about summary refs log tree commit diff
path: root/compiler/rustc_middle/src/mir/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/mir/mod.rs')
-rw-r--r--compiler/rustc_middle/src/mir/mod.rs2600
1 files changed, 2600 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/mir/mod.rs b/compiler/rustc_middle/src/mir/mod.rs
new file mode 100644
index 00000000000..785a7f0c51a
--- /dev/null
+++ b/compiler/rustc_middle/src/mir/mod.rs
@@ -0,0 +1,2600 @@
+//! MIR datatypes and passes. See the [rustc dev guide] for more info.
+//!
+//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
+
+use crate::mir::coverage::{CodeRegion, CoverageKind};
+use crate::mir::interpret::{Allocation, ConstValue, GlobalAlloc, Scalar};
+use crate::mir::visit::MirVisitable;
+use crate::ty::adjustment::PointerCast;
+use crate::ty::codec::{TyDecoder, TyEncoder};
+use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor};
+use crate::ty::print::{FmtPrinter, Printer};
+use crate::ty::subst::{Subst, SubstsRef};
+use crate::ty::{
+    self, AdtDef, CanonicalUserTypeAnnotations, List, Region, Ty, TyCtxt, UserTypeAnnotationIndex,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, Namespace};
+use rustc_hir::def_id::DefId;
+use rustc_hir::{self, GeneratorKind};
+use rustc_target::abi::VariantIdx;
+
+use polonius_engine::Atom;
+pub use rustc_ast::Mutability;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::graph::dominators::{dominators, Dominators};
+use rustc_data_structures::graph::{self, GraphSuccessors};
+use rustc_index::bit_set::BitMatrix;
+use rustc_index::vec::{Idx, IndexVec};
+use rustc_serialize::{Decodable, Encodable};
+use rustc_span::symbol::Symbol;
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::abi;
+use rustc_target::asm::InlineAsmRegOrRegClass;
+use std::borrow::Cow;
+use std::fmt::{self, Debug, Display, Formatter, Write};
+use std::ops::{Index, IndexMut};
+use std::slice;
+use std::{iter, mem, option};
+
+use self::predecessors::{PredecessorCache, Predecessors};
+pub use self::query::*;
+
+pub mod coverage;
+pub mod interpret;
+pub mod mono;
+mod predecessors;
+mod query;
+pub mod tcx;
+pub mod terminator;
+pub use terminator::*;
+pub mod traversal;
+mod type_foldable;
+pub mod visit;
+
+/// Types for locals
+type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;
+
+pub trait HasLocalDecls<'tcx> {
+    fn local_decls(&self) -> &LocalDecls<'tcx>;
+}
+
+impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
+    fn local_decls(&self) -> &LocalDecls<'tcx> {
+        self
+    }
+}
+
+impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
+    fn local_decls(&self) -> &LocalDecls<'tcx> {
+        &self.local_decls
+    }
+}
+
+/// The various "big phases" that MIR goes through.
+///
+/// These phases all describe dialects of MIR. Since all MIR uses the same datastructures, the
+/// dialects forbid certain variants or values in certain phases.
+///
+/// Note: Each phase's validation checks all invariants of the *previous* phases' dialects. A phase
+/// that changes the dialect documents what invariants must be upheld *after* that phase finishes.
+///
+/// Warning: ordering of variants is significant.
+#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)]
+#[derive(HashStable)]
+pub enum MirPhase {
+    Build = 0,
+    // FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query).
+    // We used to have this for pre-miri MIR based const eval.
+    Const = 1,
+    /// This phase checks the MIR for promotable elements and takes them out of the main MIR body
+    /// by creating a new MIR body per promoted element. After this phase (and thus the termination
+    /// of the `mir_promoted` query), these promoted elements are available in the `promoted_mir`
+    /// query.
+    ConstPromotion = 2,
+    /// After this phase
+    /// * the only `AggregateKind`s allowed are `Array` and `Generator`,
+    /// * `DropAndReplace` is gone for good
+    /// * `Drop` now uses explicit drop flags visible in the MIR and reaching a `Drop` terminator
+    ///   means that the auto-generated drop glue will be invoked.
+    DropLowering = 3,
+    /// After this phase, generators are explicit state machines (no more `Yield`).
+    /// `AggregateKind::Generator` is gone for good.
+    GeneratorLowering = 4,
+    Optimization = 5,
+}
+
+impl MirPhase {
+    /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
+    pub fn phase_index(&self) -> usize {
+        *self as usize
+    }
+}
+
+/// The lowered representation of a single function.
+#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
+pub struct Body<'tcx> {
+    /// A list of basic blocks. References to basic block use a newtyped index type `BasicBlock`
+    /// that indexes into this vector.
+    basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+
+    /// Records how far through the "desugaring and optimization" process this particular
+    /// MIR has traversed. This is particularly useful when inlining, since in that context
+    /// we instantiate the promoted constants and add them to our promoted vector -- but those
+    /// promoted items have already been optimized, whereas ours have not. This field allows
+    /// us to see the difference and forego optimization on the inlined promoted items.
+    pub phase: MirPhase,
+
+    /// A list of source scopes; these are referenced by statements
+    /// and used for debuginfo. Indexed by a `SourceScope`.
+    pub source_scopes: IndexVec<SourceScope, SourceScopeData>,
+
+    /// The yield type of the function, if it is a generator.
+    pub yield_ty: Option<Ty<'tcx>>,
+
+    /// Generator drop glue.
+    pub generator_drop: Option<Box<Body<'tcx>>>,
+
+    /// The layout of a generator. Produced by the state transformation.
+    pub generator_layout: Option<GeneratorLayout<'tcx>>,
+
+    /// If this is a generator then record the type of source expression that caused this generator
+    /// to be created.
+    pub generator_kind: Option<GeneratorKind>,
+
+    /// Declarations of locals.
+    ///
+    /// The first local is the return value pointer, followed by `arg_count`
+    /// locals for the function arguments, followed by any user-declared
+    /// variables and temporaries.
+    pub local_decls: LocalDecls<'tcx>,
+
+    /// User type annotations.
+    pub user_type_annotations: CanonicalUserTypeAnnotations<'tcx>,
+
+    /// The number of arguments this function takes.
+    ///
+    /// Starting at local 1, `arg_count` locals will be provided by the caller
+    /// and can be assumed to be initialized.
+    ///
+    /// If this MIR was built for a constant, this will be 0.
+    pub arg_count: usize,
+
+    /// Mark an argument local (which must be a tuple) as getting passed as
+    /// its individual components at the LLVM level.
+    ///
+    /// This is used for the "rust-call" ABI.
+    pub spread_arg: Option<Local>,
+
+    /// Debug information pertaining to user variables, including captures.
+    pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
+
+    /// A span representing this MIR, for error reporting.
+    pub span: Span,
+
+    /// Constants that are required to evaluate successfully for this MIR to be well-formed.
+    /// We hold in this field all the constants we are not able to evaluate yet.
+    pub required_consts: Vec<Constant<'tcx>>,
+
+    /// The user may be writing e.g. `&[(SOME_CELL, 42)][i].1` and this would get promoted, because
+    /// we'd statically know that no thing with interior mutability will ever be available to the
+    /// user without some serious unsafe code.  Now this means that our promoted is actually
+    /// `&[(SOME_CELL, 42)]` and the MIR using it will do the `&promoted[i].1` projection because
+    /// the index may be a runtime value. Such a promoted value is illegal because it has reachable
+    /// interior mutability. This flag just makes this situation very obvious where the previous
+    /// implementation without the flag hid this situation silently.
+    /// FIXME(oli-obk): rewrite the promoted during promotion to eliminate the cell components.
+    pub ignore_interior_mut_in_const_validation: bool,
+
+    predecessor_cache: PredecessorCache,
+}
+
+impl<'tcx> Body<'tcx> {
+    pub fn new(
+        basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+        source_scopes: IndexVec<SourceScope, SourceScopeData>,
+        local_decls: LocalDecls<'tcx>,
+        user_type_annotations: CanonicalUserTypeAnnotations<'tcx>,
+        arg_count: usize,
+        var_debug_info: Vec<VarDebugInfo<'tcx>>,
+        span: Span,
+        generator_kind: Option<GeneratorKind>,
+    ) -> Self {
+        // We need `arg_count` locals, and one for the return place.
+        assert!(
+            local_decls.len() > arg_count,
+            "expected at least {} locals, got {}",
+            arg_count + 1,
+            local_decls.len()
+        );
+
+        Body {
+            phase: MirPhase::Build,
+            basic_blocks,
+            source_scopes,
+            yield_ty: None,
+            generator_drop: None,
+            generator_layout: None,
+            generator_kind,
+            local_decls,
+            user_type_annotations,
+            arg_count,
+            spread_arg: None,
+            var_debug_info,
+            span,
+            required_consts: Vec::new(),
+            ignore_interior_mut_in_const_validation: false,
+            predecessor_cache: PredecessorCache::new(),
+        }
+    }
+
+    /// Returns a partially initialized MIR body containing only a list of basic blocks.
+    ///
+    /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
+    /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
+    /// crate.
+    pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
+        Body {
+            phase: MirPhase::Build,
+            basic_blocks,
+            source_scopes: IndexVec::new(),
+            yield_ty: None,
+            generator_drop: None,
+            generator_layout: None,
+            local_decls: IndexVec::new(),
+            user_type_annotations: IndexVec::new(),
+            arg_count: 0,
+            spread_arg: None,
+            span: DUMMY_SP,
+            required_consts: Vec::new(),
+            generator_kind: None,
+            var_debug_info: Vec::new(),
+            ignore_interior_mut_in_const_validation: false,
+            predecessor_cache: PredecessorCache::new(),
+        }
+    }
+
+    #[inline]
+    pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
+        &self.basic_blocks
+    }
+
+    #[inline]
+    pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
+        // Because the user could mutate basic block terminators via this reference, we need to
+        // invalidate the predecessor cache.
+        //
+        // FIXME: Use a finer-grained API for this, so only transformations that alter terminators
+        // invalidate the predecessor cache.
+        self.predecessor_cache.invalidate();
+        &mut self.basic_blocks
+    }
+
+    #[inline]
+    pub fn basic_blocks_and_local_decls_mut(
+        &mut self,
+    ) -> (&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, &mut LocalDecls<'tcx>) {
+        self.predecessor_cache.invalidate();
+        (&mut self.basic_blocks, &mut self.local_decls)
+    }
+
+    #[inline]
+    pub fn basic_blocks_local_decls_mut_and_var_debug_info(
+        &mut self,
+    ) -> (
+        &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+        &mut LocalDecls<'tcx>,
+        &mut Vec<VarDebugInfo<'tcx>>,
+    ) {
+        self.predecessor_cache.invalidate();
+        (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info)
+    }
+
+    /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the
+    /// `START_BLOCK`.
