diff options
Diffstat (limited to 'compiler/rustc_middle/src/ty/layout.rs')
| -rw-r--r-- | compiler/rustc_middle/src/ty/layout.rs | 2829 |
1 files changed, 2829 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/layout.rs b/compiler/rustc_middle/src/ty/layout.rs new file mode 100644 index 00000000000..08bd131565b --- /dev/null +++ b/compiler/rustc_middle/src/ty/layout.rs @@ -0,0 +1,2829 @@ +use crate::ich::StableHashingContext; +use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; +use crate::mir::{GeneratorLayout, GeneratorSavedLocal}; +use crate::ty::subst::Subst; +use crate::ty::{self, subst::SubstsRef, ReprOptions, Ty, TyCtxt, TypeFoldable}; + +use rustc_ast::{self as ast, IntTy, UintTy}; +use rustc_attr as attr; +use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; +use rustc_hir as hir; +use rustc_hir::lang_items::LangItem; +use rustc_index::bit_set::BitSet; +use rustc_index::vec::{Idx, IndexVec}; +use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo}; +use rustc_span::symbol::{Ident, Symbol}; +use rustc_span::DUMMY_SP; +use rustc_target::abi::call::{ + ArgAbi, ArgAttribute, ArgAttributes, Conv, FnAbi, PassMode, Reg, RegKind, +}; +use rustc_target::abi::*; +use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy}; + +use std::cmp; +use std::fmt; +use std::iter; +use std::mem; +use std::num::NonZeroUsize; +use std::ops::Bound; + +pub trait IntegerExt { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>; + fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer; + fn repr_discr<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + repr: &ReprOptions, + min: i128, + max: i128, + ) -> (Integer, bool); +} + +impl IntegerExt for Integer { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> { + match (*self, signed) { + (I8, false) => tcx.types.u8, + (I16, false) => tcx.types.u16, + (I32, false) => tcx.types.u32, + (I64, false) => tcx.types.u64, + (I128, false) => tcx.types.u128, + (I8, true) => tcx.types.i8, + (I16, true) => tcx.types.i16, + (I32, true) => tcx.types.i32, + (I64, true) => tcx.types.i64, + (I128, true) => tcx.types.i128, + } + } + + /// Gets the Integer type from an attr::IntType. + fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer { + let dl = cx.data_layout(); + + match ity { + attr::SignedInt(IntTy::I8) | attr::UnsignedInt(UintTy::U8) => I8, + attr::SignedInt(IntTy::I16) | attr::UnsignedInt(UintTy::U16) => I16, + attr::SignedInt(IntTy::I32) | attr::UnsignedInt(UintTy::U32) => I32, + attr::SignedInt(IntTy::I64) | attr::UnsignedInt(UintTy::U64) => I64, + attr::SignedInt(IntTy::I128) | attr::UnsignedInt(UintTy::U128) => I128, + attr::SignedInt(IntTy::Isize) | attr::UnsignedInt(UintTy::Usize) => { + dl.ptr_sized_integer() + } + } + } + + /// Finds the appropriate Integer type and signedness for the given + /// signed discriminant range and `#[repr]` attribute. + /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but + /// that shouldn't affect anything, other than maybe debuginfo. + fn repr_discr<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + repr: &ReprOptions, + min: i128, + max: i128, + ) -> (Integer, bool) { + // Theoretically, negative values could be larger in unsigned representation + // than the unsigned representation of the signed minimum. However, if there + // are any negative values, the only valid unsigned representation is u128 + // which can fit all i128 values, so the result remains unaffected. + let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128)); + let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max)); + + let mut min_from_extern = None; + let min_default = I8; + + if let Some(ity) = repr.int { + let discr = Integer::from_attr(&tcx, ity); + let fit = if ity.is_signed() { signed_fit } else { unsigned_fit }; + if discr < fit { + bug!( + "Integer::repr_discr: `#[repr]` hint too small for \ + discriminant range of enum `{}", + ty + ) + } + return (discr, ity.is_signed()); + } + + if repr.c() { + match &tcx.sess.target.target.arch[..] { + // WARNING: the ARM EABI has two variants; the one corresponding + // to `at_least == I32` appears to be used on Linux and NetBSD, + // but some systems may use the variant corresponding to no + // lower bound. However, we don't run on those yet...? + "arm" => min_from_extern = Some(I32), + _ => min_from_extern = Some(I32), + } + } + + let at_least = min_from_extern.unwrap_or(min_default); + + // If there are no negative values, we can use the unsigned fit. + if min >= 0 { + (cmp::max(unsigned_fit, at_least), false) + } else { + (cmp::max(signed_fit, at_least), true) + } + } +} + +pub trait PrimitiveExt { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; + fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; +} + +impl PrimitiveExt for Primitive { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { + match *self { + Int(i, signed) => i.to_ty(tcx, signed), + F32 => tcx.types.f32, + F64 => tcx.types.f64, + Pointer => tcx.mk_mut_ptr(tcx.mk_unit()), + } + } + + /// Return an *integer* type matching this primitive. + /// Useful in particular when dealing with enum discriminants. + fn to_int_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { + match *self { + Int(i, signed) => i.to_ty(tcx, signed), + Pointer => tcx.types.usize, + F32 | F64 => bug!