diff options
Diffstat (limited to 'compiler/rustc_middle/src/mir/mod.rs')
| -rw-r--r-- | compiler/rustc_middle/src/mir/mod.rs | 2600 | 
1 files changed, 2600 insertions, 0 deletions
| diff --git a/compiler/rustc_middle/src/mir/mod.rs b/compiler/rustc_middle/src/mir/mod.rs new file mode 100644 index 00000000000..785a7f0c51a --- /dev/null +++ b/compiler/rustc_middle/src/mir/mod.rs @@ -0,0 +1,2600 @@ +//! MIR datatypes and passes. See the [rustc dev guide] for more info. +//! +//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html + +use crate::mir::coverage::{CodeRegion, CoverageKind}; +use crate::mir::interpret::{Allocation, ConstValue, GlobalAlloc, Scalar}; +use crate::mir::visit::MirVisitable; +use crate::ty::adjustment::PointerCast; +use crate::ty::codec::{TyDecoder, TyEncoder}; +use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor}; +use crate::ty::print::{FmtPrinter, Printer}; +use crate::ty::subst::{Subst, SubstsRef}; +use crate::ty::{ + self, AdtDef, CanonicalUserTypeAnnotations, List, Region, Ty, TyCtxt, UserTypeAnnotationIndex, +}; +use rustc_hir as hir; +use rustc_hir::def::{CtorKind, Namespace}; +use rustc_hir::def_id::DefId; +use rustc_hir::{self, GeneratorKind}; +use rustc_target::abi::VariantIdx; + +use polonius_engine::Atom; +pub use rustc_ast::Mutability; +use rustc_data_structures::fx::FxHashSet; +use rustc_data_structures::graph::dominators::{dominators, Dominators}; +use rustc_data_structures::graph::{self, GraphSuccessors}; +use rustc_index::bit_set::BitMatrix; +use rustc_index::vec::{Idx, IndexVec}; +use rustc_serialize::{Decodable, Encodable}; +use rustc_span::symbol::Symbol; +use rustc_span::{Span, DUMMY_SP}; +use rustc_target::abi; +use rustc_target::asm::InlineAsmRegOrRegClass; +use std::borrow::Cow; +use std::fmt::{self, Debug, Display, Formatter, Write}; +use std::ops::{Index, IndexMut}; +use std::slice; +use std::{iter, mem, option}; + +use self::predecessors::{PredecessorCache, Predecessors}; +pub use self::query::*; + +pub mod coverage; +pub mod interpret; +pub mod mono; +mod predecessors; +mod query; +pub mod tcx; +pub mod terminator; +pub use terminator::*; +pub mod traversal; +mod type_foldable; +pub mod visit; + +/// Types for locals +type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>; + +pub trait HasLocalDecls<'tcx> { + fn local_decls(&self) -> &LocalDecls<'tcx>; +} + +impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> { + fn local_decls(&self) -> &LocalDecls<'tcx> { + self + } +} + +impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> { + fn local_decls(&self) -> &LocalDecls<'tcx> { + &self.local_decls + } +} + +/// The various "big phases" that MIR goes through. +/// +/// These phases all describe dialects of MIR. Since all MIR uses the same datastructures, the +/// dialects forbid certain variants or values in certain phases. +/// +/// Note: Each phase's validation checks all invariants of the *previous* phases' dialects. A phase +/// that changes the dialect documents what invariants must be upheld *after* that phase finishes. +/// +/// Warning: ordering of variants is significant. +#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)] +#[derive(HashStable)] +pub enum MirPhase { + Build = 0, + // FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query). + // We used to have this for pre-miri MIR based const eval. + Const = 1, + /// This phase checks the MIR for promotable elements and takes them out of the main MIR body + /// by creating a new MIR body per promoted element. After this phase (and thus the termination + /// of the `mir_promoted` query), these promoted elements are available in the `promoted_mir` + /// query. + ConstPromotion = 2, + /// After this phase + /// * the only `AggregateKind`s allowed are `Array` and `Generator`, + /// * `DropAndReplace` is gone for good + /// * `Drop` now uses explicit drop flags visible in the MIR and reaching a `Drop` terminator + /// means that the auto-generated drop glue will be invoked. + DropLowering = 3, + /// After this phase, generators are explicit state machines (no more `Yield`). + /// `AggregateKind::Generator` is gone for good. + GeneratorLowering = 4, + Optimization = 5, +} + +impl MirPhase { + /// Gets the index of the current MirPhase within the set of all `MirPhase`s. + pub fn phase_index(&self) -> usize { + *self as usize + } +} + +/// The lowered representation of a single function. +#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)] +pub struct Body<'tcx> { + /// A list of basic blocks. References to basic block use a newtyped index type `BasicBlock` + /// that indexes into this vector. + basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>, + + /// Records how far through the "desugaring and optimization" process this particular + /// MIR has traversed. This is particularly useful when inlining, since in that context + /// we instantiate the promoted constants and add them to our promoted vector -- but those + /// promoted items have already been optimized, whereas ours have not. This field allows + /// us to see the difference and forego optimization on the inlined promoted items. + pub phase: MirPhase, + + /// A list of source scopes; these are referenced by statements + /// and used for debuginfo. Indexed by a `SourceScope`. + pub source_scopes: IndexVec<SourceScope, SourceScopeData>, + + /// The yield type of the function, if it is a generator. + pub yield_ty: Option<Ty<'tcx>>, + + /// Generator drop glue. + pub generator_drop: Option<Box<Body<'tcx>>>, + + /// The layout of a generator. Produced by the state transformation. + pub generator_layout: Option<GeneratorLayout<'tcx>>, + + /// If this is a generator then record the type of source expression that caused this generator + /// to be created. + pub generator_kind: Option<GeneratorKind>, + + /// Declarations of locals. + /// + /// The first local is the return value pointer, followed by `arg_count` + /// locals for the function arguments, followed by any user-declared + /// variables and temporaries. + pub local_decls: LocalDecls<'tcx>, + + /// User type annotations. + pub user_type_annotations: CanonicalUserTypeAnnotations<'tcx>, + + /// The number of arguments this function takes. + /// + /// Starting at local 1, `arg_count` locals will be provided by the caller + /// and can be assumed to be initialized. + /// + /// If this MIR was built for a constant, this will be 0. + pub arg_count: usize, + + /// Mark an argument local (which must be a tuple) as getting passed as + /// its individual components at the LLVM level. + /// + /// This is used for the "rust-call" ABI. + pub spread_arg: Option<Local>, + + /// Debug information pertaining to user variables, including captures. + pub var_debug_info: Vec<VarDebugInfo<'tcx>>, + + /// A span representing this MIR, for error reporting. + pub span: Span, + + /// Constants that are required to evaluate successfully for this MIR to be well-formed. + /// We hold in this field all the constants we are not able to evaluate yet. + pub required_consts: Vec<Constant<'tcx>>, + + /// The user may be writing e.g. `&[(SOME_CELL, 42)][i].1` and this would get promoted, because + /// we'd statically know that no thing with interior mutability will ever be available to the + /// user without some serious unsafe code. Now this means that our promoted is actually + /// `&[(SOME_CELL, 42)]` and the MIR using it will do the `&promoted[i].1` projection because + /// the index may be a runtime value. Such a promoted value is illegal because it has reachable + /// interior mutability. This flag just makes this situation very obvious where the previous + /// implementation without the flag hid this situation silently. + /// FIXME(oli-obk): rewrite the promoted during promotion to eliminate the cell components. + pub ignore_interior_mut_in_const_validation: bool, + + predecessor_cache: PredecessorCache, +} + +impl<'tcx> Body<'tcx> { + pub fn new( + basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>, + source_scopes: IndexVec<SourceScope, SourceScopeData>, + local_decls: LocalDecls<'tcx>, + user_type_annotations: CanonicalUserTypeAnnotations<'tcx>, + arg_count: usize, + var_debug_info: Vec<VarDebugInfo<'tcx>>, + span: Span, + generator_kind: Option<GeneratorKind>, + ) -> Self { + // We need `arg_count` locals, and one for the return place. + assert!( + local_decls.len() > arg_count, + "expected at least {} locals, got {}", + arg_count + 1, + local_decls.len() + ); + + Body { + phase: MirPhase::Build, + basic_blocks, + source_scopes, + yield_ty: None, + generator_drop: None, + generator_layout: None, + generator_kind, + local_decls, + user_type_annotations, + arg_count, + spread_arg: None, + var_debug_info, + span, + required_consts: Vec::new(), + ignore_interior_mut_in_const_validation: false, + predecessor_cache: PredecessorCache::new(), + } + } + + /// Returns a partially initialized MIR body containing only a list of basic blocks. + /// + /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It + /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different + /// crate. + pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self { + Body { + phase: MirPhase::Build, + basic_blocks, + source_scopes: IndexVec::new(), + yield_ty: None, + generator_drop: None, + generator_layout: None, + local_decls: IndexVec::new(), + user_type_annotations: IndexVec::new(), + arg_count: 0, + spread_arg: None, + span: DUMMY_SP, + required_consts: Vec::new(), + generator_kind: None, + var_debug_info: Vec::new(), + ignore_interior_mut_in_const_validation: false, + predecessor_cache: PredecessorCache::new(), + } + } + + #[inline] + pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> { + &self.basic_blocks + } + + #[inline] + pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> { + // Because the user could mutate basic block terminators via this reference, we need to + // invalidate the predecessor cache. + // + // FIXME: Use a finer-grained API for this, so only transformations that alter terminators + // invalidate the predecessor cache. + self.predecessor_cache.invalidate(); + &mut self.basic_blocks + } + + #[inline] + pub fn basic_blocks_and_local_decls_mut( + &mut self, + ) -> (&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, &mut LocalDecls<'tcx>) { + self.predecessor_cache.invalidate(); + (&mut self.basic_blocks, &mut self.local_decls) + } + + #[inline] + pub fn basic_blocks_local_decls_mut_and_var_debug_info( + &mut self, + ) -> ( + &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, + &mut LocalDecls<'tcx>, + &mut Vec<VarDebugInfo<'tcx>>, + ) { + self.predecessor_cache.invalidate(); + (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info) + } + + /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the + /// `START_BLOCK`. + pub fn is_cfg_cyclic(&self) -> bool { + graph::is_cyclic(self) + } + + #[inline] + pub fn local_kind(&self, local: Local) -> LocalKind { + let index = local.as_usize(); + if index == 0 { + debug_assert!