagnostic for
+    // us to improve in typeck so we do that now.
+    match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
+        Some(mut err) => {
+            if !ty.references_error() {
+                // Only suggest adding `:` if it was missing (and suggested by parsing diagnostic)
+                let colon = if span == item_ident.span.shrink_to_hi() { ":" } else { "" };
+
+                // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
+                // We are typeck and have the real type, so remove that and suggest the actual type.
+                // FIXME(eddyb) this looks like it should be functionality on `Diagnostic`.
+                if let Ok(suggestions) = &mut err.suggestions {
+                    suggestions.clear();
+                }
+
+                // Suggesting unnameable types won't help.
+                let mut mk_nameable = MakeNameable::new(tcx);
+                let ty = mk_nameable.fold_ty(ty);
+                let sugg_ty = if mk_nameable.success { Some(ty) } else { None };
+                if let Some(sugg_ty) = sugg_ty {
+                    err.span_suggestion(
+                        span,
+                        &format!("provide a type for the {item}", item = kind),
+                        format!("{colon} {sugg_ty}"),
+                        Applicability::MachineApplicable,
+                    );
+                } else {
+                    err.span_note(
+                        tcx.hir().body(body_id).value.span,
+                        &format!("however, the inferred type `{}` cannot be named", ty),
+                    );
+                }
+            }
+
+            err.emit();
+        }
+        None => {
+            let mut diag = bad_placeholder(tcx, vec![span], kind);
+
+            if !ty.references_error() {
+                let mut mk_nameable = MakeNameable::new(tcx);
+                let ty = mk_nameable.fold_ty(ty);
+                let sugg_ty = if mk_nameable.success { Some(ty) } else { None };
+                if let Some(sugg_ty) = sugg_ty {
+                    diag.span_suggestion(
+                        span,
+                        "replace with the correct type",
+                        sugg_ty,
+                        Applicability::MaybeIncorrect,
+                    );
+                } else {
+                    diag.span_note(
+                        tcx.hir().body(body_id).value.span,
+                        &format!("however, the inferred type `{}` cannot be named", ty),
+                    );
+                }
+            }
+
+            diag.emit();
+        }
+    }
+
+    // Typeck doesn't expect erased regions to be returned from `type_of`.
+    tcx.fold_regions(ty, |r, _| match *r {
+        ty::ReErased => tcx.lifetimes.re_static,
+        _ => r,
+    })
+}
+
+fn check_feature_inherent_assoc_ty(tcx: TyCtxt<'_>, span: Span) {
+    if !tcx.features().inherent_associated_types {
+        use rustc_session::parse::feature_err;
+        use rustc_span::symbol::sym;
+        feature_err(
+            &tcx.sess.parse_sess,
+            sym::inherent_associated_types,
+            span,
+            "inherent associated types are unstable",
+        )
+        .emit();
+    }
+}