+    pub fn is_cfg_cyclic(&self) -> bool {
+        graph::is_cyclic(self)
+    }
+
+    #[inline]
+    pub fn local_kind(&self, local: Local) -> LocalKind {
+        let index = local.as_usize();
+        if index == 0 {
+            debug_assert!(
+                self.local_decls[local].mutability == Mutability::Mut,
+                "return place should be mutable"
+            );
+
+            LocalKind::ReturnPointer
+        } else if index < self.arg_count + 1 {
+            LocalKind::Arg
+        } else if self.local_decls[local].is_user_variable() {
+            LocalKind::Var
+        } else {
+            LocalKind::Temp
+        }
+    }
+
+    /// Returns an iterator over all temporaries.
+    #[inline]
+    pub fn temps_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
+        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
+            let local = Local::new(index);
+            if self.local_decls[local].is_user_variable() { None } else { Some(local) }
+        })
+    }
+
+    /// Returns an iterator over all user-declared locals.
+    #[inline]
+    pub fn vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
+        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
+            let local = Local::new(index);
+            self.local_decls[local].is_user_variable().then_some(local)
+        })
+    }
+
+    /// Returns an iterator over all user-declared mutable locals.
+    #[inline]
+    pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
+        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
+            let local = Local::new(index);
+            let decl = &self.local_decls[local];
+            if decl.is_user_variable() && decl.mutability == Mutability::Mut {
+                Some(local)
+            } else {
+                None
+            }
+        })
+    }
+
+    /// Returns an iterator over all user-declared mutable arguments and locals.
+    #[inline]
+    pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
+        (1..self.local_decls.len()).filter_map(move |index| {
+            let local = Local::new(index);
+            let decl = &self.local_decls[local];
+            if (decl.is_user_variable() || index < self.arg_count + 1)
+                && decl.mutability == Mutability::Mut
+            {
+                Some(local)
+            } else {
+                None
+            }
+        })
+    }
+
+    /// Returns an iterator over all function arguments.
+    #[inline]
+    pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
+        let arg_count = self.arg_count;
+        (1..arg_count + 1).map(Local::new)
+    }
+
+    /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
+    /// locals that are neither arguments nor the return place).
+    #[inline]
+    pub fn vars_and_temps_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
+        let arg_count = self.arg_count;
+        let local_count = self.local_decls.len();
+        (arg_count + 1..local_count).map(Local::new)
+    }
+
+    /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
+    /// invalidating statement indices in `Location`s.
+    pub fn make_statement_nop(&mut self, location: Location) {
+        let block = &mut self.basic_blocks[location.block];
+        debug_assert!(location.statement_index < block.statements.len());
+        block.statements[location.statement_index].make_nop()
+    }
+
+    /// Returns the source info associated with `location`.
+    pub fn source_info(&self, location: Location) -> &SourceInfo {
+        let block = &self[location.block];
+        let stmts = &block.statements;
+        let idx = location.statement_index;
+        if idx < stmts.len() {
+            &stmts[idx].source_info
+        } else {
+            assert_eq!(idx, stmts.len());
+            &block.terminator().source_info
+        }
+    }
+
+    /// Checks if `sub` is a sub scope of `sup`
+    pub fn is_sub_scope(&self, mut sub: SourceScope, sup: SourceScope) -> bool {
+        while sub != sup {
+            match self.source_scopes[sub].parent_scope {
+                None => return false,
+                Some(p) => sub = p,
+            }
+        }
+        true
+    }
+
+    /// Returns the return type; it always return first element from `local_decls` array.
+    #[inline]
+    pub fn return_ty(&self) -> Ty<'tcx> {
+        self.local_decls[RETURN_PLACE].ty
+    }
+
+    /// Gets the location of the terminator for the given block.
+    #[inline]
+    pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
+        Location { block: bb, statement_index: self[bb].statements.len() }
+    }
+
+    #[inline]
+    pub fn predecessors(&self) -> impl std::ops::Deref<Target = Predecessors> + '_ {
+        self.predecessor_cache.compute(&self.basic_blocks)
+    }
+
+    #[inline]
+    pub fn dominators(&self) -> Dominators<BasicBlock> {
+        dominators(self)
+    }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)]
+pub enum Safety {
+    Safe,
+    /// Unsafe because of a PushUnsafeBlock
+    BuiltinUnsafe,
+    /// Unsafe because of an unsafe fn
+    FnUnsafe,
+    /// Unsafe because of an `unsafe` block
+    ExplicitUnsafe(hir::HirId),
+}
+
+impl<'tcx> Index<BasicBlock> for Body<'tcx> {
+    type Output = BasicBlockData<'tcx>;
+
+    #[inline]
+    fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
+        &self.basic_blocks()[index]
+    }
+}
+
+impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
+    #[inline]
+    fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
+        &mut self.basic_blocks_mut()[index]
+    }
+}
+
+#[derive(Copy, Clone, Debug, HashStable, TypeFoldable)]
+pub enum ClearCrossCrate<T> {
+    Clear,
+    Set(T),
+}
+
+impl<T> ClearCrossCrate<T> {
+    pub fn as_ref(&self) -> ClearCrossCrate<&T> {
+        match self {
+            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
+            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
+        }
+    }
+
+    pub fn assert_crate_local(self) -> T {
+        match self {
+            ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
+            ClearCrossCrate::Set(v) => v,
+        }
+    }
+}
+
+const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
+const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
+
+impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
+    #[inline]
+    fn encode(&self, e: &mut E) -> Result<(), E::Error> {
+        if E::CLEAR_CROSS_CRATE {
+            return Ok(());
+        }
+
+        match *self {
+            ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
+            ClearCrossCrate::Set(ref val) => {
+                TAG_CLEAR_CROSS_CRATE_SET.encode(e)?;
+                val.encode(e)
+            }
+        }
+    }
+}
+impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
+    #[inline]
+    fn decode(d: &mut D) -> Result<ClearCrossCrate<T>, D::Error> {
+        if D::CLEAR_CROSS_CRATE {
+            return Ok(ClearCrossCrate::Clear);
+        }
+
+        let discr = u8::decode(d)?;
+
+        match discr {
+            TAG_CLEAR_CROSS_CRATE_CLEAR => Ok(ClearCrossCrate::Clear),
+            TAG_CLEAR_CROSS_CRATE_SET => {
+                let val = T::decode(d)?;
+                Ok(ClearCrossCrate::Set(val))
+            }
+            tag => Err(d.error(&format!("Invalid tag for ClearCrossCrate: {:?}", tag))),
+        }
+    }
+}
+
+/// Grouped information about the source code origin of a MIR entity.
+/// Intended to be inspected by diagnostics and debuginfo.
+/// Most passes can work with it as a whole, within a single function.
+// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
+// `Hash`. Please ping @bjorn3 if removing them.
+#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
+pub struct SourceInfo {
+    /// The source span for the AST pertaining to this MIR entity.
+    pub span: Span,
+
+    /// The source scope, keeping track of which bindings can be
+    /// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
+    pub scope: SourceScope,
+}
+
+impl SourceInfo {
+    #[inline]
+    pub fn outermost(span: Span) -> Self {
+        SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Borrow kinds
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, TyEncodable, TyDecodable)]
+#[derive(HashStable)]
+pub enum BorrowKind {
+    /// Data must be immutable and is aliasable.
+    Shared,
+
+    /// The immediately borrowed place must be immutable, but projections from
+    /// it don't need to be. For example, a shallow borrow of `a.b` doesn't
+    /// conflict with a mutable borrow of `a.b.c`.
+    ///
+    /// This is used when lowering matches: when matching on a place we want to
+    /// ensure that place have the same value from the start of the match until
+    /// an arm is selected. This prevents this code from compiling:
+    ///
+    ///     let mut x = &Some(0);
+    ///     match *x {
+    ///         None => (),
+    ///         Some(_) if { x = &None; false } => (),
+    ///         Some(_) => (),
+    ///     }
+    ///
+    /// This can't be a shared borrow because mutably borrowing (*x as Some).0
+    /// should not prevent `if let None = x { ... }`, for example, because the
+    /// mutating `(*x as Some).0` can't affect the discriminant of `x`.
+    /// We can also report errors with this kind of borrow differently.
+    Shallow,
+
+    /// Data must be immutable but not aliasable. This kind of borrow
+    /// cannot currently be expressed by the user and is used only in
+    /// implicit closure bindings. It is needed when the closure is
+    /// borrowing or mutating a mutable referent, e.g.:
+    ///
+    ///     let x: &mut isize = ...;
+    ///     let y = || *x += 5;
+    ///
+    /// If we were to try to translate this closure into a more explicit
+    /// form, we'd encounter an error with the code as written:
+    ///
+    ///     struct Env { x: & &mut isize }
+    ///     let x: &mut isize = ...;
+    ///     let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
+    ///     fn fn_ptr(env: &mut Env) { **env.x += 5; }
+    ///
+    /// This is then illegal because you cannot mutate an `&mut` found
+    /// in an aliasable location. To solve, you'd have to translate with
+    /// an `&mut` borrow:
+    ///
+    ///     struct Env { x: & &mut isize }
+    ///     let x: &mut isize = ...;
+    ///     let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
+    ///     fn fn_ptr(env: &mut Env) { **env.x += 5; }
+    ///
+    /// Now the assignment to `**env.x` is legal, but creating a
+    /// mutable pointer to `x` is not because `x` is not mutable. We
+    /// could fix this by declaring `x` as `let mut x`. This is ok in
+    /// user code, if awkward, but extra weird for closures, since the
+    /// borrow is hidden.
+    ///
+    /// So we introduce a "unique imm" borrow -- the referent is
+    /// immutable, but not aliasable. This solves the problem. For
+    /// simplicity, we don't give users the way to express this
+    /// borrow, it's just used when translating closures.
+    Unique,
+
+    /// Data is mutable and not aliasable.
+    Mut {
+        /// `true` if this borrow arose from method-call auto-ref
+        /// (i.e., `adjustment::Adjust::Borrow`).
+        allow_two_phase_borrow: bool,
+    },
+}
+
+impl BorrowKind {
+    pub fn allows_two_phase_borrow(&self) -> bool {
+        match *self {
+            BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
+            BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Variables and temps
+
+rustc_index::newtype_index! {
+    pub struct Local {
+        derive [HashStable]
+        DEBUG_FORMAT = "_{}",
+        const RETURN_PLACE = 0,
+    }
+}
+
+impl Atom for Local {
+    fn index(self) -> usize {
+        Idx::index(self)
+    }
+}
+
+/// Classifies locals into categories. See `Body::local_kind`.