("floats do not have an int type"), + } + } +} + +/// The first half of a fat pointer. +/// +/// - For a trait object, this is the address of the box. +/// - For a slice, this is the base address. +pub const FAT_PTR_ADDR: usize = 0; + +/// The second half of a fat pointer. +/// +/// - For a trait object, this is the address of the vtable. +/// - For a slice, this is the length. +pub const FAT_PTR_EXTRA: usize = 1; + +#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable)] +pub enum LayoutError<'tcx> { + Unknown(Ty<'tcx>), + SizeOverflow(Ty<'tcx>), +} + +impl<'tcx> fmt::Display for LayoutError<'tcx> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match *self { + LayoutError::Unknown(ty) => write!(f, "the type `{:?}` has an unknown layout", ty), + LayoutError::SizeOverflow(ty) => { + write!(f, "the type `{:?}` is too big for the current architecture", ty) + } + } + } +} + +fn layout_raw<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, +) -> Result<&'tcx Layout, LayoutError<'tcx>> { + ty::tls::with_related_context(tcx, move |icx| { + let (param_env, ty) = query.into_parts(); + + if !tcx.sess.recursion_limit().value_within_limit(icx.layout_depth) { + tcx.sess.fatal(&format!("overflow representing the type `{}`", ty)); + } + + // Update the ImplicitCtxt to increase the layout_depth + let icx = ty::tls::ImplicitCtxt { layout_depth: icx.layout_depth + 1, ..icx.clone() }; + + ty::tls::enter_context(&icx, |_| { + let cx = LayoutCx { tcx, param_env }; + let layout = cx.layout_raw_uncached(ty); + // Type-level uninhabitedness should always imply ABI uninhabitedness. + if let Ok(layout) = layout { + if ty.conservative_is_privately_uninhabited(tcx) { + assert!(layout.abi.is_uninhabited()); + } + } + layout + }) + }) +} + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { layout_raw, ..*providers }; +} + +pub struct LayoutCx<'tcx, C> { + pub tcx: C, + pub param_env: ty::ParamEnv<'tcx>, +} + +#[derive(Copy, Clone, Debug)] +enum StructKind { + /// A tuple, closure, or univariant which cannot be coerced to unsized. + AlwaysSized, + /// A univariant, the last field of which may be coerced to unsized. + MaybeUnsized, + /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). + Prefixed(Size, Align), +} + +// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. +// This is used to go between `memory_index` (source field order to memory order) +// and `inverse_memory_index` (memory order to source field order). +// See also `FieldsShape::Arbitrary::memory_index` for more details. +// FIXME(eddyb) build a better abstraction for permutations, if possible. +fn invert_mapping(map: &[u32]) -> Vec<u32> { + let mut inverse = vec![0; map.len()]; + for i in 0..map.len() { + inverse[map[i] as usize] = i as u32; + } + inverse +} + +impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { + fn scalar_pair(&self, a: Scalar, b: Scalar) -> Layout { + let dl = self.data_layout(); + let b_align = b.value.align(dl); + let align = a.value.align(dl).max(b_align).max(dl.aggregate_align); + let b_offset = a.value.size(dl).align_to(b_align.abi); + let size = (b_offset + b.value.size(dl)).align_to(align.abi); + + // HACK(nox): We iter on `b` and then `a` because `max_by_key` + // returns the last maximum. + let largest_niche = Niche::from_scalar(dl, b_offset, b.clone()) + .into_iter() + .chain(Niche::from_scalar(dl, Size::ZERO, a.clone())) + .max_by_key(|niche| niche.available(dl)); + + Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO, b_offset], + memory_index: vec![0, 1], + }, + abi: Abi::ScalarPair(a, b), + largest_niche, + align, + size, + } + } + + fn univariant_uninterned( + &self, + ty: Ty<'tcx>, + fields: &[TyAndLayout<'_>], + repr: &ReprOptions, + kind: StructKind, + ) -> Result<Layout, LayoutError<'tcx>> { + let dl = self.data_layout(); + let pack = repr.pack; + if pack.is_some() && repr.align.is_some() { + bug!