( + self.local_decls[local].mutability == Mutability::Mut, + "return place should be mutable" + ); + + LocalKind::ReturnPointer + } else if index < self.arg_count + 1 { + LocalKind::Arg + } else if self.local_decls[local].is_user_variable() { + LocalKind::Var + } else { + LocalKind::Temp + } + } + + /// Returns an iterator over all temporaries. + #[inline] + pub fn temps_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a { + (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| { + let local = Local::new(index); + if self.local_decls[local].is_user_variable() { None } else { Some(local) } + }) + } + + /// Returns an iterator over all user-declared locals. + #[inline] + pub fn vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a { + (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| { + let local = Local::new(index); + self.local_decls[local].is_user_variable().then_some(local) + }) + } + + /// Returns an iterator over all user-declared mutable locals. + #[inline] + pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a { + (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| { + let local = Local::new(index); + let decl = &self.local_decls[local]; + if decl.is_user_variable() && decl.mutability == Mutability::Mut { + Some(local) + } else { + None + } + }) + } + + /// Returns an iterator over all user-declared mutable arguments and locals. + #[inline] + pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a { + (1..self.local_decls.len()).filter_map(move |index| { + let local = Local::new(index); + let decl = &self.local_decls[local]; + if (decl.is_user_variable() || index < self.arg_count + 1) + && decl.mutability == Mutability::Mut + { + Some(local) + } else { + None + } + }) + } + + /// Returns an iterator over all function arguments. + #[inline] + pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator { + let arg_count = self.arg_count; + (1..arg_count + 1).map(Local::new) + } + + /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all + /// locals that are neither arguments nor the return place). + #[inline] + pub fn vars_and_temps_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator { + let arg_count = self.arg_count; + let local_count = self.local_decls.len(); + (arg_count + 1..local_count).map(Local::new) + } + + /// Changes a statement to a nop. This is both faster than deleting instructions and avoids + /// invalidating statement indices in `Location`s. + pub fn make_statement_nop(&mut self, location: Location) { + let block = &mut self.basic_blocks[location.block]; + debug_assert!(location.statement_index < block.statements.len()); + block.statements[location.statement_index].make_nop() + } + + /// Returns the source info associated with `location`. + pub fn source_info(&self, location: Location) -> &SourceInfo { + let block = &self[location.block]; + let stmts = &block.statements; + let idx = location.statement_index; + if idx < stmts.len() { + &stmts[idx].source_info + } else { + assert_eq!(idx, stmts.len()); + &block.terminator().source_info + } + } + + /// Checks if `sub` is a sub scope of `sup` + pub fn is_sub_scope(&self, mut sub: SourceScope, sup: SourceScope) -> bool { + while sub != sup { + match self.source_scopes[sub].parent_scope { + None => return false, + Some(p) => sub = p, + } + } + true + } + + /// Returns the return type; it always return first element from `local_decls` array. + #[inline] + pub fn return_ty(&self) -> Ty<'tcx> { + self.local_decls[RETURN_PLACE].ty + } + + /// Gets the location of the terminator for the given block. + #[inline] + pub fn terminator_loc(&self, bb: BasicBlock) -> Location { + Location { block: bb, statement_index: self[bb].statements.len() } + } + + #[inline] + pub fn predecessors(&self) -> impl std::ops::Deref<Target = Predecessors> + '_ { + self.predecessor_cache.compute(&self.basic_blocks) + } + + #[inline] + pub fn dominators(&self) -> Dominators<BasicBlock> { + dominators(self) + } +} + +#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)] +pub enum Safety { + Safe, + /// Unsafe because of a PushUnsafeBlock + BuiltinUnsafe, + /// Unsafe because of an unsafe fn + FnUnsafe, + /// Unsafe because of an `unsafe` block + ExplicitUnsafe(hir::HirId), +} + +impl<'tcx> Index<BasicBlock> for Body<'tcx> { + type Output = BasicBlockData<'tcx>; + + #[inline] + fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> { + &self.basic_blocks()[index] + } +} + +impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> { + #[inline] + fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> { + &mut self.basic_blocks_mut()[index] + } +} + +#[derive(Copy, Clone, Debug, HashStable, TypeFoldable)] +pub enum ClearCrossCrate<T> { + Clear, + Set(T), +} + +impl<T> ClearCrossCrate<T> { + pub fn as_ref(&self) -> ClearCrossCrate<&T> { + match self { + ClearCrossCrate::Clear => ClearCrossCrate::Clear, + ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v), + } + } + + pub fn assert_crate_local(self) -> T { + match self { + ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"), + ClearCrossCrate::Set(v) => v, + } + } +} + +const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0; +const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1; + +impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> { + #[inline] + fn encode(&self, e: &mut E) -> Result<(), E::Error> { + if E::CLEAR_CROSS_CRATE { + return Ok(()); + } + + match *self { + ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e), + ClearCrossCrate::Set(ref val) => { + TAG_CLEAR_CROSS_CRATE_SET.encode(e)?; + val.encode(e) + } + } + } +} +impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> { + #[inline] + fn decode(d: &mut D) -> Result<ClearCrossCrate<T>, D::Error> { + if D::CLEAR_CROSS_CRATE { + return Ok(ClearCrossCrate::Clear); + } + + let discr = u8::decode(d)?; + + match discr { + TAG_CLEAR_CROSS_CRATE_CLEAR => Ok(ClearCrossCrate::Clear), + TAG_CLEAR_CROSS_CRATE_SET => { + let val = T::decode(d)?; + Ok(ClearCrossCrate::Set(val)) + } + tag => Err(d.error(&format!("Invalid tag for ClearCrossCrate: {:?}", tag))), + } + } +} + +/// Grouped information about the source code origin of a MIR entity. +/// Intended to be inspected by diagnostics and debuginfo. +/// Most passes can work with it as a whole, within a single function. +// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and +// `Hash`. Please ping @bjorn3 if removing them. +#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)] +pub struct SourceInfo { + /// The source span for the AST pertaining to this MIR entity. + pub span: Span, + + /// The source scope, keeping track of which bindings can be + /// seen by debuginfo, active lint levels, `unsafe {...}`, etc. + pub scope: SourceScope, +} + +impl SourceInfo { + #[inline] + pub fn outermost(span: Span) -> Self { + SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE } + } +} + +/////////////////////////////////////////////////////////////////////////// +// Borrow kinds + +#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, TyEncodable, TyDecodable)] +#[derive(HashStable)] +pub enum BorrowKind { + /// Data must be immutable and is aliasable. + Shared, + + /// The immediately borrowed place must be immutable, but projections from + /// it don't need to be. For example, a shallow borrow of `a.b` doesn't + /// conflict with a mutable borrow of `a.b.c`. + /// + /// This is used when lowering matches: when matching on a place we want to + /// ensure that place have the same value from the start of the match until + /// an arm is selected. This prevents this code from compiling: + /// + /// let mut x = &Some(0); + /// match *x { + /// None => (), + /// Some(_) if { x = &None; false } => (), + /// Some(_) => (), + /// } + /// + /// This can't be a shared borrow because mutably borrowing (*x as Some).0 + /// should not prevent `if let None = x { ... }`, for example, because the + /// mutating `(*x as Some).0` can't affect the discriminant of `x`. + /// We can also report errors with this kind of borrow differently. + Shallow, + + /// Data must be immutable but not aliasable. This kind of borrow + /// cannot currently be expressed by the user and is used only in + /// implicit closure bindings. It is needed when the closure is + /// borrowing or mutating a mutable referent, e.g.: + /// + /// let x: &mut isize = ...; + /// let y = || *x += 5; + /// + /// If we were to try to translate this closure into a more explicit + /// form, we'd encounter an error with the code as written: + /// + /// struct Env { x: & &mut isize } + /// let x: &mut isize = ...; + /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn + /// fn fn_ptr(env: &mut Env) { **env.x += 5; } + /// + /// This is then illegal because you cannot mutate an `&mut` found + /// in an aliasable location. To solve, you'd have to translate with + /// an `&mut` borrow: + /// + /// struct Env { x: & &mut isize } + /// let x: &mut isize = ...; + /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x + /// fn fn_ptr(env: &mut Env) { **env.x += 5; } + /// + /// Now the assignment to `**env.x` is legal, but creating a + /// mutable pointer to `x` is not because `x` is not mutable. We + /// could fix this by declaring `x` as `let mut x`. This is ok in + /// user code, if awkward, but extra weird for closures, since the + /// borrow is hidden. + /// + /// So we introduce a "unique imm" borrow -- the referent is + /// immutable, but not aliasable. This solves the problem. For + /// simplicity, we don't give users the way to express this + /// borrow, it's just used when translating closures. + Unique, + + /// Data is mutable and not aliasable. + Mut { + /// `true` if this borrow arose from method-call auto-ref + /// (i.e., `adjustment::Adjust::Borrow`). + allow_two_phase_borrow: bool, + }, +} + +impl BorrowKind { + pub fn allows_two_phase_borrow(&self) -> bool { + match *self { + BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false, + BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow, + } + } +} + +/////////////////////////////////////////////////////////////////////////// +// Variables and temps + +rustc_index::newtype_index! { + pub struct Local { + derive [HashStable] + DEBUG_FORMAT = "_{}", + const RETURN_PLACE = 0, + } +} + +impl Atom for Local { + fn index(self) -> usize { + Idx::index(self) + } +} + +/// Classifies locals into categories. See `Body::local_kind`. +#[derive(PartialEq, Eq, Debug, HashStable)] +pub enum LocalKind { + /// User-declared variable binding. + Var, + /// Compiler-introduced temporary. + Temp, + /// Function argument. + Arg, + /// Location of function's return value. + ReturnPointer, +} + +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] +pub struct VarBindingForm<'tcx> { + /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`? + pub binding_mode: ty::BindingMode, + /// If an explicit type was provided for this variable binding, + /// this holds the source Span of that type. + /// + /// NOTE: if you want to change this to a `HirId`, be wary that + /// doing so breaks incremental compilation (as of this writing), + /// while a `Span` does not cause our tests to fail. + pub opt_ty_info: Option<Span>, + /// Place of the RHS of the =, or the subject of the `match` where this + /// variable is initialized. None in the case of `let PATTERN;`. + /// Some((None, ..)) in the case of and `let [mut] x = ...` because + /// (a) the right-hand side isn't evaluated as a place expression. + /// (b) it gives a way to separate this case from the remaining cases + /// for diagnostics. + pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>, + /// The span of the pattern in which this variable was bound. + pub pat_span: Span, +} + +#[derive(Clone, Debug, TyEncodable, TyDecodable)] +pub enum BindingForm<'tcx> { + /// This is a binding for a non-`self` binding, or a `self` that has an explicit type. + Var(VarBindingForm<'tcx>), + /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit. + ImplicitSelf(ImplicitSelfKind), + /// Reference used in a guard expression to ensure immutability. + RefForGuard, +} + +/// Represents what type of implicit self a function has, if any. +#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)] +pub enum ImplicitSelfKind { + /// Represents a `fn x(self);`. + Imm, + /// Represents a `fn x(mut self);`. + Mut, + /// Represents a `fn x(&self);`. + ImmRef, + /// Represents a `fn x(&mut self);`. + MutRef, + /// Represents when a function does not have a self argument or + /// when a function has a `self: X` argument. + None, +} + +CloneTypeFoldableAndLiftImpls! { BindingForm<'tcx>, } + +mod binding_form_impl { + use crate::ich::StableHashingContext; + use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; + + impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> { + fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { + use super::BindingForm::*; + ::std::mem::discriminant(self).hash_stable(hcx, hasher); + + match self { + Var(binding) => binding.hash_stable(hcx, hasher), + ImplicitSelf(kind) => kind.hash_stable(hcx, hasher), + RefForGuard => (), + } + } + } +} + +/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries +/// created during evaluation of expressions in a block tail +/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`. +/// +/// It is used to improve diagnostics when such temporaries are +/// involved in borrow_check errors, e.g., explanations of where the +/// temporaries come from, when their destructors are run, and/or how +/// one might revise the code to satisfy the borrow checker's rules. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] +pub struct BlockTailInfo { + /// If `true`, then the value resulting from evaluating this tail + /// expression is ignored by the block's expression context. + /// + /// Examples include `{ ...; tail };` and `let _ = { ...; tail };` + /// but not e.g., `let _x = { ...; tail };` + pub tail_result_is_ignored: bool, + + /// `Span` of the tail expression. + pub span: Span, +} + +/// A MIR local. +/// +/// This can be a binding declared by the user, a temporary inserted by the compiler, a function +/// argument, or the return place. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct LocalDecl<'tcx> { + /// Whether this is a mutable minding (i.e., `let x` or `let mut x`). + /// + /// Temporaries and the return place are always mutable. + pub mutability: Mutability, + + // FIXME(matthewjasper) Don't store in this in `Body` + pub local_info: Option<Box<LocalInfo<'tcx>>>, + + /// `true` if this is an internal local. + /// + /// These locals are not based on types in the source code and are only used + /// for a few desugarings at the moment. + /// + /// The generator transformation will sanity check the locals which are live + /// across a suspension point against the type components of the generator + /// which type checking knows are live across a suspension point. We need to + /// flag drop flags to avoid triggering this check as they are introduced + /// after typeck. + /// + /// Unsafety checking will also ignore dereferences of these locals, + /// so they can be used for raw pointers only used in a desugaring. + /// + /// This should be sound because the drop flags are fully algebraic, and + /// therefore don't affect the OIBIT or outlives properties of the + /// generator. + pub internal: bool, + + /// If this local is a temporary and `is_block_tail` is `Some`, + /// then it is a temporary created for evaluation of some + /// subexpression of some block's tail expression (with no + /// intervening statement context). + // FIXME(matthewjasper) Don't store in this in `Body` + pub is_block_tail: Option<BlockTailInfo>, + + /// The type of this local. + pub ty: Ty<'tcx>, + + /// If the user manually ascribed a type to this variable, + /// e.g., via `let x: T`, then we carry that type here. The MIR + /// borrow checker needs this information since it can affect + /// region inference. + // FIXME(matthewjasper) Don't store in this in `Body` + pub user_ty: Option<Box<UserTypeProjections>>, + + /// The *syntactic* (i.e., not visibility) source scope the local is defined + /// in. If the local was defined in a let-statement, this + /// is *within* the let-statement, rather than outside + /// of it. + /// + /// This is needed because the visibility source scope of locals within + /// a let-statement is weird. + /// + /// The reason is that we want the local to be *within* the let-statement + /// for lint purposes, but we want the local to be *after* the let-statement + /// for names-in-scope purposes. + /// + /// That's it, if we have a let-statement like the one in this + /// function: + /// + /// ``` + /// fn foo(x: &str) { + /// #[allow(unused_mut)] + /// let mut x: u32 = { // <- one unused mut + /// let mut y: u32 = x.parse().unwrap(); + /// y + 2 + /// }; + /// drop(x); + /// } + /// ``` + /// + /// Then, from a lint point of view, the declaration of `x: u32` + /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the + /// lint scopes are the same as the AST/HIR nesting. + /// + /// However, from a name lookup point of view, the scopes look more like + /// as if the let-statements were `match` expressions: + /// + /// ``` + /// fn foo(x: &str) { + /// match { + /// match x.parse().unwrap() { + /// y => y + 2 + /// } + /// } { + /// x => drop(x) + /// }; + /// } + /// ``` + /// + /// We care about the name-lookup scopes for debuginfo - if the + /// debuginfo instruction pointer is at the call to `x.parse()`, we + /// want `x` to refer to `x: &str`, but if it is at the call to + /// `drop(x)`, we want it to refer to `x: u32`. + /// + /// To allow both uses to work, we need to have more than a single scope + /// for a local. We have the `source_info.scope` represent the "syntactic" + /// lint scope (with a variable being under its let block) while the + /// `var_debug_info.source_info.scope` represents the "local variable" + /// scope (where the "rest" of a block is under all prior let-statements). + /// + /// The end result looks like this: + /// + /// ```text + /// ROOT SCOPE + /// │{ argument x: &str } + /// │ + /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes + /// │ │ // in practice because I'm lazy. + /// │ │ + /// │ │← x.source_info.scope + /// │ │← `x.parse().unwrap()` + /// │ │ + /// │ │ │← y.source_info.scope + /// │ │ + /// │ │ │{ let y: u32 } + /// │ │ │ + /// │ │ │← y.var_debug_info.source_info.scope + /// │ │ │← `y + 2` + /// │ + /// │ │{ let x: u32 } + /// │ │← x.var_debug_info.source_info.scope + /// │ │← `drop(x)` // This accesses `x: u32`. + /// ``` + pub source_info: SourceInfo, +} + +// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger. +#[cfg(target_arch = "x86_64")] +static_assert_size!(LocalDecl<'_>, 56); + +/// Extra information about a some locals that's used for diagnostics and for +/// classifying variables into local variables, statics, etc, which is needed e.g. +/// for unsafety checking. +/// +/// Not used for non-StaticRef temporaries, the return place, or anonymous +/// function parameters. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub enum LocalInfo<'tcx> { + /// A user-defined local variable or function parameter + /// + /// The `BindingForm` is solely used for local diagnostics when generating + /// warnings/errors when compiling the current crate, and therefore it need + /// not be visible across crates. + User(ClearCrossCrate<BindingForm<'tcx>>), + /// A temporary created that references the static with the given `DefId`. + StaticRef { def_id: DefId, is_thread_local: bool }, +} + +impl<'tcx> LocalDecl<'tcx> { + /// Returns `true` only if local is a binding that can itself be + /// made mutable via the addition of the `mut` keyword, namely + /// something like the occurrences of `x` in: + /// - `fn foo(x: Type) { ... }`, + /// - `let x = ...