+#[derive(PartialEq, Eq, Debug, HashStable)]
+pub enum LocalKind {
+    /// User-declared variable binding.
+    Var,
+    /// Compiler-introduced temporary.
+    Temp,
+    /// Function argument.
+    Arg,
+    /// Location of function's return value.
+    ReturnPointer,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct VarBindingForm<'tcx> {
+    /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
+    pub binding_mode: ty::BindingMode,
+    /// If an explicit type was provided for this variable binding,
+    /// this holds the source Span of that type.
+    ///
+    /// NOTE: if you want to change this to a `HirId`, be wary that
+    /// doing so breaks incremental compilation (as of this writing),
+    /// while a `Span` does not cause our tests to fail.
+    pub opt_ty_info: Option<Span>,
+    /// Place of the RHS of the =, or the subject of the `match` where this
+    /// variable is initialized. None in the case of `let PATTERN;`.
+    /// Some((None, ..)) in the case of and `let [mut] x = ...` because
+    /// (a) the right-hand side isn't evaluated as a place expression.
+    /// (b) it gives a way to separate this case from the remaining cases
+    ///     for diagnostics.
+    pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
+    /// The span of the pattern in which this variable was bound.
+    pub pat_span: Span,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable)]
+pub enum BindingForm<'tcx> {
+    /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
+    Var(VarBindingForm<'tcx>),
+    /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
+    ImplicitSelf(ImplicitSelfKind),
+    /// Reference used in a guard expression to ensure immutability.
+    RefForGuard,
+}
+
+/// Represents what type of implicit self a function has, if any.
+#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
+pub enum ImplicitSelfKind {
+    /// Represents a `fn x(self);`.
+    Imm,
+    /// Represents a `fn x(mut self);`.
+    Mut,
+    /// Represents a `fn x(&self);`.
+    ImmRef,
+    /// Represents a `fn x(&mut self);`.
+    MutRef,
+    /// Represents when a function does not have a self argument or
+    /// when a function has a `self: X` argument.
+    None,
+}
+
+CloneTypeFoldableAndLiftImpls! { BindingForm<'tcx>, }
+
+mod binding_form_impl {
+    use crate::ich::StableHashingContext;
+    use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
+
+    impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
+        fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
+            use super::BindingForm::*;
+            ::std::mem::discriminant(self).hash_stable(hcx, hasher);
+
+            match self {
+                Var(binding) => binding.hash_stable(hcx, hasher),
+                ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
+                RefForGuard => (),
+            }
+        }
+    }
+}
+
+/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
+/// created during evaluation of expressions in a block tail
+/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
+///
+/// It is used to improve diagnostics when such temporaries are
+/// involved in borrow_check errors, e.g., explanations of where the
+/// temporaries come from, when their destructors are run, and/or how
+/// one might revise the code to satisfy the borrow checker's rules.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct BlockTailInfo {
+    /// If `true`, then the value resulting from evaluating this tail
+    /// expression is ignored by the block's expression context.
+    ///
+    /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
+    /// but not e.g., `let _x = { ...; tail };`
+    pub tail_result_is_ignored: bool,
+
+    /// `Span` of the tail expression.
+    pub span: Span,
+}
+
+/// A MIR local.
+///
+/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
+/// argument, or the return place.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct LocalDecl<'tcx> {
+    /// Whether this is a mutable minding (i.e., `let x` or `let mut x`).
+    ///
+    /// Temporaries and the return place are always mutable.
+    pub mutability: Mutability,
+
+    // FIXME(matthewjasper) Don't store in this in `Body`
+    pub local_info: Option<Box<LocalInfo<'tcx>>>,
+
+    /// `true` if this is an internal local.
+    ///
+    /// These locals are not based on types in the source code and are only used
+    /// for a few desugarings at the moment.
+    ///
+    /// The generator transformation will sanity check the locals which are live
+    /// across a suspension point against the type components of the generator
+    /// which type checking knows are live across a suspension point. We need to
+    /// flag drop flags to avoid triggering this check as they are introduced
+    /// after typeck.
+    ///
+    /// Unsafety checking will also ignore dereferences of these locals,
+    /// so they can be used for raw pointers only used in a desugaring.
+    ///
+    /// This should be sound because the drop flags are fully algebraic, and
+    /// therefore don't affect the OIBIT or outlives properties of the
+    /// generator.
+    pub internal: bool,
+
+    /// If this local is a temporary and `is_block_tail` is `Some`,
+    /// then it is a temporary created for evaluation of some
+    /// subexpression of some block's tail expression (with no
+    /// intervening statement context).
+    // FIXME(matthewjasper) Don't store in this in `Body`
+    pub is_block_tail: Option<BlockTailInfo>,
+
+    /// The type of this local.
+    pub ty: Ty<'tcx>,
+
+    /// If the user manually ascribed a type to this variable,
+    /// e.g., via `let x: T`, then we carry that type here. The MIR
+    /// borrow checker needs this information since it can affect
+    /// region inference.
+    // FIXME(matthewjasper) Don't store in this in `Body`
+    pub user_ty: Option<Box<UserTypeProjections>>,
+
+    /// The *syntactic* (i.e., not visibility) source scope the local is defined
+    /// in. If the local was defined in a let-statement, this
+    /// is *within* the let-statement, rather than outside
+    /// of it.
+    ///
+    /// This is needed because the visibility source scope of locals within
+    /// a let-statement is weird.
+    ///
+    /// The reason is that we want the local to be *within* the let-statement
+    /// for lint purposes, but we want the local to be *after* the let-statement
+    /// for names-in-scope purposes.
+    ///
+    /// That's it, if we have a let-statement like the one in this
+    /// function:
+    ///
+    /// ```
+    /// fn foo(x: &str) {
+    ///     #[allow(unused_mut)]
+    ///     let mut x: u32 = { // <- one unused mut
+    ///         let mut y: u32 = x.parse().unwrap();
+    ///         y + 2
+    ///     };
+    ///     drop(x);
+    /// }
+    /// ```
+    ///
+    /// Then, from a lint point of view, the declaration of `x: u32`
+    /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
+    /// lint scopes are the same as the AST/HIR nesting.
+    ///
+    /// However, from a name lookup point of view, the scopes look more like
+    /// as if the let-statements were `match` expressions:
+    ///
+    /// ```
+    /// fn foo(x: &str) {
+    ///     match {
+    ///         match x.parse().unwrap() {
+    ///             y => y + 2
+    ///         }
+    ///     } {
+    ///         x => drop(x)
+    ///     };
+    /// }
+    /// ```
+    ///
+    /// We care about the name-lookup scopes for debuginfo - if the
+    /// debuginfo instruction pointer is at the call to `x.parse()`, we
+    /// want `x` to refer to `x: &str`, but if it is at the call to
+    /// `drop(x)`, we want it to refer to `x: u32`.
+    ///
+    /// To allow both uses to work, we need to have more than a single scope
+    /// for a local. We have the `source_info.scope` represent the "syntactic"
+    /// lint scope (with a variable being under its let block) while the
+    /// `var_debug_info.source_info.scope` represents the "local variable"
+    /// scope (where the "rest" of a block is under all prior let-statements).
+    ///
+    /// The end result looks like this:
+    ///
+    /// ```text
+    /// ROOT SCOPE
+    ///  │{ argument x: &str }
+    ///  │
+    ///  │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
+    ///  │ │                         // in practice because I'm lazy.
+    ///  │ │
+    ///  │ │← x.source_info.scope
+    ///  │ │← `x.parse().unwrap()`
+    ///  │ │
+    ///  │ │ │← y.source_info.scope
+    ///  │ │
+    ///  │ │ │{ let y: u32 }
+    ///  │ │ │
+    ///  │ │ │← y.var_debug_info.source_info.scope
+    ///  │ │ │← `y + 2`
+    ///  │
+    ///  │ │{ let x: u32 }
+    ///  │ │← x.var_debug_info.source_info.scope
+    ///  │ │← `drop(x)` // This accesses `x: u32`.
+    /// ```
+    pub source_info: SourceInfo,
+}
+
+// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(target_arch = "x86_64")]
+static_assert_size!(LocalDecl<'_>, 56);
+
+/// Extra information about a some locals that's used for diagnostics and for
+/// classifying variables into local variables, statics, etc, which is needed e.g.
+/// for unsafety checking.
+///
+/// Not used for non-StaticRef temporaries, the return place, or anonymous
+/// function parameters.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub enum LocalInfo<'tcx> {
+    /// A user-defined local variable or function parameter
+    ///
+    /// The `BindingForm` is solely used for local diagnostics when generating
+    /// warnings/errors when compiling the current crate, and therefore it need
+    /// not be visible across crates.
+    User(ClearCrossCrate<BindingForm<'tcx>>),
+    /// A temporary created that references the static with the given `DefId`.
+    StaticRef { def_id: DefId, is_thread_local: bool },
+}
+
+impl<'tcx> LocalDecl<'tcx> {
+    /// Returns `true` only if local is a binding that can itself be
+    /// made mutable via the addition of the `mut` keyword, namely
+    /// something like the occurrences of `x` in:
+    /// - `fn foo(x: Type) { ... }`,
+    /// - `let x = ...`,
+    /// - or `match ... { C(x) => ... }`
+    pub fn can_be_made_mutable(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
+                binding_mode: ty::BindingMode::BindByValue(_),
+                opt_ty_info: _,
+                opt_match_place: _,
+                pat_span: _,
+            })))) => true,
+
+            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::ImplicitSelf(
+                ImplicitSelfKind::Imm,
+            )))) => true,
+
+            _ => false,
+        }
+    }
+
+    /// Returns `true` if local is definitely not a `ref ident` or
+    /// `ref mut ident` binding. (Such bindings cannot be made into
+    /// mutable bindings, but the inverse does not necessarily hold).
+    pub fn is_nonref_binding(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
+                binding_mode: ty::BindingMode::BindByValue(_),
+                opt_ty_info: _,
+                opt_match_place: _,
+                pat_span: _,
+            })))) => true,
+
+            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::ImplicitSelf(_)))) => true,
+
+            _ => false,
+        }
+    }
+
+    /// Returns `true` if this variable is a named variable or function
+    /// parameter declared by the user.