("struct cannot be packed and aligned"); + } + + let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect(); + + let optimize = !repr.inhibit_struct_field_reordering_opt(); + if optimize { + let end = + if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; + let optimizing = &mut inverse_memory_index[..end]; + let field_align = |f: &TyAndLayout<'_>| { + if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } + }; + match kind { + StructKind::AlwaysSized | StructKind::MaybeUnsized => { + optimizing.sort_by_key(|&x| { + // Place ZSTs first to avoid "interesting offsets", + // especially with only one or two non-ZST fields. + let f = &fields[x as usize]; + (!f.is_zst(), cmp::Reverse(field_align(f))) + }); + } + StructKind::Prefixed(..) => { + // Sort in ascending alignment so that the layout stay optimal + // regardless of the prefix + optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); + } + } + } + + // inverse_memory_index holds field indices by increasing memory offset. + // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. + // We now write field offsets to the corresponding offset slot; + // field 5 with offset 0 puts 0 in offsets[5]. + // At the bottom of this function, we invert `inverse_memory_index` to + // produce `memory_index` (see `invert_mapping`). + + let mut sized = true; + let mut offsets = vec![Size::ZERO; fields.len()]; + let mut offset = Size::ZERO; + let mut largest_niche = None; + let mut largest_niche_available = 0; + + if let StructKind::Prefixed(prefix_size, prefix_align) = kind { + let prefix_align = + if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; + align = align.max(AbiAndPrefAlign::new(prefix_align)); + offset = prefix_size.align_to(prefix_align); + } + + for &i in &inverse_memory_index { + let field = fields[i as usize]; + if !sized { + bug!("univariant: field #{} of `{}` comes after unsized field", offsets.len(), ty); + } + + if field.is_unsized() { + sized = false; + } + + // Invariant: offset < dl.obj_size_bound() <= 1<<61 + let field_align = if let Some(pack) = pack { + field.align.min(AbiAndPrefAlign::new(pack)) + } else { + field.align + }; + offset = offset.align_to(field_align.abi); + align = align.max(field_align); + + debug!("univariant offset: {:?} field: {:#?}", offset, field); + offsets[i as usize] = offset; + + if !repr.hide_niche() { + if let Some(mut niche) = field.largest_niche.clone() { + let available = niche.available(dl); + if available > largest_niche_available { + largest_niche_available = available; + niche.offset += offset; + largest_niche = Some(niche); + } + } + } + + offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; + } + + if let Some(repr_align) = repr.align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + debug!("univariant min_size: {:?}", offset); + let min_size = offset; + + // As stated above, inverse_memory_index holds field indices by increasing offset. + // This makes it an already-sorted view of the offsets vec. + // To invert it, consider: + // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. + // Field 5 would be the first element, so memory_index is i: + // Note: if we didn't optimize, it's already right. + + let memory_index = + if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; + + let size = min_size.align_to(align.abi); + let mut abi = Abi::Aggregate { sized }; + + // Unpack newtype ABIs and find scalar pairs. + if sized && size.bytes() > 0 { + // All other fields must be ZSTs, and we need them to all start at 0. + let mut zst_offsets = offsets.iter().enumerate().filter(|&(i, _)| fields[i].is_zst()); + if zst_offsets.all(|(_, o)| o.bytes() == 0) { + let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); + + match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { + // We have exactly one non-ZST field. + (Some((i, field)), None, None) => { + // Field fills the struct and it has a scalar or scalar pair ABI. + if offsets[i].bytes() == 0 + && align.abi == field.align.abi + && size == field.size + { + match field.abi { + // For plain scalars, or vectors of them, we can't unpack + // newtypes for `#[repr(C)]`, as that affects C ABIs. + Abi::Scalar(_) | Abi::Vector { .. } if optimize => { + abi = field.abi.clone(); + } + // But scalar pairs are Rust-specific and get + // treated as aggregates by C ABIs anyway. + Abi::ScalarPair(..) => { + abi = field.abi.clone(); + } + _ => {} + } + } + } + + // Two non-ZST fields, and they're both scalars. + ( + Some(( + i, + &TyAndLayout { + layout: &Layout { abi: Abi::Scalar(ref a), .. }, .. + }, + )), + Some(( + j, + &TyAndLayout { + layout: &Layout { abi: Abi::Scalar(ref b), .. }, .. + }, + )), + None, + ) => { + // Order by the memory placement, not source order. + let ((i, a), (j, b)) = if offsets[i] < offsets[j] { + ((i, a), (j, b)) + } else { + ((j, b), (i, a)) + }; + let pair = self.scalar_pair(a.clone(), b.clone()); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if offsets[i] == pair_offsets[0] + && offsets[j] == pair_offsets[1] + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + + _ => {} + } + } + } + + if sized && fields.iter().any(|f| f.