`, + /// - or `match ... { C(x) => ... }` + pub fn can_be_made_mutable(&self) -> bool { + match self.local_info { + Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm { + binding_mode: ty::BindingMode::BindByValue(_), + opt_ty_info: _, + opt_match_place: _, + pat_span: _, + })))) => true, + + Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::ImplicitSelf( + ImplicitSelfKind::Imm, + )))) => true, + + _ => false, + } + } + + /// Returns `true` if local is definitely not a `ref ident` or + /// `ref mut ident` binding. (Such bindings cannot be made into + /// mutable bindings, but the inverse does not necessarily hold). + pub fn is_nonref_binding(&self) -> bool { + match self.local_info { + Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm { + binding_mode: ty::BindingMode::BindByValue(_), + opt_ty_info: _, + opt_match_place: _, + pat_span: _, + })))) => true, + + Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::ImplicitSelf(_)))) => true, + + _ => false, + } + } + + /// Returns `true` if this variable is a named variable or function + /// parameter declared by the user. + #[inline] + pub fn is_user_variable(&self) -> bool { + match self.local_info { + Some(box LocalInfo::User(_)) => true, + _ => false, + } + } + + /// Returns `true` if this is a reference to a variable bound in a `match` + /// expression that is used to access said variable for the guard of the + /// match arm. + pub fn is_ref_for_guard(&self) -> bool { + match self.local_info { + Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard))) => true, + _ => false, + } + } + + /// Returns `Some` if this is a reference to a static item that is used to + /// access that static + pub fn is_ref_to_static(&self) -> bool { + match self.local_info { + Some(box LocalInfo::StaticRef { .. }) => true, + _ => false, + } + } + + /// Returns `Some` if this is a reference to a static item that is used to + /// access that static + pub fn is_ref_to_thread_local(&self) -> bool { + match self.local_info { + Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local, + _ => false, + } + } + + /// Returns `true` is the local is from a compiler desugaring, e.g., + /// `__next` from a `for` loop. + #[inline] + pub fn from_compiler_desugaring(&self) -> bool { + self.source_info.span.desugaring_kind().is_some() + } + + /// Creates a new `LocalDecl` for a temporary: mutable, non-internal. + #[inline] + pub fn new(ty: Ty<'tcx>, span: Span) -> Self { + Self::with_source_info(ty, SourceInfo::outermost(span)) + } + + /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`. + #[inline] + pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self { + LocalDecl { + mutability: Mutability::Mut, + local_info: None, + internal: false, + is_block_tail: None, + ty, + user_ty: None, + source_info, + } + } + + /// Converts `self` into same `LocalDecl` except tagged as internal. + #[inline] + pub fn internal(mut self) -> Self { + self.internal = true; + self + } + + /// Converts `self` into same `LocalDecl` except tagged as immutable. + #[inline] + pub fn immutable(mut self) -> Self { + self.mutability = Mutability::Not; + self + } + + /// Converts `self` into same `LocalDecl` except tagged as internal temporary. + #[inline] + pub fn block_tail(mut self, info: BlockTailInfo) -> Self { + assert!(self.is_block_tail.is_none()); + self.is_block_tail = Some(info); + self + } +} + +/// Debug information pertaining to a user variable. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct VarDebugInfo<'tcx> { + pub name: Symbol, + + /// Source info of the user variable, including the scope + /// within which the variable is visible (to debuginfo) + /// (see `LocalDecl`'s `source_info` field for more details). + pub source_info: SourceInfo, + + /// Where the data for this user variable is to be found. + /// NOTE(eddyb) There's an unenforced invariant that this `Place` is + /// based on a `Local`, not a `Static`, and contains no indexing. + pub place: Place<'tcx>, +} + +/////////////////////////////////////////////////////////////////////////// +// BasicBlock + +rustc_index::newtype_index! { + pub struct BasicBlock { + derive [HashStable] + DEBUG_FORMAT = "bb{}", + const START_BLOCK = 0, + } +} + +impl BasicBlock { + pub fn start_location(self) -> Location { + Location { block: self, statement_index: 0 } + } +} + +/////////////////////////////////////////////////////////////////////////// +// BasicBlockData and Terminator + +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct BasicBlockData<'tcx> { + /// List of statements in this block. + pub statements: Vec<Statement<'tcx>>, + + /// Terminator for this block. + /// + /// N.B., this should generally ONLY be `None` during construction. + /// Therefore, you should generally access it via the + /// `terminator()` or `terminator_mut()` methods. The only + /// exception is that certain passes, such as `simplify_cfg`, swap + /// out the terminator temporarily with `None` while they continue + /// to recurse over the set of basic blocks. + pub terminator: Option<Terminator<'tcx>>, + + /// If true, this block lies on an unwind path. This is used + /// during codegen where distinct kinds of basic blocks may be + /// generated (particularly for MSVC cleanup). Unwind blocks must + /// only branch to other unwind blocks. + pub is_cleanup: bool, +} + +/// Information about an assertion failure. +#[derive(Clone, TyEncodable, TyDecodable, HashStable, PartialEq)] +pub enum AssertKind<O> { + BoundsCheck { len: O, index: O }, + Overflow(BinOp, O, O), + OverflowNeg(O), + DivisionByZero(O), + RemainderByZero(O), + ResumedAfterReturn(GeneratorKind), + ResumedAfterPanic(GeneratorKind), +} + +#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub enum InlineAsmOperand<'tcx> { + In { + reg: InlineAsmRegOrRegClass, + value: Operand<'tcx>, + }, + Out { + reg: InlineAsmRegOrRegClass, + late: bool, + place: Option<Place<'tcx>>, + }, + InOut { + reg: InlineAsmRegOrRegClass, + late: bool, + in_value: Operand<'tcx>, + out_place: Option<Place<'tcx>>, + }, + Const { + value: Operand<'tcx>, + }, + SymFn { + value: Box<Constant<'tcx>>, + }, + SymStatic { + def_id: DefId, + }, +} + +/// Type for MIR `Assert` terminator error messages. +pub type AssertMessage<'tcx> = AssertKind<Operand<'tcx>>; + +pub type Successors<'a> = + iter::Chain<option::IntoIter<&'a BasicBlock>, slice::Iter<'a, BasicBlock>>; +pub type SuccessorsMut<'a> = + iter::Chain<option::IntoIter<&'a mut BasicBlock>, slice::IterMut<'a, BasicBlock>>; + +impl<'tcx> BasicBlockData<'tcx> { + pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> { + BasicBlockData { statements: vec![], terminator, is_cleanup: false } + } + + /// Accessor for terminator. + /// + /// Terminator may not be None after construction of the basic block is complete. This accessor + /// provides a convenience way to reach the terminator. + pub fn terminator(&self) -> &Terminator<'tcx> { + self.terminator.as_ref().expect("invalid terminator state") + } + + pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> { + self.terminator.as_mut().expect("invalid terminator state") + } + + pub fn retain_statements<F>(&mut self, mut f: F) + where + F: FnMut(&mut Statement<'_>) -> bool, + { + for s in &mut self.statements { + if !f(s) { + s.make_nop(); + } + } + } + + pub fn expand_statements<F, I>(&mut self, mut f: F) + where + F: FnMut(&mut Statement<'tcx>) -> Option<I>, + I: iter::TrustedLen<Item = Statement<'tcx>>, + { + // Gather all the iterators we'll need to splice in, and their positions. + let mut splices: Vec<(usize, I)> = vec![]; + let mut extra_stmts = 0; + for (i, s) in self.statements.iter_mut().enumerate() { + if let Some(mut new_stmts) = f(s) { + if let Some(first) = new_stmts.next() { + // We can already store the first new statement. + *s = first; + + // Save the other statements for optimized splicing. + let remaining = new_stmts.size_hint().0; + if remaining > 0 { + splices.push((i + 1 + extra_stmts, new_stmts)); + extra_stmts += remaining; + } + } else { + s.make_nop(); + } + } + } + + // Splice in the new statements, from the end of the block. + // FIXME(eddyb) This could be more efficient with a "gap buffer" + // where a range of elements ("gap") is left uninitialized, with + // splicing adding new elements to the end of that gap and moving + // existing elements from before the gap to the end of the gap. + // For now, this is safe code, emulating a gap but initializing it. + let mut gap = self.statements.len()..self.statements.len() + extra_stmts; + self.statements.resize( + gap.end, + Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop }, + ); + for (splice_start, new_stmts) in splices.into_iter().rev() { + let splice_end = splice_start + new_stmts.size_hint().0; + while gap.end > splice_end { + gap.start -= 1; + gap.end -= 1; + self.statements.swap(gap.start, gap.end); + } + self.statements.splice(splice_start..splice_end, new_stmts); + gap.end = splice_start; + } + } + + pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> { + if index < self.statements.len() { &self.statements[index] } else { &self.terminator } + } +} + +impl<O> AssertKind<O> { + /// Getting a description does not require `O` to be printable, and does not + /// require allocation. + /// The caller is expected to handle `BoundsCheck` separately. + pub fn description(&self) -> &'static str { + use AssertKind::*; + match self { + Overflow(BinOp::Add, _, _) => "attempt to add with overflow", + Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow", + Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow", + Overflow(BinOp::Div, _, _) => "attempt to divide with overflow", + Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow", + OverflowNeg(_) => "attempt to negate with overflow", + Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow", + Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow", + Overflow(op, _, _) => bug!("{:?} cannot overflow", op), + DivisionByZero(_) => "attempt to divide by zero", + RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero", + ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion", + ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion", + ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking", + ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking", + BoundsCheck { .. } => bug!("Unexpected AssertKind"), + } + } + + /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing. + fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result + where + O: Debug, + { + use AssertKind::*; + match self { + BoundsCheck { ref len, ref index } => write!