+    #[inline]
+    pub fn is_user_variable(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::User(_)) => true,
+            _ => false,
+        }
+    }
+
+    /// Returns `true` if this is a reference to a variable bound in a `match`
+    /// expression that is used to access said variable for the guard of the
+    /// match arm.
+    pub fn is_ref_for_guard(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard))) => true,
+            _ => false,
+        }
+    }
+
+    /// Returns `Some` if this is a reference to a static item that is used to
+    /// access that static
+    pub fn is_ref_to_static(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::StaticRef { .. }) => true,
+            _ => false,
+        }
+    }
+
+    /// Returns `Some` if this is a reference to a static item that is used to
+    /// access that static
+    pub fn is_ref_to_thread_local(&self) -> bool {
+        match self.local_info {
+            Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local,
+            _ => false,
+        }
+    }
+
+    /// Returns `true` is the local is from a compiler desugaring, e.g.,
+    /// `__next` from a `for` loop.
+    #[inline]
+    pub fn from_compiler_desugaring(&self) -> bool {
+        self.source_info.span.desugaring_kind().is_some()
+    }
+
+    /// Creates a new `LocalDecl` for a temporary: mutable, non-internal.
+    #[inline]
+    pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
+        Self::with_source_info(ty, SourceInfo::outermost(span))
+    }
+
+    /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
+    #[inline]
+    pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
+        LocalDecl {
+            mutability: Mutability::Mut,
+            local_info: None,
+            internal: false,
+            is_block_tail: None,
+            ty,
+            user_ty: None,
+            source_info,
+        }
+    }
+
+    /// Converts `self` into same `LocalDecl` except tagged as internal.
+    #[inline]
+    pub fn internal(mut self) -> Self {
+        self.internal = true;
+        self
+    }
+
+    /// Converts `self` into same `LocalDecl` except tagged as immutable.
+    #[inline]
+    pub fn immutable(mut self) -> Self {
+        self.mutability = Mutability::Not;
+        self
+    }
+
+    /// Converts `self` into same `LocalDecl` except tagged as internal temporary.
+    #[inline]
+    pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
+        assert!(self.is_block_tail.is_none());
+        self.is_block_tail = Some(info);
+        self
+    }
+}
+
+/// Debug information pertaining to a user variable.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct VarDebugInfo<'tcx> {
+    pub name: Symbol,
+
+    /// Source info of the user variable, including the scope
+    /// within which the variable is visible (to debuginfo)
+    /// (see `LocalDecl`'s `source_info` field for more details).
+    pub source_info: SourceInfo,
+
+    /// Where the data for this user variable is to be found.
+    /// NOTE(eddyb) There's an unenforced invariant that this `Place` is
+    /// based on a `Local`, not a `Static`, and contains no indexing.
+    pub place: Place<'tcx>,
+}
+
+///////////////////////////////////////////////////////////////////////////
+// BasicBlock
+
+rustc_index::newtype_index! {
+    pub struct BasicBlock {
+        derive [HashStable]
+        DEBUG_FORMAT = "bb{}",
+        const START_BLOCK = 0,
+    }
+}
+
+impl BasicBlock {
+    pub fn start_location(self) -> Location {
+        Location { block: self, statement_index: 0 }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// BasicBlockData and Terminator
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct BasicBlockData<'tcx> {
+    /// List of statements in this block.
+    pub statements: Vec<Statement<'tcx>>,
+
+    /// Terminator for this block.
+    ///
+    /// N.B., this should generally ONLY be `None` during construction.
+    /// Therefore, you should generally access it via the
+    /// `terminator()` or `terminator_mut()` methods. The only
+    /// exception is that certain passes, such as `simplify_cfg`, swap
+    /// out the terminator temporarily with `None` while they continue
+    /// to recurse over the set of basic blocks.
+    pub terminator: Option<Terminator<'tcx>>,
+
+    /// If true, this block lies on an unwind path. This is used
+    /// during codegen where distinct kinds of basic blocks may be
+    /// generated (particularly for MSVC cleanup). Unwind blocks must
+    /// only branch to other unwind blocks.
+    pub is_cleanup: bool,
+}
+
+/// Information about an assertion failure.
+#[derive(Clone, TyEncodable, TyDecodable, HashStable, PartialEq)]
+pub enum AssertKind<O> {
+    BoundsCheck { len: O, index: O },
+    Overflow(BinOp, O, O),
+    OverflowNeg(O),
+    DivisionByZero(O),
+    RemainderByZero(O),
+    ResumedAfterReturn(GeneratorKind),
+    ResumedAfterPanic(GeneratorKind),
+}
+
+#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub enum InlineAsmOperand<'tcx> {
+    In {
+        reg: InlineAsmRegOrRegClass,
+        value: Operand<'tcx>,
+    },
+    Out {
+        reg: InlineAsmRegOrRegClass,
+        late: bool,
+        place: Option<Place<'tcx>>,
+    },
+    InOut {
+        reg: InlineAsmRegOrRegClass,
+        late: bool,
+        in_value: Operand<'tcx>,
+        out_place: Option<Place<'tcx>>,
+    },
+    Const {
+        value: Operand<'tcx>,
+    },
+    SymFn {
+        value: Box<Constant<'tcx>>,
+    },
+    SymStatic {
+        def_id: DefId,
+    },
+}
+
+/// Type for MIR `Assert` terminator error messages.
+pub type AssertMessage<'tcx> = AssertKind<Operand<'tcx>>;
+
+pub type Successors<'a> =
+    iter::Chain<option::IntoIter<&'a BasicBlock>, slice::Iter<'a, BasicBlock>>;
+pub type SuccessorsMut<'a> =
+    iter::Chain<option::IntoIter<&'a mut BasicBlock>, slice::IterMut<'a, BasicBlock>>;
+
+impl<'tcx> BasicBlockData<'tcx> {
+    pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
+        BasicBlockData { statements: vec![], terminator, is_cleanup: false }
+    }
+
+    /// Accessor for terminator.
+    ///
+    /// Terminator may not be None after construction of the basic block is complete. This accessor
+    /// provides a convenience way to reach the terminator.
+    pub fn terminator(&self) -> &Terminator<'tcx> {
+        self.terminator.as_ref().expect("invalid terminator state")
+    }
+
+    pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
+        self.terminator.as_mut().expect("invalid terminator state")
+    }
+
+    pub fn retain_statements<F>(&mut self, mut f: F)
+    where
+        F: FnMut(&mut Statement<'_>) -> bool,
+    {
+        for s in &mut self.statements {
+            if !f(s) {
+                s.make_nop();
+            }
+        }
+    }
+
+    pub fn expand_statements<F, I>(&mut self, mut f: F)
+    where
+        F: FnMut(&mut Statement<'tcx>) -> Option<I>,
+        I: iter::TrustedLen<Item = Statement<'tcx>>,
+    {
+        // Gather all the iterators we'll need to splice in, and their positions.
+        let mut splices: Vec<(usize, I)> = vec![];
+        let mut extra_stmts = 0;
+        for (i, s) in self.statements.iter_mut().enumerate() {
+            if let Some(mut new_stmts) = f(s) {
+                if let Some(first) = new_stmts.next() {
+                    // We can already store the first new statement.
+                    *s = first;
+
+                    // Save the other statements for optimized splicing.
+                    let remaining = new_stmts.size_hint().0;
+                    if remaining > 0 {
+                        splices.push((i + 1 + extra_stmts, new_stmts));
+                        extra_stmts += remaining;
+                    }
+                } else {
+                    s.make_nop();
+                }
+            }
+        }
+
+        // Splice in the new statements, from the end of the block.
+        // FIXME(eddyb) This could be more efficient with a "gap buffer"
+        // where a range of elements ("gap") is left uninitialized, with
+        // splicing adding new elements to the end of that gap and moving
+        // existing elements from before the gap to the end of the gap.
+        // For now, this is safe code, emulating a gap but initializing it.
+        let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
+        self.statements.resize(
+            gap.end,
+            Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
+        );
+        for (splice_start, new_stmts) in splices.into_iter().rev() {
+            let splice_end = splice_start + new_stmts.size_hint().0;
+            while gap.end > splice_end {
+                gap.start -= 1;
+                gap.end -= 1;
+                self.statements.swap(gap.start, gap.end);
+            }
+            self.statements.splice(splice_start..splice_end, new_stmts);
+            gap.end = splice_start;
+        }
+    }
+
+    pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
+        if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
+    }
+}
+
+impl<O> AssertKind<O> {
+    /// Getting a description does not require `O` to be printable, and does not
+    /// require allocation.
+    /// The caller is expected to handle `BoundsCheck` separately.