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } + + Ok(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { offsets, memory_index }, + abi, + largest_niche, + align, + size, + }) + } + + fn layout_raw_uncached(&self, ty: Ty<'tcx>) -> Result<&'tcx Layout, LayoutError<'tcx>> { + let tcx = self.tcx; + let param_env = self.param_env; + let dl = self.data_layout(); + let scalar_unit = |value: Primitive| { + let bits = value.size(dl).bits(); + assert!(bits <= 128); + Scalar { value, valid_range: 0..=(!0 >> (128 - bits)) } + }; + let scalar = |value: Primitive| tcx.intern_layout(Layout::scalar(self, scalar_unit(value))); + + let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { + Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?)) + }; + debug_assert!(!ty.has_infer_types_or_consts()); + + Ok(match ty.kind { + // Basic scalars. + ty::Bool => tcx.intern_layout(Layout::scalar( + self, + Scalar { value: Int(I8, false), valid_range: 0..=1 }, + )), + ty::Char => tcx.intern_layout(Layout::scalar( + self, + Scalar { value: Int(I32, false), valid_range: 0..=0x10FFFF }, + )), + ty::Int(ity) => scalar(Int(Integer::from_attr(dl, attr::SignedInt(ity)), true)), + ty::Uint(ity) => scalar(Int(Integer::from_attr(dl, attr::UnsignedInt(ity)), false)), + ty::Float(fty) => scalar(match fty { + ast::FloatTy::F32 => F32, + ast::FloatTy::F64 => F64, + }), + ty::FnPtr(_) => { + let mut ptr = scalar_unit(Pointer); + ptr.valid_range = 1..=*ptr.valid_range.end(); + tcx.intern_layout(Layout::scalar(self, ptr)) + } + + // The never type. + ty::Never => tcx.intern_layout(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Primitive, + abi: Abi::Uninhabited, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Potentially-wide pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let mut data_ptr = scalar_unit(Pointer); + if !ty.is_unsafe_ptr() { + data_ptr.valid_range = 1..=*data_ptr.valid_range.end(); + } + + let pointee = tcx.normalize_erasing_regions(param_env, pointee); + if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { + return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr))); + } + + let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + let metadata = match unsized_part.kind { + ty::Foreign(..) => { + return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr))); + } + ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), + ty::Dynamic(..) => { + let mut vtable = scalar_unit(Pointer); + vtable.valid_range = 1..=*vtable.valid_range.end(); + vtable + } + _ => return Err(LayoutError::Unknown(unsized_part)), + }; + + // Effectively a (ptr, meta) tuple. + tcx.intern_layout(self.scalar_pair(data_ptr, metadata)) + } + + // Arrays and slices. + ty::Array(element, mut count) => { + if count.has_projections() { + count = tcx.normalize_erasing_regions(param_env, count); + if count.has_projections() { + return Err(LayoutError::Unknown(ty)); + } + } + + let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; + let element = self.layout_of(element)?; + let size = + element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; + + let abi = if count != 0 && ty.conservative_is_privately_uninhabited(tcx) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let largest_niche = if count != 0 { element.largest_niche.clone() } else { None }; + + tcx.intern_layout(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count }, + abi, + largest_niche, + align: element.align, + size, + }) + } + ty::Slice(element) => { + let element = self.layout_of(element)?; + tcx.intern_layout(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: element.align, + size: Size::ZERO, + }) + } + ty::Str => tcx.intern_layout(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Odd unit types. + ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, + ty::Dynamic(..) | ty::Foreign(..) => { + let mut unit = self.univariant_uninterned( + ty, + &[], + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + match unit.abi { + Abi::Aggregate { ref mut sized } => *sized = false, + _ => bug!(), + } + tcx.intern_layout(unit) + } + + ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?, + + ty::Closure(_, ref substs) => { + let tys = substs.as_closure().upvar_tys(); + univariant( + &tys.map(|ty| self.layout_of(ty)).collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + StructKind::AlwaysSized, + )? + } + + ty::Tuple(tys) => { + let kind = + if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; + + univariant( + &tys.iter() + .map(|k| self.layout_of(k.expect_ty())) + .collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + kind, + )? + } + + // SIMD vector types. + ty::Adt(def, ..) if def.repr.simd() => { + let element = self.layout_of(ty.simd_type(tcx))?; + let count = ty.simd_size(tcx); + assert!