( + f, + "\"index out of bounds: the len is {{}} but the index is {{}}\", {:?}, {:?}", + len, index + ), + + OverflowNeg(op) => { + write!(f, "\"attempt to negate {{}} which would overflow\", {:?}", op) + } + DivisionByZero(op) => write!(f, "\"attempt to divide {{}} by zero\", {:?}", op), + RemainderByZero(op) => write!( + f, + "\"attempt to calculate the remainder of {{}} with a divisor of zero\", {:?}", + op + ), + Overflow(BinOp::Add, l, r) => write!( + f, + "\"attempt to compute `{{}} + {{}}` which would overflow\", {:?}, {:?}", + l, r + ), + Overflow(BinOp::Sub, l, r) => write!( + f, + "\"attempt to compute `{{}} - {{}}` which would overflow\", {:?}, {:?}", + l, r + ), + Overflow(BinOp::Mul, l, r) => write!( + f, + "\"attempt to compute `{{}} * {{}}` which would overflow\", {:?}, {:?}", + l, r + ), + Overflow(BinOp::Div, l, r) => write!( + f, + "\"attempt to compute `{{}} / {{}}` which would overflow\", {:?}, {:?}", + l, r + ), + Overflow(BinOp::Rem, l, r) => write!( + f, + "\"attempt to compute the remainder of `{{}} % {{}}` which would overflow\", {:?}, {:?}", + l, r + ), + Overflow(BinOp::Shr, _, r) => { + write!(f, "\"attempt to shift right by {{}} which would overflow\", {:?}", r) + } + Overflow(BinOp::Shl, _, r) => { + write!(f, "\"attempt to shift left by {{}} which would overflow\", {:?}", r) + } + _ => write!(f, "\"{}\"", self.description()), + } + } +} + +impl<O: fmt::Debug> fmt::Debug for AssertKind<O> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + use AssertKind::*; + match self { + BoundsCheck { ref len, ref index } => { + write!(f, "index out of bounds: the len is {:?} but the index is {:?}", len, index) + } + OverflowNeg(op) => write!(f, "attempt to negate {:#?} which would overflow", op), + DivisionByZero(op) => write!(f, "attempt to divide {:#?} by zero", op), + RemainderByZero(op) => { + write!(f, "attempt to calculate the remainder of {:#?} with a divisor of zero", op) + } + Overflow(BinOp::Add, l, r) => { + write!(f, "attempt to compute `{:#?} + {:#?}` which would overflow", l, r) + } + Overflow(BinOp::Sub, l, r) => { + write!(f, "attempt to compute `{:#?} - {:#?}` which would overflow", l, r) + } + Overflow(BinOp::Mul, l, r) => { + write!(f, "attempt to compute `{:#?} * {:#?}` which would overflow", l, r) + } + Overflow(BinOp::Div, l, r) => { + write!(f, "attempt to compute `{:#?} / {:#?}` which would overflow", l, r) + } + Overflow(BinOp::Rem, l, r) => write!( + f, + "attempt to compute the remainder of `{:#?} % {:#?}` which would overflow", + l, r + ), + Overflow(BinOp::Shr, _, r) => { + write!(f, "attempt to shift right by {:#?} which would overflow", r) + } + Overflow(BinOp::Shl, _, r) => { + write!(f, "attempt to shift left by {:#?} which would overflow", r) + } + _ => write!(f, "{}", self.description()), + } + } +} + +/////////////////////////////////////////////////////////////////////////// +// Statements + +#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct Statement<'tcx> { + pub source_info: SourceInfo, + pub kind: StatementKind<'tcx>, +} + +// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger. +#[cfg(target_arch = "x86_64")] +static_assert_size!(Statement<'_>, 32); + +impl Statement<'_> { + /// Changes a statement to a nop. This is both faster than deleting instructions and avoids + /// invalidating statement indices in `Location`s. + pub fn make_nop(&mut self) { + self.kind = StatementKind::Nop + } + + /// Changes a statement to a nop and returns the original statement. + pub fn replace_nop(&mut self) -> Self { + Statement { + source_info: self.source_info, + kind: mem::replace(&mut self.kind, StatementKind::Nop), + } + } +} + +#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub enum StatementKind<'tcx> { + /// Write the RHS Rvalue to the LHS Place. + Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>), + + /// This represents all the reading that a pattern match may do + /// (e.g., inspecting constants and discriminant values), and the + /// kind of pattern it comes from. This is in order to adapt potential + /// error messages to these specific patterns. + /// + /// Note that this also is emitted for regular `let` bindings to ensure that locals that are + /// never accessed still get some sanity checks for, e.g., `let x: ! = ..;` + FakeRead(FakeReadCause, Box<Place<'tcx>>), + + /// Write the discriminant for a variant to the enum Place. + SetDiscriminant { place: Box<Place<'tcx>>, variant_index: VariantIdx }, + + /// Start a live range for the storage of the local. + StorageLive(Local), + + /// End the current live range for the storage of the local. + StorageDead(Local), + + /// Executes a piece of inline Assembly. Stored in a Box to keep the size + /// of `StatementKind` low. + LlvmInlineAsm(Box<LlvmInlineAsm<'tcx>>), + + /// Retag references in the given place, ensuring they got fresh tags. This is + /// part of the Stacked Borrows model. These statements are currently only interpreted + /// by miri and only generated when "-Z mir-emit-retag" is passed. + /// See <https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/> + /// for more details. + Retag(RetagKind, Box<Place<'tcx>>), + + /// Encodes a user's type ascription. These need to be preserved + /// intact so that NLL can respect them. For example: + /// + /// let a: T = y; + /// + /// The effect of this annotation is to relate the type `T_y` of the place `y` + /// to the user-given type `T`. The effect depends on the specified variance: + /// + /// - `Covariant` -- requires that `T_y <: T` + /// - `Contravariant` -- requires that `T_y :> T` + /// - `Invariant` -- requires that `T_y == T` + /// - `Bivariant` -- no effect + AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, ty::Variance), + + /// Marks the start of a "coverage region", injected with '-Zinstrument-coverage'. A + /// `CoverageInfo` statement carries metadata about the coverage region, used to inject a coverage + /// map into the binary. The `Counter` kind also generates executable code, to increment a + /// counter varible at runtime, each time the code region is executed. + Coverage(Box<Coverage>), + + /// No-op. Useful for deleting instructions without affecting statement indices. + Nop, +} + +impl<'tcx> StatementKind<'tcx> { + pub fn as_assign_mut(&mut self) -> Option<&mut Box<(Place<'tcx>, Rvalue<'tcx>)>> { + match self { + StatementKind::Assign(x) => Some(x), + _ => None, + } + } +} + +/// Describes what kind of retag is to be performed. +#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, HashStable)] +pub enum RetagKind { + /// The initial retag when entering a function. + FnEntry, + /// Retag preparing for a two-phase borrow. + TwoPhase, + /// Retagging raw pointers. + Raw, + /// A "normal" retag. + Default, +} + +/// The `FakeReadCause` describes the type of pattern why a FakeRead statement exists. +#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, HashStable, PartialEq)] +pub enum FakeReadCause { + /// Inject a fake read of the borrowed input at the end of each guards + /// code. + /// + /// This should ensure that you cannot change the variant for an enum while + /// you are in the midst of matching on it. + ForMatchGuard, + + /// `let x: !; match x {}` doesn't generate any read of x so we need to + /// generate a read of x to check that it is initialized and safe. + ForMatchedPlace, + + /// A fake read of the RefWithinGuard version of a bind-by-value variable + /// in a match guard to ensure that it's value hasn't change by the time + /// we create the OutsideGuard version. + ForGuardBinding, + + /// Officially, the semantics of + /// + /// `let pattern = <expr>;` + /// + /// is that `<expr>` is evaluated into a temporary and then this temporary is + /// into the pattern. + /// + /// However, if we see the simple pattern `let var = <expr>`, we optimize this to + /// evaluate `<expr>` directly into the variable `var`. This is mostly unobservable, + /// but in some cases it can affect the borrow checker, as in #53695. + /// Therefore, we insert a "fake read" here to ensure that we get + /// appropriate errors. + ForLet, + + /// If we have an index expression like + /// + /// (*x)[1][{ x = y; 4}] + /// + /// then the first bounds check is invalidated when we evaluate the second + /// index expression. Thus we create a fake borrow of `x` across the second + /// indexer, which will cause a borrow check error. + ForIndex, +} + +#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct LlvmInlineAsm<'tcx> { + pub asm: hir::LlvmInlineAsmInner, + pub outputs: Box<[Place<'tcx>]>, + pub inputs: Box<[(Span, Operand<'tcx>)]>, +} + +impl Debug for Statement<'_> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + use self::StatementKind::*; + match self.kind { + Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv), + FakeRead(ref cause, ref place) => write!(fmt, "FakeRead({:?}, {:?})", cause, place), + Retag(ref kind, ref place) => write!( + fmt, + "Retag({}{:?})", + match kind { + RetagKind::FnEntry => "[fn entry] ", + RetagKind::TwoPhase => "[2phase] ", + RetagKind::Raw => "[raw] ", + RetagKind::Default => "", + }, + place, + ), + StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place), + StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place), + SetDiscriminant { ref place, variant_index } => { + write!(fmt, "discriminant({:?}) = {:?}", place, variant_index) + } + LlvmInlineAsm(ref asm) => { + write!(fmt, "llvm_asm!({:?} : {:?} : {:?})", asm.asm, asm.outputs, asm.inputs) + } + AscribeUserType(box (ref place, ref c_ty), ref variance) => { + write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty) + } + Coverage(box ref coverage) => write!(fmt, "{:?}", coverage), + Nop => write!