+    pub fn description(&self) -> &'static str {
+        use AssertKind::*;
+        match self {
+            Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
+            Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
+            Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
+            Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
+            Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
+            OverflowNeg(_) => "attempt to negate with overflow",
+            Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
+            Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
+            Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
+            DivisionByZero(_) => "attempt to divide by zero",
+            RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
+            ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
+            ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
+            ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
+            ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
+            BoundsCheck { .. } => bug!("Unexpected AssertKind"),
+        }
+    }
+
+    /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
+    fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
+    where
+        O: Debug,
+    {
+        use AssertKind::*;
+        match self {
+            BoundsCheck { ref len, ref index } => write!(
+                f,
+                "\"index out of bounds: the len is {{}} but the index is {{}}\", {:?}, {:?}",
+                len, index
+            ),
+
+            OverflowNeg(op) => {
+                write!(f, "\"attempt to negate {{}} which would overflow\", {:?}", op)
+            }
+            DivisionByZero(op) => write!(f, "\"attempt to divide {{}} by zero\", {:?}", op),
+            RemainderByZero(op) => write!(
+                f,
+                "\"attempt to calculate the remainder of {{}} with a divisor of zero\", {:?}",
+                op
+            ),
+            Overflow(BinOp::Add, l, r) => write!(
+                f,
+                "\"attempt to compute `{{}} + {{}}` which would overflow\", {:?}, {:?}",
+                l, r
+            ),
+            Overflow(BinOp::Sub, l, r) => write!(
+                f,
+                "\"attempt to compute `{{}} - {{}}` which would overflow\", {:?}, {:?}",
+                l, r
+            ),
+            Overflow(BinOp::Mul, l, r) => write!(
+                f,
+                "\"attempt to compute `{{}} * {{}}` which would overflow\", {:?}, {:?}",
+                l, r
+            ),
+            Overflow(BinOp::Div, l, r) => write!(
+                f,
+                "\"attempt to compute `{{}} / {{}}` which would overflow\", {:?}, {:?}",
+                l, r
+            ),
+            Overflow(BinOp::Rem, l, r) => write!(
+                f,
+                "\"attempt to compute the remainder of `{{}} % {{}}` which would overflow\", {:?}, {:?}",
+                l, r
+            ),
+            Overflow(BinOp::Shr, _, r) => {
+                write!(f, "\"attempt to shift right by {{}} which would overflow\", {:?}", r)
+            }
+            Overflow(BinOp::Shl, _, r) => {
+                write!(f, "\"attempt to shift left by {{}} which would overflow\", {:?}", r)
+            }
+            _ => write!(f, "\"{}\"", self.description()),
+        }
+    }
+}
+
+impl<O: fmt::Debug> fmt::Debug for AssertKind<O> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        use AssertKind::*;
+        match self {
+            BoundsCheck { ref len, ref index } => {
+                write!(f, "index out of bounds: the len is {:?} but the index is {:?}", len, index)
+            }
+            OverflowNeg(op) => write!(f, "attempt to negate {:#?} which would overflow", op),
+            DivisionByZero(op) => write!(f, "attempt to divide {:#?} by zero", op),
+            RemainderByZero(op) => {
+                write!(f, "attempt to calculate the remainder of {:#?} with a divisor of zero", op)
+            }
+            Overflow(BinOp::Add, l, r) => {
+                write!(f, "attempt to compute `{:#?} + {:#?}` which would overflow", l, r)
+            }
+            Overflow(BinOp::Sub, l, r) => {
+                write!(f, "attempt to compute `{:#?} - {:#?}` which would overflow", l, r)
+            }
+            Overflow(BinOp::Mul, l, r) => {
+                write!(f, "attempt to compute `{:#?} * {:#?}` which would overflow", l, r)
+            }
+            Overflow(BinOp::Div, l, r) => {
+                write!(f, "attempt to compute `{:#?} / {:#?}` which would overflow", l, r)
+            }
+            Overflow(BinOp::Rem, l, r) => write!(
+                f,
+                "attempt to compute the remainder of `{:#?} % {:#?}` which would overflow",
+                l, r
+            ),
+            Overflow(BinOp::Shr, _, r) => {
+                write!(f, "attempt to shift right by {:#?} which would overflow", r)
+            }
+            Overflow(BinOp::Shl, _, r) => {
+                write!(f, "attempt to shift left by {:#?} which would overflow", r)
+            }
+            _ => write!(f, "{}", self.description()),
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Statements
+
+#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct Statement<'tcx> {
+    pub source_info: SourceInfo,
+    pub kind: StatementKind<'tcx>,
+}
+
+// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(target_arch = "x86_64")]
+static_assert_size!(Statement<'_>, 32);
+
+impl Statement<'_> {
+    /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
+    /// invalidating statement indices in `Location`s.
+    pub fn make_nop(&mut self) {
+        self.kind = StatementKind::Nop
+    }
+
+    /// Changes a statement to a nop and returns the original statement.
+    pub fn replace_nop(&mut self) -> Self {
+        Statement {
+            source_info: self.source_info,
+            kind: mem::replace(&mut self.kind, StatementKind::Nop),
+        }
+    }
+}
+
+#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub enum StatementKind<'tcx> {
+    /// Write the RHS Rvalue to the LHS Place.
+    Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>),
+
+    /// This represents all the reading that a pattern match may do
+    /// (e.g., inspecting constants and discriminant values), and the
+    /// kind of pattern it comes from. This is in order to adapt potential
+    /// error messages to these specific patterns.
+    ///
+    /// Note that this also is emitted for regular `let` bindings to ensure that locals that are
+    /// never accessed still get some sanity checks for, e.g., `let x: ! = ..;`
+    FakeRead(FakeReadCause, Box<Place<'tcx>>),
+
+    /// Write the discriminant for a variant to the enum Place.
+    SetDiscriminant { place: Box<Place<'tcx>>, variant_index: VariantIdx },
+
+    /// Start a live range for the storage of the local.
+    StorageLive(Local),
+
+    /// End the current live range for the storage of the local.
+    StorageDead(Local),
+
+    /// Executes a piece of inline Assembly. Stored in a Box to keep the size
+    /// of `StatementKind` low.
+    LlvmInlineAsm(Box<LlvmInlineAsm<'tcx>>),
+
+    /// Retag references in the given place, ensuring they got fresh tags. This is
+    /// part of the Stacked Borrows model. These statements are currently only interpreted
+    /// by miri and only generated when "-Z mir-emit-retag" is passed.
+    /// See <https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/>
+    /// for more details.
+    Retag(RetagKind, Box<Place<'tcx>>),
+
+    /// Encodes a user's type ascription. These need to be preserved
+    /// intact so that NLL can respect them. For example:
+    ///
+    ///     let a: T = y;
+    ///
+    /// The effect of this annotation is to relate the type `T_y` of the place `y`
+    /// to the user-given type `T`. The effect depends on the specified variance:
+    ///
+    /// - `Covariant` -- requires that `T_y <: T`
+    /// - `Contravariant` -- requires that `T_y :> T`
+    /// - `Invariant` -- requires that `T_y == T`
+    /// - `Bivariant` -- no effect
+    AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, ty::Variance),
+
+    /// Marks the start of a "coverage region", injected with '-Zinstrument-coverage'. A
+    /// `CoverageInfo` statement carries metadata about the coverage region, used to inject a coverage
+    /// map into the binary. The `Counter` kind also generates executable code, to increment a
+    /// counter varible at runtime, each time the code region is executed.
+    Coverage(Box<Coverage>),
+
+    /// No-op. Useful for deleting instructions without affecting statement indices.
+    Nop,
+}
+
+impl<'tcx> StatementKind<'tcx> {
+    pub fn as_assign_mut(&mut self) -> Option<&mut Box<(Place<'tcx>, Rvalue<'tcx>)>> {
+        match self {
+            StatementKind::Assign(x) => Some(x),
+            _ => None,
+        }
+    }
+}
+
+/// Describes what kind of retag is to be performed.
+#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, HashStable)]
+pub enum RetagKind {
+    /// The initial retag when entering a function.
+    FnEntry,
+    /// Retag preparing for a two-phase borrow.
+    TwoPhase,
+    /// Retagging raw pointers.
+    Raw,
+    /// A "normal" retag.
+    Default,
+}
+
+/// The `FakeReadCause` describes the type of pattern why a FakeRead statement exists.
+#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, HashStable, PartialEq)]
+pub enum FakeReadCause {
+    /// Inject a fake read of the borrowed input at the end of each guards
+    /// code.
+    ///
+    /// This should ensure that you cannot change the variant for an enum while
+    /// you are in the midst of matching on it.
+    ForMatchGuard,
+
+    /// `let x: !; match x {}` doesn't generate any read of x so we need to
+    /// generate a read of x to check that it is initialized and safe.
+    ForMatchedPlace,
+
+    /// A fake read of the RefWithinGuard version of a bind-by-value variable
+    /// in a match guard to ensure that it's value hasn't change by the time
+    /// we create the OutsideGuard version.
+    ForGuardBinding,
+
+    /// Officially, the semantics of
+    ///
+    /// `let pattern = <expr>;`
+    ///
+    /// is that `<expr>` is evaluated into a temporary and then this temporary is
+    /// into the pattern.
+    ///
+    /// However, if we see the simple pattern `let var = <expr>`, we optimize this to
+    /// evaluate `<expr>` directly into the variable `var`. This is mostly unobservable,
+    /// but in some cases it can affect the borrow checker, as in #53695.
+    /// Therefore, we insert a "fake read" here to ensure that we get
+    /// appropriate errors.
+    ForLet,
+
+    /// If we have an index expression like
+    ///
+    /// (*x)[1][{ x = y; 4}]
+    ///
+    /// then the first bounds check is invalidated when we evaluate the second
+    /// index expression. Thus we create a fake borrow of `x` across the second
+    /// indexer, which will cause a borrow check error.
+    ForIndex,
+}
+
+#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct LlvmInlineAsm<'tcx> {
+    pub asm: hir::LlvmInlineAsmInner,
+    pub outputs: Box<[Place<'tcx>]>,
+    pub inputs: Box<[(Span, Operand<'tcx>)]>,
+}
+
+impl Debug for Statement<'_> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        use self::StatementKind::*;
+        match self.kind {
+            Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv),
+            FakeRead(ref cause, ref place) => write!(fmt, "FakeRead({:?}, {:?})", cause, place),
+            Retag(ref kind, ref place) => write!(
+                fmt,
+                "Retag({}{:?})",
+                match kind {
+                    RetagKind::FnEntry => "[fn entry] ",
+                    RetagKind::TwoPhase => "[2phase] ",
+                    RetagKind::Raw => "[raw] ",
+                    RetagKind::Default => "",
+                },
+                place,
+            ),
+            StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
+            StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
+            SetDiscriminant { ref place, variant_index } => {
+                write!(fmt, "discriminant({:?}) = {:?}", place, variant_index)
+            }
+            LlvmInlineAsm(ref asm) => {
+                write!(fmt, "llvm_asm!({:?} : {:?} : {:?})", asm.asm, asm.outputs, asm.inputs)
+            }
+            AscribeUserType(box (ref place, ref c_ty), ref variance) => {
+                write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
+            }
+            Coverage(box ref coverage) => write!(fmt, "{:?}", coverage),
+            Nop => write!(fmt, "nop"),
+        }
+    }
+}
+
+#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct Coverage {
+    pub kind: CoverageKind,
+    pub code_region: CodeRegion,
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Places
+
+/// A path to a value; something that can be evaluated without
+/// changing or disturbing program state.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
+pub struct Place<'tcx> {
+    pub local: Local,
+
+    /// projection out of a place (access a field, deref a pointer, etc)
+    pub projection: &'tcx List<PlaceElem<'tcx>>,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[derive(TyEncodable, TyDecodable, HashStable)]
+pub enum ProjectionElem<V, T> {
+    Deref,
+    Field(Field, T),
+    Index(V),
+
+    /// These indices are generated by slice patterns. Easiest to explain
+    /// by example:
+    ///
+    /// ```
+    /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
+    /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
+    /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
+    /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
+    /// ```
+    ConstantIndex {
+        /// index or -index (in Python terms), depending on from_end
+        offset: u64,
+        /// The thing being indexed must be at least this long. For arrays this
+        /// is always the exact length.
+        min_length: u64,
+        /// Counting backwards from end? This is always false when indexing an
+        /// array.
+        from_end: bool,
+    },
+
+    /// These indices are generated by slice patterns.
+    ///
+    /// If `from_end` is true `slice[from..slice.len() - to]`.
+    /// Otherwise `array[from..to]`.
+    Subslice {
+        from: u64,
+        to: u64,
+        /// Whether `to` counts from the start or end of the array/slice.
+        /// For `PlaceElem`s this is `true` if and only if the base is a slice.
+        /// For `ProjectionKind`, this can also be `true` for arrays.
+        from_end: bool,
+    },
+
+    /// "Downcast" to a variant of an ADT. Currently, we only introduce
+    /// this for ADTs with more than one variant. It may be better to
+    /// just introduce it always, or always for enums.
+    ///
+    /// The included Symbol is the name of the variant, used for printing MIR.
+    Downcast(Option<Symbol>, VariantIdx),
+}
+
+impl<V, T> ProjectionElem<V, T> {
+    /// Returns `true` if the target of this projection may refer to a different region of memory
+    /// than the base.
+    fn is_indirect(&self) -> bool {
+        match self {
+            Self::Deref => true,
+
+            Self::Field(_, _)
+            | Self::Index(_)
+            | Self::ConstantIndex { .. }
+            | Self::Subslice { .. }
+            | Self::Downcast(_, _) => false,
+        }
+    }
+}
+
+/// Alias for projections as they appear in places, where the base is a place
+/// and the index is a local.
+pub type PlaceElem<'tcx> = ProjectionElem<Local, Ty<'tcx>>;
+
+// At least on 64 bit systems, `PlaceElem` should not be larger than two pointers.
+#[cfg(target_arch = "x86_64")]
+static_assert_size!(PlaceElem<'_>, 24);
+
+/// Alias for projections as they appear in `UserTypeProjection`, where we
+/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
+pub type ProjectionKind = ProjectionElem<(), ()>;
+
+rustc_index::newtype_index! {
+    pub struct Field {
+        derive [HashStable]
+        DEBUG_FORMAT = "field[{}]"
+    }
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct PlaceRef<'tcx> {
+    pub local: Local,
+    pub projection: &'tcx [PlaceElem<'tcx>],
+}
+
+impl<'tcx> Place<'tcx> {
+    // FIXME change this to a const fn by also making List::empty a const fn.
+    pub fn return_place() -> Place<'tcx> {
+        Place { local: RETURN_PLACE, projection: List::empty() }
+    }
+
+    /// Returns `true` if this `Place` contains a `Deref` projection.
+    ///
+    /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
+    /// same region of memory as its base.
+    pub fn is_indirect(&self) -> bool {
+        self.projection.iter().any(|elem| elem.is_indirect())
+    }
+
+    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
+    /// a single deref of a local.
+    //
+    // FIXME: can we safely swap the semantics of `fn base_local` below in here instead?
+    pub fn local_or_deref_local(&self) -> Option<Local> {
+        match self.as_ref() {
+            PlaceRef { local, projection: [] }
+            | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
+            _ => None,
+        }
+    }
+
+    /// If this place represents a local variable like `_X` with no
+    /// projections, return `Some(_X)`.
+    pub fn as_local(&self) -> Option<Local> {
+        self.as_ref().as_local()
+    }
+
+    pub fn as_ref(&self) -> PlaceRef<'tcx> {
+        PlaceRef { local: self.local, projection: &self.projection }
+    }
+}
+
+impl From<Local> for Place<'_> {
+    fn from(local: Local) -> Self {
+        Place { local, projection: List::empty() }
+    }
+}
+
+impl<'tcx> PlaceRef<'tcx> {
+    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
+    /// a single deref of a local.
+    //
+    // FIXME: can we safely swap the semantics of `fn base_local` below in here instead?
+    pub fn local_or_deref_local(&self) -> Option<Local> {
+        match *self {
+            PlaceRef { local, projection: [] }
+            | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
+            _ => None,
+        }
+    }
+
+    /// If this place represents a local variable like `_X` with no
+    /// projections, return `Some(_X)`.
+    pub fn as_local(&self) -> Option<Local> {
+        match *self {
+            PlaceRef { local, projection: [] } => Some(local),
+            _ => None,
+        }
+    }
+}
+
+impl Debug for Place<'_> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        for elem in self.projection.iter().rev() {
+            match elem {
+                ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => {
+                    write!(fmt, "(").unwrap();
+                }
+                ProjectionElem::Deref => {
+                    write!(fmt, "(*").unwrap();
+                }
+                ProjectionElem::Index(_)
+                | ProjectionElem::ConstantIndex { .. }
+                | ProjectionElem::Subslice { .. } => {}
+            }
+        }
+
+        write!(fmt, "{:?}", self.local)?;
+
+        for elem in self.projection.iter() {
+            match elem {
+                ProjectionElem::Downcast(Some(name), _index) => {
+                    write!(fmt, " as {})", name)?;
+                }
+                ProjectionElem::Downcast(None, index) => {
+                    write!(fmt, " as variant#{:?})", index)?;
+                }
+                ProjectionElem::Deref => {
+                    write!(fmt, ")")?;
+                }
+                ProjectionElem::Field(field, ty) => {
+                    write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
+                }
+                ProjectionElem::Index(ref index) => {
+                    write!(fmt, "[{:?}]", index)?;
+                }
+                ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
+                    write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
+                }
+                ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
+                    write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
+                }
+                ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
+                    write!(fmt, "[{:?}:]", from)?;
+                }
+                ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
+                    write!(fmt, "[:-{:?}]", to)?;
+                }
+                ProjectionElem::Subslice { from, to, from_end: true } => {
+                    write!(fmt, "[{:?}:-{:?}]", from, to)?;
+                }
+                ProjectionElem::Subslice { from, to, from_end: false } => {
+                    write!(fmt, "[{:?}..{:?}]", from, to)?;
+                }
+            }
+        }
+
+        Ok(())
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Scopes
+
+rustc_index::newtype_index! {
+    pub struct SourceScope {
+        derive [HashStable]
+        DEBUG_FORMAT = "scope[{}]",
+        const OUTERMOST_SOURCE_SCOPE = 0,
+    }
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct SourceScopeData {
+    pub span: Span,
+    pub parent_scope: Option<SourceScope>,
+
+    /// Crate-local information for this source scope, that can't (and
+    /// needn't) be tracked across crates.
+    pub local_data: ClearCrossCrate<SourceScopeLocalData>,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct SourceScopeLocalData {
+    /// An `HirId` with lint levels equivalent to this scope's lint levels.
+    pub lint_root: hir::HirId,
+    /// The unsafe block that contains this node.
+    pub safety: Safety,
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Operands
+
+/// These are values that can appear inside an rvalue. They are intentionally
+/// limited to prevent rvalues from being nested in one another.
+#[derive(Clone, PartialEq, TyEncodable, TyDecodable, HashStable)]
+pub enum Operand<'tcx> {
+    /// Copy: The value must be available for use afterwards.
+    ///
+    /// This implies that the type of the place must be `Copy`; this is true
+    /// by construction during build, but also checked by the MIR type checker.
+    Copy(Place<'tcx>),
+
+    /// Move: The value (including old borrows of it) will not be used again.
+    ///
+    /// Safe for values of all types (modulo future developments towards `?Move`).
+    /// Correct usage patterns are enforced by the borrow checker for safe code.
+    /// `Copy` may be converted to `Move` to enable "last-use" optimizations.
+    Move(Place<'tcx>),
+
+    /// Synthesizes a constant value.
+    Constant(Box<Constant<'tcx>>),
+}
+
+impl<'tcx> Debug for Operand<'tcx> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        use self::Operand::*;
+        match *self {
+            Constant(ref a) => write!(fmt, "{:?}", a),
+            Copy(ref place) => write!(fmt, "{:?}", place),
+            Move(ref place) => write!(fmt, "move {:?}", place),
+        }
+    }
+}
+
+impl<'tcx> Operand<'tcx> {
+    /// Convenience helper to make a constant that refers to the fn
+    /// with given `DefId` and substs. Since this is used to synthesize
+    /// MIR, assumes `user_ty` is None.
+    pub fn function_handle(
+        tcx: TyCtxt<'tcx>,
+        def_id: DefId,
+        substs: SubstsRef<'tcx>,
+        span: Span,
+    ) -> Self {
+        let ty = tcx.type_of(def_id).subst(tcx, substs);
+        Operand::Constant(box Constant {
+            span,
+            user_ty: None,
+            literal: ty::Const::zero_sized(tcx, ty),
+        })
+    }
+
+    pub fn is_move(&self) -> bool {
+        matches!(self, Operand::Move(..))
+    }
+
+    /// Convenience helper to make a literal-like constant from a given scalar value.
+    /// Since this is used to synthesize MIR, assumes `user_ty` is None.
+    pub fn const_from_scalar(
+        tcx: TyCtxt<'tcx>,
+        ty: Ty<'tcx>,
+        val: Scalar,
+        span: Span,
+    ) -> Operand<'tcx> {
+        debug_assert!({
+            let param_env_and_ty = ty::ParamEnv::empty().and(ty);
+            let type_size = tcx
+                .layout_of(param_env_and_ty)
+                .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
+                .size;
+            let scalar_size = abi::Size::from_bytes(match val {
+                Scalar::Raw { size, .. } => size,
+                _ => panic!("Invalid scalar type {:?}", val),
+            });
+            scalar_size == type_size
+        });
+        Operand::Constant(box Constant {
+            span,
+            user_ty: None,
+            literal: ty::Const::from_scalar(tcx, val, ty),
+        })
+    }
+
+    /// Convenience helper to make a `Scalar` from the given `Operand`, assuming that `Operand`
+    /// wraps a constant literal value. Panics if this is not the case.
+    pub fn scalar_from_const(operand: &Operand<'tcx>) -> Scalar {
+        match operand {
+            Operand::Constant(constant) => match constant.literal.val.try_to_scalar() {
+                Some(scalar) => scalar,
+                _ => panic!("{:?}: Scalar value expected", constant.literal.val),
+            },
+            _ => panic!("{:?}: Constant expected", operand),
+        }
+    }
+
+    /// Convenience helper to make a literal-like constant from a given `&str` slice.
+    /// Since this is used to synthesize MIR, assumes `user_ty` is None.
+    pub fn const_from_str(tcx: TyCtxt<'tcx>, val: &str, span: Span) -> Operand<'tcx> {
+        let tcx = tcx;
+        let allocation = Allocation::from_byte_aligned_bytes(val.as_bytes());
+        let allocation = tcx.intern_const_alloc(allocation);
+        let const_val = ConstValue::Slice { data: allocation, start: 0, end: val.len() };
+        let ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, tcx.types.str_);
+        Operand::Constant(box Constant {
+            span,
+            user_ty: None,
+            literal: ty::Const::from_value(tcx, const_val, ty),
+        })
+    }
+
+    /// Convenience helper to make a `ConstValue` from the given `Operand`, assuming that `Operand`
+    /// wraps a constant value (such as a `&str` slice). Panics if this is not the case.