(fmt, "nop"), + } + } +} + +#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct Coverage { + pub kind: CoverageKind, + pub code_region: CodeRegion, +} + +/////////////////////////////////////////////////////////////////////////// +// Places + +/// A path to a value; something that can be evaluated without +/// changing or disturbing program state. +#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)] +pub struct Place<'tcx> { + pub local: Local, + + /// projection out of a place (access a field, deref a pointer, etc) + pub projection: &'tcx List<PlaceElem<'tcx>>, +} + +#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] +#[derive(TyEncodable, TyDecodable, HashStable)] +pub enum ProjectionElem<V, T> { + Deref, + Field(Field, T), + Index(V), + + /// These indices are generated by slice patterns. Easiest to explain + /// by example: + /// + /// ``` + /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false }, + /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false }, + /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true }, + /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true }, + /// ``` + ConstantIndex { + /// index or -index (in Python terms), depending on from_end + offset: u64, + /// The thing being indexed must be at least this long. For arrays this + /// is always the exact length. + min_length: u64, + /// Counting backwards from end? This is always false when indexing an + /// array. + from_end: bool, + }, + + /// These indices are generated by slice patterns. + /// + /// If `from_end` is true `slice[from..slice.len() - to]`. + /// Otherwise `array[from..to]`. + Subslice { + from: u64, + to: u64, + /// Whether `to` counts from the start or end of the array/slice. + /// For `PlaceElem`s this is `true` if and only if the base is a slice. + /// For `ProjectionKind`, this can also be `true` for arrays. + from_end: bool, + }, + + /// "Downcast" to a variant of an ADT. Currently, we only introduce + /// this for ADTs with more than one variant. It may be better to + /// just introduce it always, or always for enums. + /// + /// The included Symbol is the name of the variant, used for printing MIR. + Downcast(Option<Symbol>, VariantIdx), +} + +impl<V, T> ProjectionElem<V, T> { + /// Returns `true` if the target of this projection may refer to a different region of memory + /// than the base. + fn is_indirect(&self) -> bool { + match self { + Self::Deref => true, + + Self::Field(_, _) + | Self::Index(_) + | Self::ConstantIndex { .. } + | Self::Subslice { .. } + | Self::Downcast(_, _) => false, + } + } +} + +/// Alias for projections as they appear in places, where the base is a place +/// and the index is a local. +pub type PlaceElem<'tcx> = ProjectionElem<Local, Ty<'tcx>>; + +// At least on 64 bit systems, `PlaceElem` should not be larger than two pointers. +#[cfg(target_arch = "x86_64")] +static_assert_size!(PlaceElem<'_>, 24); + +/// Alias for projections as they appear in `UserTypeProjection`, where we +/// need neither the `V` parameter for `Index` nor the `T` for `Field`. +pub type ProjectionKind = ProjectionElem<(), ()>; + +rustc_index::newtype_index! { + pub struct Field { + derive [HashStable] + DEBUG_FORMAT = "field[{}]" + } +} + +#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] +pub struct PlaceRef<'tcx> { + pub local: Local, + pub projection: &'tcx [PlaceElem<'tcx>], +} + +impl<'tcx> Place<'tcx> { + // FIXME change this to a const fn by also making List::empty a const fn. + pub fn return_place() -> Place<'tcx> { + Place { local: RETURN_PLACE, projection: List::empty() } + } + + /// Returns `true` if this `Place` contains a `Deref` projection. + /// + /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the + /// same region of memory as its base. + pub fn is_indirect(&self) -> bool { + self.projection.iter().any(|elem| elem.is_indirect()) + } + + /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or + /// a single deref of a local. + // + // FIXME: can we safely swap the semantics of `fn base_local` below in here instead? + pub fn local_or_deref_local(&self) -> Option<Local> { + match self.as_ref() { + PlaceRef { local, projection: [] } + | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local), + _ => None, + } + } + + /// If this place represents a local variable like `_X` with no + /// projections, return `Some(_X)`. + pub fn as_local(&self) -> Option<Local> { + self.as_ref().as_local() + } + + pub fn as_ref(&self) -> PlaceRef<'tcx> { + PlaceRef { local: self.local, projection: &self.projection } + } +} + +impl From<Local> for Place<'_> { + fn from(local: Local) -> Self { + Place { local, projection: List::empty() } + } +} + +impl<'tcx> PlaceRef<'tcx> { + /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or + /// a single deref of a local. + // + // FIXME: can we safely swap the semantics of `fn base_local` below in here instead? + pub fn local_or_deref_local(&self) -> Option<Local> { + match *self { + PlaceRef { local, projection: [] } + | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local), + _ => None, + } + } + + /// If this place represents a local variable like `_X` with no + /// projections, return `Some(_X)`. + pub fn as_local(&self) -> Option<Local> { + match *self { + PlaceRef { local, projection: [] } => Some(local), + _ => None, + } + } +} + +impl Debug for Place<'_> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + for elem in self.projection.iter().rev() { + match elem { + ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => { + write!(fmt, "(").unwrap(); + } + ProjectionElem::Deref => { + write!(fmt, "(*").unwrap(); + } + ProjectionElem::Index(_) + | ProjectionElem::ConstantIndex { .. } + | ProjectionElem::Subslice { .. } => {} + } + } + + write!(fmt, "{:?}", self.local)?; + + for elem in self.projection.iter() { + match elem { + ProjectionElem::Downcast(Some(name), _index) => { + write!(fmt, " as {})", name)?; + } + ProjectionElem::Downcast(None, index) => { + write!(fmt, " as variant#{:?})", index)?; + } + ProjectionElem::Deref => { + write!(fmt, ")")?; + } + ProjectionElem::Field(field, ty) => { + write!(fmt, ".{:?}: {:?})", field.index(), ty)?; + } + ProjectionElem::Index(ref index) => { + write!(fmt, "[{:?}]", index)?; + } + ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => { + write!(fmt, "[{:?} of {:?}]", offset, min_length)?; + } + ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => { + write!(fmt, "[-{:?} of {:?}]", offset, min_length)?; + } + ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => { + write!(fmt, "[{:?}:]", from)?; + } + ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => { + write!(fmt, "[:-{:?}]", to)?; + } + ProjectionElem::Subslice { from, to, from_end: true } => { + write!(fmt, "[{:?}:-{:?}]", from, to)?; + } + ProjectionElem::Subslice { from, to, from_end: false } => { + write!(fmt, "[{:?}..{:?}]", from, to)?; + } + } + } + + Ok(()) + } +} + +/////////////////////////////////////////////////////////////////////////// +// Scopes + +rustc_index::newtype_index! { + pub struct SourceScope { + derive [HashStable] + DEBUG_FORMAT = "scope[{}]", + const OUTERMOST_SOURCE_SCOPE = 0, + } +} + +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] +pub struct SourceScopeData { + pub span: Span, + pub parent_scope: Option<SourceScope>, + + /// Crate-local information for this source scope, that can't (and + /// needn't) be tracked across crates. + pub local_data: ClearCrossCrate<SourceScopeLocalData>, +} + +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)] +pub struct SourceScopeLocalData { + /// An `HirId` with lint levels equivalent to this scope's lint levels. + pub lint_root: hir::HirId, + /// The unsafe block that contains this node. + pub safety: Safety, +} + +/////////////////////////////////////////////////////////////////////////// +// Operands + +/// These are values that can appear inside an rvalue. They are intentionally +/// limited to prevent rvalues from being nested in one another. +#[derive(Clone, PartialEq, TyEncodable, TyDecodable, HashStable)] +pub enum Operand<'tcx> { + /// Copy: The value must be available for use afterwards. + /// + /// This implies that the type of the place must be `Copy`; this is true + /// by construction during build, but also checked by the MIR type checker. + Copy(Place<'tcx>), + + /// Move: The value (including old borrows of it) will not be used again. + /// + /// Safe for values of all types (modulo future developments towards `?Move`). + /// Correct usage patterns are enforced by the borrow checker for safe code. + /// `Copy` may be converted to `Move` to enable "last-use" optimizations. + Move(Place<'tcx>), + + /// Synthesizes a constant value. + Constant(Box<Constant<'tcx>>), +} + +impl<'tcx> Debug for Operand<'tcx> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + use self::Operand::*; + match *self { + Constant(ref a) => write!(fmt, "{:?}", a), + Copy(ref place) => write!(fmt, "{:?}", place), + Move(ref place) => write!(fmt, "move {:?}", place), + } + } +} + +impl<'tcx> Operand<'tcx> { + /// Convenience helper to make a constant that refers to the fn + /// with given `DefId` and substs. Since this is used to synthesize + /// MIR, assumes `user_ty` is None. + pub fn function_handle( + tcx: TyCtxt<'tcx>, + def_id: DefId, + substs: SubstsRef<'tcx>, + span: Span, + ) -> Self { + let ty = tcx.type_of(def_id).subst(tcx, substs); + Operand::Constant(box Constant { + span, + user_ty: None, + literal: ty::Const::zero_sized(tcx, ty), + }) + } + + pub fn is_move(&self) -> bool { + matches!(self, Operand::Move(..)) + } + + /// Convenience helper to make a literal-like constant from a given scalar value. + /// Since this is used to synthesize MIR, assumes `user_ty` is None. + pub fn const_from_scalar( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + val: Scalar, + span: Span, + ) -> Operand<'tcx> { + debug_assert!({ + let param_env_and_ty = ty::ParamEnv::empty().and(ty); + let type_size = tcx + .layout_of(param_env_and_ty) + .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e)) + .size; + let scalar_size = abi::Size::from_bytes(match val { + Scalar::Raw { size, .. } => size, + _ => panic!("Invalid scalar type {:?}", val), + }); + scalar_size == type_size + }); + Operand::Constant(box Constant { + span, + user_ty: None, + literal: ty::Const::from_scalar(tcx, val, ty), + }) + } + + /// Convenience helper to make a `Scalar` from the given `Operand`, assuming that `Operand` + /// wraps a constant literal value. Panics if this is not the case. + pub fn scalar_from_const(operand: &Operand<'tcx>) -> Scalar { + match operand { + Operand::Constant(constant) => match constant.literal.val.try_to_scalar() { + Some(scalar) => scalar, + _ => panic!("{:?}: Scalar value expected", constant.literal.val), + }, + _ => panic!