+    pub fn value_from_const(operand: &Operand<'tcx>) -> ConstValue<'tcx> {
+        match operand {
+            Operand::Constant(constant) => match constant.literal.val.try_to_value() {
+                Some(const_value) => const_value,
+                _ => panic!("{:?}: ConstValue expected", constant.literal.val),
+            },
+            _ => panic!("{:?}: Constant expected", operand),
+        }
+    }
+
+    pub fn to_copy(&self) -> Self {
+        match *self {
+            Operand::Copy(_) | Operand::Constant(_) => self.clone(),
+            Operand::Move(place) => Operand::Copy(place),
+        }
+    }
+
+    /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
+    /// constant.
+    pub fn place(&self) -> Option<Place<'tcx>> {
+        match self {
+            Operand::Copy(place) | Operand::Move(place) => Some(*place),
+            Operand::Constant(_) => None,
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+/// Rvalues
+
+#[derive(Clone, TyEncodable, TyDecodable, HashStable, PartialEq)]
+pub enum Rvalue<'tcx> {
+    /// x (either a move or copy, depending on type of x)
+    Use(Operand<'tcx>),
+
+    /// [x; 32]
+    Repeat(Operand<'tcx>, &'tcx ty::Const<'tcx>),
+
+    /// &x or &mut x
+    Ref(Region<'tcx>, BorrowKind, Place<'tcx>),
+
+    /// Accessing a thread local static. This is inherently a runtime operation, even if llvm
+    /// treats it as an access to a static. This `Rvalue` yields a reference to the thread local
+    /// static.
+    ThreadLocalRef(DefId),
+
+    /// Create a raw pointer to the given place
+    /// Can be generated by raw address of expressions (`&raw const x`),
+    /// or when casting a reference to a raw pointer.
+    AddressOf(Mutability, Place<'tcx>),
+
+    /// length of a `[X]` or `[X;n]` value
+    Len(Place<'tcx>),
+
+    Cast(CastKind, Operand<'tcx>, Ty<'tcx>),
+
+    BinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>),
+    CheckedBinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>),
+
+    NullaryOp(NullOp, Ty<'tcx>),
+    UnaryOp(UnOp, Operand<'tcx>),
+
+    /// Read the discriminant of an ADT.
+    ///
+    /// Undefined (i.e., no effort is made to make it defined, but there’s no reason why it cannot
+    /// be defined to return, say, a 0) if ADT is not an enum.
+    Discriminant(Place<'tcx>),
+
+    /// Creates an aggregate value, like a tuple or struct. This is
+    /// only needed because we want to distinguish `dest = Foo { x:
+    /// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case
+    /// that `Foo` has a destructor. These rvalues can be optimized
+    /// away after type-checking and before lowering.
+    Aggregate(Box<AggregateKind<'tcx>>, Vec<Operand<'tcx>>),
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
+pub enum CastKind {
+    Misc,
+    Pointer(PointerCast),
+}
+
+#[derive(Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
+pub enum AggregateKind<'tcx> {
+    /// The type is of the element
+    Array(Ty<'tcx>),
+    Tuple,
+
+    /// The second field is the variant index. It's equal to 0 for struct
+    /// and union expressions. The fourth field is
+    /// active field number and is present only for union expressions
+    /// -- e.g., for a union expression `SomeUnion { c: .. }`, the
+    /// active field index would identity the field `c`
+    Adt(&'tcx AdtDef, VariantIdx, SubstsRef<'tcx>, Option<UserTypeAnnotationIndex>, Option<usize>),
+
+    Closure(DefId, SubstsRef<'tcx>),
+    Generator(DefId, SubstsRef<'tcx>, hir::Movability),
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
+pub enum BinOp {
+    /// The `+` operator (addition)
+    Add,
+    /// The `-` operator (subtraction)
+    Sub,
+    /// The `*` operator (multiplication)
+    Mul,
+    /// The `/` operator (division)
+    Div,
+    /// The `%` operator (modulus)
+    Rem,
+    /// The `^` operator (bitwise xor)
+    BitXor,
+    /// The `&` operator (bitwise and)
+    BitAnd,
+    /// The `|` operator (bitwise or)
+    BitOr,
+    /// The `<<` operator (shift left)
+    Shl,
+    /// The `>>` operator (shift right)
+    Shr,
+    /// The `==` operator (equality)
+    Eq,
+    /// The `<` operator (less than)
+    Lt,
+    /// The `<=` operator (less than or equal to)
+    Le,
+    /// The `!=` operator (not equal to)
+    Ne,
+    /// The `>=` operator (greater than or equal to)
+    Ge,
+    /// The `>` operator (greater than)
+    Gt,
+    /// The `ptr.offset` operator
+    Offset,
+}
+
+impl BinOp {
+    pub fn is_checkable(self) -> bool {
+        use self::BinOp::*;
+        match self {
+            Add | Sub | Mul | Shl | Shr => true,
+            _ => false,
+        }
+    }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
+pub enum NullOp {
+    /// Returns the size of a value of that type
+    SizeOf,
+    /// Creates a new uninitialized box for a value of that type
+    Box,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
+pub enum UnOp {
+    /// The `!` operator for logical inversion
+    Not,
+    /// The `-` operator for negation
+    Neg,
+}
+
+impl<'tcx> Debug for Rvalue<'tcx> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        use self::Rvalue::*;
+
+        match *self {
+            Use(ref place) => write!(fmt, "{:?}", place),
+            Repeat(ref a, ref b) => {
+                write!(fmt, "[{:?}; ", a)?;
+                pretty_print_const(b, fmt, false)?;
+                write!(fmt, "]")
+            }
+            Len(ref a) => write!(fmt, "Len({:?})", a),
+            Cast(ref kind, ref place, ref ty) => {
+                write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
+            }
+            BinaryOp(ref op, ref a, ref b) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
+            CheckedBinaryOp(ref op, ref a, ref b) => {
+                write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
+            }
+            UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
+            Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
+            NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
+            ThreadLocalRef(did) => ty::tls::with(|tcx| {
+                let muta = tcx.static_mutability(did).unwrap().prefix_str();
+                write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
+            }),
+            Ref(region, borrow_kind, ref place) => {
+                let kind_str = match borrow_kind {
+                    BorrowKind::Shared => "",
+                    BorrowKind::Shallow => "shallow ",
+                    BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
+                };
+
+                // When printing regions, add trailing space if necessary.
+                let print_region = ty::tls::with(|tcx| {
+                    tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions
+                });
+                let region = if print_region {
+                    let mut region = region.to_string();
+                    if !region.is_empty() {
+                        region.push(' ');
+                    }
+                    region
+                } else {
+                    // Do not even print 'static
+                    String::new()
+                };
+                write!(fmt, "&{}{}{:?}", region, kind_str, place)
+            }
+
+            AddressOf(mutability, ref place) => {
+                let kind_str = match mutability {
+                    Mutability::Mut => "mut",
+                    Mutability::Not => "const",
+                };
+
+                write!(fmt, "&raw {} {:?}", kind_str, place)
+            }
+
+            Aggregate(ref kind, ref places) => {
+                let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
+                    let mut tuple_fmt = fmt.debug_tuple(name);
+                    for place in places {
+                        tuple_fmt.field(place);
+                    }
+                    tuple_fmt.finish()
+                };
+
+                match **kind {
+                    AggregateKind::Array(_) => write!(fmt, "{:?}", places),
+
+                    AggregateKind::Tuple => {
+                        if places.is_empty() {
+                            write!(fmt, "()")
+                        } else {
+                            fmt_tuple(fmt, "")
+                        }
+                    }
+
+                    AggregateKind::Adt(adt_def, variant, substs, _user_ty, _) => {
+                        let variant_def = &adt_def.variants[variant];
+
+                        let name = ty::tls::with(|tcx| {
+                            let mut name = String::new();
+                            let substs = tcx.lift(&substs).expect("could not lift for printing");
+                            FmtPrinter::new(tcx, &mut name, Namespace::ValueNS)
+                                .print_def_path(variant_def.def_id, substs)?;
+                            Ok(name)
+                        })?;
+
+                        match variant_def.ctor_kind {
+                            CtorKind::Const => fmt.write_str(&name),
+                            CtorKind::Fn => fmt_tuple(fmt, &name),
+                            CtorKind::Fictive => {
+                                let mut struct_fmt = fmt.debug_struct(&name);
+                                for (field, place) in variant_def.fields.iter().zip(places) {
+                                    struct_fmt.field(&field.ident.as_str(), place);
+                                }
+                                struct_fmt.finish()
+                            }
+                        }
+                    }
+
+                    AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| {
+                        if let Some(def_id) = def_id.as_local() {
+                            let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+                            let name = if tcx.sess.opts.debugging_opts.span_free_formats {
+                                let substs = tcx.lift(&substs).unwrap();
+                                format!(
+                                    "[closure@{}]",
+                                    tcx.def_path_str_with_substs(def_id.to_def_id(), substs),
+                                )
+                            } else {
+                                let span = tcx.hir().span(hir_id);
+                                format!("[closure@{}]", tcx.sess.source_map().span_to_string(span))
+                            };
+                            let mut struct_fmt = fmt.debug_struct(&name);
+
+                            if let Some(upvars) = tcx.upvars_mentioned(def_id) {
+                                for (&var_id, place) in upvars.keys().zip(places) {
+                                    let var_name = tcx.hir().name(var_id);
+                                    struct_fmt.field(&var_name.as_str(), place);
+                                }
+                            }
+
+                            struct_fmt.finish()
+                        } else {
+                            write!(fmt, "[closure]")
+                        }
+                    }),
+
+                    AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
+                        if let Some(def_id) = def_id.as_local() {
+                            let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+                            let name = format!("[generator@{:?}]", tcx.hir().span(hir_id));
+                            let mut struct_fmt = fmt.debug_struct(&name);
+
+                            if let Some(upvars) = tcx.upvars_mentioned(def_id) {
+                                for (&var_id, place) in upvars.keys().zip(places) {
+                                    let var_name = tcx.hir().name(var_id);
+                                    struct_fmt.field(&var_name.as_str(), place);
+                                }
+                            }
+
+                            struct_fmt.finish()
+                        } else {
+                            write!(fmt, "[generator]")
+                        }
+                    }),
+                }
+            }
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+/// Constants
+///
+/// Two constants are equal if they are the same constant. Note that
+/// this does not necessarily mean that they are "==" in Rust -- in
+/// particular one must be wary of `NaN`!