("{:?}: Constant expected", operand), + } + } + + /// Convenience helper to make a literal-like constant from a given `&str` slice. + /// Since this is used to synthesize MIR, assumes `user_ty` is None. + pub fn const_from_str(tcx: TyCtxt<'tcx>, val: &str, span: Span) -> Operand<'tcx> { + let tcx = tcx; + let allocation = Allocation::from_byte_aligned_bytes(val.as_bytes()); + let allocation = tcx.intern_const_alloc(allocation); + let const_val = ConstValue::Slice { data: allocation, start: 0, end: val.len() }; + let ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, tcx.types.str_); + Operand::Constant(box Constant { + span, + user_ty: None, + literal: ty::Const::from_value(tcx, const_val, ty), + }) + } + + /// Convenience helper to make a `ConstValue` from the given `Operand`, assuming that `Operand` + /// wraps a constant value (such as a `&str` slice). Panics if this is not the case. + pub fn value_from_const(operand: &Operand<'tcx>) -> ConstValue<'tcx> { + match operand { + Operand::Constant(constant) => match constant.literal.val.try_to_value() { + Some(const_value) => const_value, + _ => panic!("{:?}: ConstValue expected", constant.literal.val), + }, + _ => panic!("{:?}: Constant expected", operand), + } + } + + pub fn to_copy(&self) -> Self { + match *self { + Operand::Copy(_) | Operand::Constant(_) => self.clone(), + Operand::Move(place) => Operand::Copy(place), + } + } + + /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a + /// constant. + pub fn place(&self) -> Option<Place<'tcx>> { + match self { + Operand::Copy(place) | Operand::Move(place) => Some(*place), + Operand::Constant(_) => None, + } + } +} + +/////////////////////////////////////////////////////////////////////////// +/// Rvalues + +#[derive(Clone, TyEncodable, TyDecodable, HashStable, PartialEq)] +pub enum Rvalue<'tcx> { + /// x (either a move or copy, depending on type of x) + Use(Operand<'tcx>), + + /// [x; 32] + Repeat(Operand<'tcx>, &'tcx ty::Const<'tcx>), + + /// &x or &mut x + Ref(Region<'tcx>, BorrowKind, Place<'tcx>), + + /// Accessing a thread local static. This is inherently a runtime operation, even if llvm + /// treats it as an access to a static. This `Rvalue` yields a reference to the thread local + /// static. + ThreadLocalRef(DefId), + + /// Create a raw pointer to the given place + /// Can be generated by raw address of expressions (`&raw const x`), + /// or when casting a reference to a raw pointer. + AddressOf(Mutability, Place<'tcx>), + + /// length of a `[X]` or `[X;n]` value + Len(Place<'tcx>), + + Cast(CastKind, Operand<'tcx>, Ty<'tcx>), + + BinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>), + CheckedBinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>), + + NullaryOp(NullOp, Ty<'tcx>), + UnaryOp(UnOp, Operand<'tcx>), + + /// Read the discriminant of an ADT. + /// + /// Undefined (i.e., no effort is made to make it defined, but there’s no reason why it cannot + /// be defined to return, say, a 0) if ADT is not an enum. + Discriminant(Place<'tcx>), + + /// Creates an aggregate value, like a tuple or struct. This is + /// only needed because we want to distinguish `dest = Foo { x: + /// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case + /// that `Foo` has a destructor. These rvalues can be optimized + /// away after type-checking and before lowering. + Aggregate(Box<AggregateKind<'tcx>>, Vec<Operand<'tcx>>), +} + +#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] +pub enum CastKind { + Misc, + Pointer(PointerCast), +} + +#[derive(Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] +pub enum AggregateKind<'tcx> { + /// The type is of the element + Array(Ty<'tcx>), + Tuple, + + /// The second field is the variant index. It's equal to 0 for struct + /// and union expressions. The fourth field is + /// active field number and is present only for union expressions + /// -- e.g., for a union expression `SomeUnion { c: .. }`, the + /// active field index would identity the field `c` + Adt(&'tcx AdtDef, VariantIdx, SubstsRef<'tcx>, Option<UserTypeAnnotationIndex>, Option<usize>), + + Closure(DefId, SubstsRef<'tcx>), + Generator(DefId, SubstsRef<'tcx>, hir::Movability), +} + +#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] +pub enum BinOp { + /// The `+` operator (addition) + Add, + /// The `-` operator (subtraction) + Sub, + /// The `*` operator (multiplication) + Mul, + /// The `/` operator (division) + Div, + /// The `%` operator (modulus) + Rem, + /// The `^` operator (bitwise xor) + BitXor, + /// The `&` operator (bitwise and) + BitAnd, + /// The `|` operator (bitwise or) + BitOr, + /// The `<<` operator (shift left) + Shl, + /// The `>>` operator (shift right) + Shr, + /// The `==` operator (equality) + Eq, + /// The `<` operator (less than) + Lt, + /// The `<=` operator (less than or equal to) + Le, + /// The `!=` operator (not equal to) + Ne, + /// The `>=` operator (greater than or equal to) + Ge, + /// The `>` operator (greater than) + Gt, + /// The `ptr.offset` operator + Offset, +} + +impl BinOp { + pub fn is_checkable(self) -> bool { + use self::BinOp::*; + match self { + Add | Sub | Mul | Shl | Shr => true, + _ => false, + } + } +} + +#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] +pub enum NullOp { + /// Returns the size of a value of that type + SizeOf, + /// Creates a new uninitialized box for a value of that type + Box, +} + +#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] +pub enum UnOp { + /// The `!` operator for logical inversion + Not, + /// The `-` operator for negation + Neg, +} + +impl<'tcx> Debug for Rvalue<'tcx> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + use self::Rvalue::*; + + match *self { + Use(ref place) => write!(fmt, "{:?}", place), + Repeat(ref a, ref b) => { + write!(fmt, "[{:?}; ", a)?; + pretty_print_const(b, fmt, false)?; + write!(fmt, "]") + } + Len(ref a) => write!(fmt, "Len({:?})", a), + Cast(ref kind, ref place, ref ty) => { + write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind) + } + BinaryOp(ref op, ref a, ref b) => write!(fmt, "{:?}({:?}, {:?})", op, a, b), + CheckedBinaryOp(ref op, ref a, ref b) => { + write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b) + } + UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a), + Discriminant(ref place) => write!(fmt, "discriminant({:?})", place), + NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t), + ThreadLocalRef(did) => ty::tls::with(|tcx| { + let muta = tcx.static_mutability(did).unwrap().prefix_str(); + write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did)) + }), + Ref(region, borrow_kind, ref place) => { + let kind_str = match borrow_kind { + BorrowKind::Shared => "", + BorrowKind::Shallow => "shallow ", + BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ", + }; + + // When printing regions, add trailing space if necessary. + let print_region = ty::tls::with(|tcx| { + tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions + }); + let region = if print_region { + let mut region = region.to_string(); + if !region.is_empty() { + region.push(' '); + } + region + } else { + // Do not even print 'static + String::new() + }; + write!(fmt, "&{}{}{:?}", region, kind_str, place) + } + + AddressOf(mutability, ref place) => { + let kind_str = match mutability { + Mutability::Mut => "mut", + Mutability::Not => "const", + }; + + write!(fmt, "&raw {} {:?}", kind_str, place) + } + + Aggregate(ref kind, ref places) => { + let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| { + let mut tuple_fmt = fmt.debug_tuple(name); + for place in places { + tuple_fmt.field(place); + } + tuple_fmt.finish() + }; + + match **kind { + AggregateKind::Array(_) => write!(fmt, "{:?}", places), + + AggregateKind::Tuple => { + if places.is_empty() { + write!(fmt, "()") + } else { + fmt_tuple(fmt, "") + } + } + + AggregateKind::Adt(adt_def, variant, substs, _user_ty, _) => { + let variant_def = &adt_def.variants[variant]; + + let name = ty::tls::with(|tcx| { + let mut name = String::new(); + let substs = tcx.lift(&substs).expect("could not lift for printing"); + FmtPrinter::new(tcx, &mut name, Namespace::ValueNS) + .print_def_path(variant_def.def_id, substs)?; + Ok(name) + })?; + + match variant_def.ctor_kind { + CtorKind::Const => fmt.write_str(&name), + CtorKind::Fn => fmt_tuple(fmt, &name), + CtorKind::Fictive => { + let mut struct_fmt = fmt.debug_struct(&name); + for (field, place) in variant_def.fields.iter().zip(places) { + struct_fmt.field(&field.ident.as_str(), place); + } + struct_fmt.finish() + } + } + } + + AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| { + if let Some(def_id) = def_id.as_local() { + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let name = if tcx.sess.opts.debugging_opts.span_free_formats { + let substs = tcx.lift(&substs).unwrap(); + format!( + "[closure@{}]", + tcx.def_path_str_with_substs(def_id.to_def_id(), substs), + ) + } else { + let span = tcx.hir().span(hir_id); + format!("[closure@{}]", tcx.sess.source_map().span_to_string(span)) + }; + let mut struct_fmt = fmt.debug_struct(&name); + + if let Some(upvars) = tcx.upvars_mentioned(def_id) { + for (&var_id, place) in upvars.keys().zip(places) { + let var_name = tcx.hir().name(var_id); + struct_fmt.field(&var_name.as_str(), place); + } + } + + struct_fmt.finish() + } else { + write!(fmt, "[closure]") + } + }), + + AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| { + if let Some(def_id) = def_id.as_local() { + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let name = format!("[generator@{:?}]", tcx.hir().span(hir_id)); + let mut struct_fmt = fmt.debug_struct(&name); + + if let Some(upvars) = tcx.upvars_mentioned(def_id) { + for (&var_id, place) in upvars.keys().zip(places) { + let var_name = tcx.hir().name(var_id); + struct_fmt.field(&var_name.as_str(), place); + } + } + + struct_fmt.finish() + } else { + write!