+
+#[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, HashStable)]
+pub struct Constant<'tcx> {
+    pub span: Span,
+
+    /// Optional user-given type: for something like
+    /// `collect::<Vec<_>>`, this would be present and would
+    /// indicate that `Vec<_>` was explicitly specified.
+    ///
+    /// Needed for NLL to impose user-given type constraints.
+    pub user_ty: Option<UserTypeAnnotationIndex>,
+
+    pub literal: &'tcx ty::Const<'tcx>,
+}
+
+impl Constant<'tcx> {
+    pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
+        match self.literal.val.try_to_scalar() {
+            Some(Scalar::Ptr(ptr)) => match tcx.global_alloc(ptr.alloc_id) {
+                GlobalAlloc::Static(def_id) => {
+                    assert!(!tcx.is_thread_local_static(def_id));
+                    Some(def_id)
+                }
+                _ => None,
+            },
+            _ => None,
+        }
+    }
+}
+
+/// A collection of projections into user types.
+///
+/// They are projections because a binding can occur a part of a
+/// parent pattern that has been ascribed a type.
+///
+/// Its a collection because there can be multiple type ascriptions on
+/// the path from the root of the pattern down to the binding itself.
+///
+/// An example:
+///
+/// ```rust
+/// struct S<'a>((i32, &'a str), String);
+/// let S((_, w): (i32, &'static str), _): S = ...;
+/// //    ------  ^^^^^^^^^^^^^^^^^^^ (1)
+/// //  ---------------------------------  ^ (2)
+/// ```
+///
+/// The highlights labelled `(1)` show the subpattern `(_, w)` being
+/// ascribed the type `(i32, &'static str)`.
+///
+/// The highlights labelled `(2)` show the whole pattern being
+/// ascribed the type `S`.
+///
+/// In this example, when we descend to `w`, we will have built up the
+/// following two projected types:
+///
+///   * base: `S`,                   projection: `(base.0).1`
+///   * base: `(i32, &'static str)`, projection: `base.1`
+///
+/// The first will lead to the constraint `w: &'1 str` (for some
+/// inferred region `'1`). The second will lead to the constraint `w:
+/// &'static str`.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
+pub struct UserTypeProjections {
+    pub contents: Vec<(UserTypeProjection, Span)>,
+}
+
+impl<'tcx> UserTypeProjections {
+    pub fn none() -> Self {
+        UserTypeProjections { contents: vec![] }
+    }
+
+    pub fn is_empty(&self) -> bool {
+        self.contents.is_empty()
+    }
+
+    pub fn from_projections(projs: impl Iterator<Item = (UserTypeProjection, Span)>) -> Self {
+        UserTypeProjections { contents: projs.collect() }
+    }
+
+    pub fn projections_and_spans(
+        &self,
+    ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
+        self.contents.iter()
+    }
+
+    pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
+        self.contents.iter().map(|&(ref user_type, _span)| user_type)
+    }
+
+    pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
+        self.contents.push((user_ty.clone(), span));
+        self
+    }
+
+    fn map_projections(
+        mut self,
+        mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
+    ) -> Self {
+        self.contents = self.contents.drain(..).map(|(proj, span)| (f(proj), span)).collect();
+        self
+    }
+
+    pub fn index(self) -> Self {
+        self.map_projections(|pat_ty_proj| pat_ty_proj.index())
+    }
+
+    pub fn subslice(self, from: u64, to: u64) -> Self {
+        self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
+    }
+
+    pub fn deref(self) -> Self {
+        self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
+    }
+
+    pub fn leaf(self, field: Field) -> Self {
+        self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
+    }
+
+    pub fn variant(self, adt_def: &'tcx AdtDef, variant_index: VariantIdx, field: Field) -> Self {
+        self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
+    }
+}
+
+/// Encodes the effect of a user-supplied type annotation on the
+/// subcomponents of a pattern. The effect is determined by applying the
+/// given list of proejctions to some underlying base type. Often,
+/// the projection element list `projs` is empty, in which case this
+/// directly encodes a type in `base`. But in the case of complex patterns with
+/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
+/// in which case the `projs` vector is used.
+///
+/// Examples:
+///
+/// * `let x: T = ...` -- here, the `projs` vector is empty.
+///
+/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
+///   `field[0]` (aka `.0`), indicating that the type of `s` is
+///   determined by finding the type of the `.0` field from `T`.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, PartialEq)]
+pub struct UserTypeProjection {
+    pub base: UserTypeAnnotationIndex,
+    pub projs: Vec<ProjectionKind>,
+}
+
+impl Copy for ProjectionKind {}
+
+impl UserTypeProjection {
+    pub(crate) fn index(mut self) -> Self {
+        self.projs.push(ProjectionElem::Index(()));
+        self
+    }
+
+    pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
+        self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
+        self
+    }
+
+    pub(crate) fn deref(mut self) -> Self {
+        self.projs.push(ProjectionElem::Deref);
+        self
+    }
+
+    pub(crate) fn leaf(mut self, field: Field) -> Self {
+        self.projs.push(ProjectionElem::Field(field, ()));
+        self
+    }
+
+    pub(crate) fn variant(
+        mut self,
+        adt_def: &AdtDef,
+        variant_index: VariantIdx,
+        field: Field,
+    ) -> Self {
+        self.projs.push(ProjectionElem::Downcast(
+            Some(adt_def.variants[variant_index].ident.name),
+            variant_index,
+        ));
+        self.projs.push(ProjectionElem::Field(field, ()));
+        self
+    }
+}
+
+CloneTypeFoldableAndLiftImpls! { ProjectionKind, }
+
+impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
+    fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
+        use crate::mir::ProjectionElem::*;
+
+        let base = self.base.fold_with(folder);
+        let projs: Vec<_> = self
+            .projs
+            .iter()
+            .map(|&elem| match elem {
+                Deref => Deref,
+                Field(f, ()) => Field(f, ()),
+                Index(()) => Index(()),
+                Downcast(symbol, variantidx) => Downcast(symbol, variantidx),
+                ConstantIndex { offset, min_length, from_end } => {
+                    ConstantIndex { offset, min_length, from_end }
+                }
+                Subslice { from, to, from_end } => Subslice { from, to, from_end },
+            })
+            .collect();
+
+        UserTypeProjection { base, projs }
+    }
+
+    fn super_visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> bool {
+        self.base.visit_with(visitor)
+        // Note: there's nothing in `self.proj` to visit.
+    }
+}
+
+rustc_index::newtype_index! {
+    pub struct Promoted {
+        derive [HashStable]
+        DEBUG_FORMAT = "promoted[{}]"
+    }
+}
+
+impl<'tcx> Debug for Constant<'tcx> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        write!(fmt, "{}", self)
+    }
+}
+
+impl<'tcx> Display for Constant<'tcx> {
+    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+        match self.literal.ty.kind {
+            ty::FnDef(..) => {}
+            _ => write!(fmt, "const ")?,
+        }
+        pretty_print_const(self.literal, fmt, true)
+    }
+}
+
+fn pretty_print_const(
+    c: &ty::Const<'tcx>,
+    fmt: &mut Formatter<'_>,
+    print_types: bool,
+) -> fmt::Result {
+    use crate::ty::print::PrettyPrinter;
+    ty::tls::with(|tcx| {
+        let literal = tcx.lift(&c).unwrap();
+        let mut cx = FmtPrinter::new(tcx, fmt, Namespace::ValueNS);
+        cx.print_alloc_ids = true;
+        cx.pretty_print_const(literal, print_types)?;
+        Ok(())
+    })
+}
+
+impl<'tcx> graph::DirectedGraph for Body<'tcx> {
+    type Node = BasicBlock;
+}
+
+impl<'tcx> graph::WithNumNodes for Body<'tcx> {
+    #[inline]
+    fn num_nodes(&self) -> usize {
+        self.basic_blocks.len()
+    }
+}
+
+impl<'tcx> graph::WithStartNode for Body<'tcx> {
+    #[inline]
+    fn start_node(&self) -> Self::Node {
+        START_BLOCK
+    }
+}
+
+impl<'tcx> graph::WithSuccessors for Body<'tcx> {
+    #[inline]
+    fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
+        self.basic_blocks[node].terminator().successors().cloned()
+    }
+}
+
+impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> {
+    type Item = BasicBlock;
+    type Iter = iter::Cloned<Successors<'b>>;
+}
+
+impl graph::GraphPredecessors<'graph> for Body<'tcx> {
+    type Item = BasicBlock;
+    type Iter = smallvec::IntoIter<[BasicBlock; 4]>;
+}
+
+impl graph::WithPredecessors for Body<'tcx> {
+    #[inline]
+    fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
+        self.predecessors()[node].clone().into_iter()
+    }
+}
+
+/// `Location` represents the position of the start of the statement; or, if
+/// `statement_index` equals the number of statements, then the start of the
+/// terminator.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
+pub struct Location {
+    /// The block that the location is within.
+    pub block: BasicBlock,
+
+    pub statement_index: usize,
+}
+
+impl fmt::Debug for Location {
+    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+        write!(fmt, "{:?}[{}]", self.block, self.statement_index)
+    }
+}
+
+impl Location {
+    pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
+
+    /// Returns the location immediately after this one within the enclosing block.
+    ///
+    /// Note that if this location represents a terminator, then the
+    /// resulting location would be out of bounds and invalid.
+    pub fn successor_within_block(&self) -> Location {
+        Location { block: self.block, statement_index: self.statement_index + 1 }
+    }
+
+    /// Returns `true` if `other` is earlier in the control flow graph than `self`.
+    pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
+        // If we are in the same block as the other location and are an earlier statement
+        // then we are a predecessor of `other`.
+        if self.block == other.block && self.statement_index < other.statement_index {
+            return true;
+        }
+
+        let predecessors = body.predecessors();
+
+        // If we're in another block, then we want to check that block is a predecessor of `other`.
+        let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
+        let mut visited = FxHashSet::default();
+
+        while let Some(block) = queue.pop() {
+            // If we haven't visited this block before, then make sure we visit it's predecessors.
+            if visited.insert(block) {
+                queue.extend(predecessors[block].iter().cloned());
+            } else {
+                continue;
+            }
+
+            // If we found the block that `self` is in, then we are a predecessor of `other` (since
+            // we found that block by looking at the predecessors of `other`).
+            if self.block == block {
+                return true;
+            }
+        }
+
+        false
+    }
+
+    pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
+        if self.block == other.block {
+            self.statement_index <= other.statement_index
+        } else {
+            dominators.is_dominated_by(other.block, self.block)
+        }
+    }
+}