(fmt, "[generator]") + } + }), + } + } + } + } +} + +/////////////////////////////////////////////////////////////////////////// +/// Constants +/// +/// Two constants are equal if they are the same constant. Note that +/// this does not necessarily mean that they are "==" in Rust -- in +/// particular one must be wary of `NaN`! + +#[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, HashStable)] +pub struct Constant<'tcx> { + pub span: Span, + + /// Optional user-given type: for something like + /// `collect::<Vec<_>>`, this would be present and would + /// indicate that `Vec<_>` was explicitly specified. + /// + /// Needed for NLL to impose user-given type constraints. + pub user_ty: Option<UserTypeAnnotationIndex>, + + pub literal: &'tcx ty::Const<'tcx>, +} + +impl Constant<'tcx> { + pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> { + match self.literal.val.try_to_scalar() { + Some(Scalar::Ptr(ptr)) => match tcx.global_alloc(ptr.alloc_id) { + GlobalAlloc::Static(def_id) => { + assert!(!tcx.is_thread_local_static(def_id)); + Some(def_id) + } + _ => None, + }, + _ => None, + } + } +} + +/// A collection of projections into user types. +/// +/// They are projections because a binding can occur a part of a +/// parent pattern that has been ascribed a type. +/// +/// Its a collection because there can be multiple type ascriptions on +/// the path from the root of the pattern down to the binding itself. +/// +/// An example: +/// +/// ```rust +/// struct S<'a>((i32, &'a str), String); +/// let S((_, w): (i32, &'static str), _): S = ...; +/// // ------ ^^^^^^^^^^^^^^^^^^^ (1) +/// // --------------------------------- ^ (2) +/// ``` +/// +/// The highlights labelled `(1)` show the subpattern `(_, w)` being +/// ascribed the type `(i32, &'static str)`. +/// +/// The highlights labelled `(2)` show the whole pattern being +/// ascribed the type `S`. +/// +/// In this example, when we descend to `w`, we will have built up the +/// following two projected types: +/// +/// * base: `S`, projection: `(base.0).1` +/// * base: `(i32, &'static str)`, projection: `base.1` +/// +/// The first will lead to the constraint `w: &'1 str` (for some +/// inferred region `'1`). The second will lead to the constraint `w: +/// &'static str`. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)] +pub struct UserTypeProjections { + pub contents: Vec<(UserTypeProjection, Span)>, +} + +impl<'tcx> UserTypeProjections { + pub fn none() -> Self { + UserTypeProjections { contents: vec![] } + } + + pub fn is_empty(&self) -> bool { + self.contents.is_empty() + } + + pub fn from_projections(projs: impl Iterator<Item = (UserTypeProjection, Span)>) -> Self { + UserTypeProjections { contents: projs.collect() } + } + + pub fn projections_and_spans( + &self, + ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator { + self.contents.iter() + } + + pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator { + self.contents.iter().map(|&(ref user_type, _span)| user_type) + } + + pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self { + self.contents.push((user_ty.clone(), span)); + self + } + + fn map_projections( + mut self, + mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection, + ) -> Self { + self.contents = self.contents.drain(..).map(|(proj, span)| (f(proj), span)).collect(); + self + } + + pub fn index(self) -> Self { + self.map_projections(|pat_ty_proj| pat_ty_proj.index()) + } + + pub fn subslice(self, from: u64, to: u64) -> Self { + self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to)) + } + + pub fn deref(self) -> Self { + self.map_projections(|pat_ty_proj| pat_ty_proj.deref()) + } + + pub fn leaf(self, field: Field) -> Self { + self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field)) + } + + pub fn variant(self, adt_def: &'tcx AdtDef, variant_index: VariantIdx, field: Field) -> Self { + self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field)) + } +} + +/// Encodes the effect of a user-supplied type annotation on the +/// subcomponents of a pattern. The effect is determined by applying the +/// given list of proejctions to some underlying base type. Often, +/// the projection element list `projs` is empty, in which case this +/// directly encodes a type in `base`. But in the case of complex patterns with +/// subpatterns and bindings, we want to apply only a *part* of the type to a variable, +/// in which case the `projs` vector is used. +/// +/// Examples: +/// +/// * `let x: T = ...` -- here, the `projs` vector is empty. +/// +/// * `let (x, _): T = ...` -- here, the `projs` vector would contain +/// `field[0]` (aka `.0`), indicating that the type of `s` is +/// determined by finding the type of the `.0` field from `T`. +#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, PartialEq)] +pub struct UserTypeProjection { + pub base: UserTypeAnnotationIndex, + pub projs: Vec<ProjectionKind>, +} + +impl Copy for ProjectionKind {} + +impl UserTypeProjection { + pub(crate) fn index(mut self) -> Self { + self.projs.push(ProjectionElem::Index(())); + self + } + + pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self { + self.projs.push(ProjectionElem::Subslice { from, to, from_end: true }); + self + } + + pub(crate) fn deref(mut self) -> Self { + self.projs.push(ProjectionElem::Deref); + self + } + + pub(crate) fn leaf(mut self, field: Field) -> Self { + self.projs.push(ProjectionElem::Field(field, ())); + self + } + + pub(crate) fn variant( + mut self, + adt_def: &AdtDef, + variant_index: VariantIdx, + field: Field, + ) -> Self { + self.projs.push(ProjectionElem::Downcast( + Some(adt_def.variants[variant_index].ident.name), + variant_index, + )); + self.projs.push(ProjectionElem::Field(field, ())); + self + } +} + +CloneTypeFoldableAndLiftImpls! { ProjectionKind, } + +impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection { + fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self { + use crate::mir::ProjectionElem::*; + + let base = self.base.fold_with(folder); + let projs: Vec<_> = self + .projs + .iter() + .map(|&elem| match elem { + Deref => Deref, + Field(f, ()) => Field(f, ()), + Index(()) => Index(()), + Downcast(symbol, variantidx) => Downcast(symbol, variantidx), + ConstantIndex { offset, min_length, from_end } => { + ConstantIndex { offset, min_length, from_end } + } + Subslice { from, to, from_end } => Subslice { from, to, from_end }, + }) + .collect(); + + UserTypeProjection { base, projs } + } + + fn super_visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> bool { + self.base.visit_with(visitor) + // Note: there's nothing in `self.proj` to visit. + } +} + +rustc_index::newtype_index! { + pub struct Promoted { + derive [HashStable] + DEBUG_FORMAT = "promoted[{}]" + } +} + +impl<'tcx> Debug for Constant<'tcx> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + write!(fmt, "{}", self) + } +} + +impl<'tcx> Display for Constant<'tcx> { + fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { + match self.literal.ty.kind { + ty::FnDef(..) => {} + _ => write!(fmt, "const ")?, + } + pretty_print_const(self.literal, fmt, true) + } +} + +fn pretty_print_const( + c: &ty::Const<'tcx>, + fmt: &mut Formatter<'_>, + print_types: bool, +) -> fmt::Result { + use crate::ty::print::PrettyPrinter; + ty::tls::with(|tcx| { + let literal = tcx.lift(&c).unwrap(); + let mut cx = FmtPrinter::new(tcx, fmt, Namespace::ValueNS); + cx.print_alloc_ids = true; + cx.pretty_print_const(literal, print_types)?; + Ok(()) + }) +} + +impl<'tcx> graph::DirectedGraph for Body<'tcx> { + type Node = BasicBlock; +} + +impl<'tcx> graph::WithNumNodes for Body<'tcx> { + #[inline] + fn num_nodes(&self) -> usize { + self.basic_blocks.len() + } +} + +impl<'tcx> graph::WithStartNode for Body<'tcx> { + #[inline] + fn start_node(&self) -> Self::Node { + START_BLOCK + } +} + +impl<'tcx> graph::WithSuccessors for Body<'tcx> { + #[inline] + fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter { + self.basic_blocks[node].terminator().successors().cloned() + } +} + +impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> { + type Item = BasicBlock; + type Iter = iter::Cloned<Successors<'b>>; +} + +impl graph::GraphPredecessors<'graph> for Body<'tcx> { + type Item = BasicBlock; + type Iter = smallvec::IntoIter<[BasicBlock; 4]>; +} + +impl graph::WithPredecessors for Body<'tcx> { + #[inline] + fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter { + self.predecessors()[node].clone().into_iter() + } +} + +/// `Location` represents the position of the start of the statement; or, if +/// `statement_index` equals the number of statements, then the start of the +/// terminator. +#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)] +pub struct Location { + /// The block that the location is within. + pub block: BasicBlock, + + pub statement_index: usize, +} + +impl fmt::Debug for Location { + fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(fmt, "{:?}[{}]", self.block, self.statement_index) + } +} + +impl Location { + pub const START: Location = Location { block: START_BLOCK, statement_index: 0 }; + + /// Returns the location immediately after this one within the enclosing block. + /// + /// Note that if this location represents a terminator, then the + /// resulting location would be out of bounds and invalid. + pub fn successor_within_block(&self) -> Location { + Location { block: self.block, statement_index: self.statement_index + 1 } + } + + /// Returns `true` if `other` is earlier in the control flow graph than `self`. + pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool { + // If we are in the same block as the other location and are an earlier statement + // then we are a predecessor of `other`. + if self.block == other.block && self.statement_index < other.statement_index { + return true; + } + + let predecessors = body.predecessors(); + + // If we're in another block, then we want to check that block is a predecessor of `other`. + let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec(); + let mut visited = FxHashSet::default(); + + while let Some(block) = queue.pop() { + // If we haven't visited this block before, then make sure we visit it's predecessors. + if visited.insert(block) { + queue.extend(predecessors[block].iter().cloned()); + } else { + continue; + } + + // If we found the block that `self` is in, then we are a predecessor of `other` (since + // we found that block by looking at the predecessors of `other`). + if self.block == block { + return true; + } + } + + false + } + + pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool { + if self.block == other.block { + self.statement_index <= other.statement_index + } else { + dominators.is_dominated_by(other.block, self.block) + } + } +} | 