(count > 0); + let scalar = match element.abi { + Abi::Scalar(ref scalar) => scalar.clone(), + _ => { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with \ + a non-machine element type `{}`", + ty, element.ty + )); + } + }; + let size = + element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; + let align = dl.vector_align(size); + let size = size.align_to(align.abi); + + tcx.intern_layout(Layout { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count }, + abi: Abi::Vector { element: scalar, count }, + largest_niche: element.largest_niche.clone(), + size, + align, + }) + } + + // ADTs. + ty::Adt(def, substs) => { + // Cache the field layouts. + let variants = def + .variants + .iter() + .map(|v| { + v.fields + .iter() + .map(|field| self.layout_of(field.ty(tcx, substs))) + .collect::<Result<Vec<_>, _>>() + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + if def.is_union() { + if def.repr.pack.is_some() && def.repr.align.is_some() { + bug!("union cannot be packed and aligned"); + } + + let mut align = + if def.repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + if let Some(repr_align) = def.repr.align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + let optimize = !def.repr.inhibit_union_abi_opt(); + let mut size = Size::ZERO; + let mut abi = Abi::Aggregate { sized: true }; + let index = VariantIdx::new(0); + for field in &variants[index] { + assert!(!field.is_unsized()); + align = align.max(field.align); + + // If all non-ZST fields have the same ABI, forward this ABI + if optimize && !field.is_zst() { + // Normalize scalar_unit to the maximal valid range + let field_abi = match &field.abi { + Abi::Scalar(x) => Abi::Scalar(scalar_unit(x.value)), + Abi::ScalarPair(x, y) => { + Abi::ScalarPair(scalar_unit(x.value), scalar_unit(y.value)) + } + Abi::Vector { element: x, count } => { + Abi::Vector { element: scalar_unit(x.value), count: *count } + } + Abi::Uninhabited | Abi::Aggregate { .. } => { + Abi::Aggregate { sized: true } + } + }; + + if size == Size::ZERO { + // first non ZST: initialize 'abi' + abi = field_abi; + } else if abi != field_abi { + // different fields have different ABI: reset to Aggregate + abi = Abi::Aggregate { sized: true }; + } + } + + size = cmp::max(size, field.size); + } + + if let Some(pack) = def.repr.pack { + align = align.min(AbiAndPrefAlign::new(pack)); + } + + return Ok(tcx.intern_layout(Layout { + variants: Variants::Single { index }, + fields: FieldsShape::Union( + NonZeroUsize::new(variants[index].len()) + .ok_or(LayoutError::Unknown(ty))?, + ), + abi, + largest_niche: None, + align, + size: size.align_to(align.abi), + })); + } + + // A variant is absent if it's uninhabited and only has ZST fields. + // Present uninhabited variants only require space for their fields, + // but *not* an encoding of the discriminant (e.g., a tag value). + // See issue #49298 for more details on the need to leave space + // for non-ZST uninhabited data (mostly partial initialization). + let absent = |fields: &[TyAndLayout<'_>]| { + let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); + let is_zst = fields.iter().all(|f| f.is_zst()); + uninhabited && is_zst + }; + let (present_first, present_second) = { + let mut present_variants = variants + .iter_enumerated() + .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); + (present_variants.next(), present_variants.next()) + }; + let present_first = match present_first { + Some(present_first) => present_first, + // Uninhabited because it has no variants, or only absent ones. + None if def.is_enum() => return tcx.layout_raw(param_env.and(tcx.types.never)), + // If it's a struct, still compute a layout so that we can still compute the + // field offsets. + None => VariantIdx::new(0), + }; + + let is_struct = !def.is_enum() || + // Only one variant is present. + (present_second.is_none() && + // Representation optimizations are allowed. + !def.repr.inhibit_enum_layout_opt()); + if is_struct { + // Struct, or univariant enum equivalent to a struct. + // (Typechecking will reject discriminant-sizing attrs.) + + let v = present_first; + let kind = if def.is_enum() || variants[v].is_empty() { + StructKind::AlwaysSized + } else { + let param_env = tcx.param_env(def.did); + let last_field = def.variants[v].fields.last().unwrap(); + let always_sized = + tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env); + if !always_sized { + StructKind::MaybeUnsized + } else { + StructKind::AlwaysSized + } + }; + + let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr, kind)?; + st.variants = Variants::Single { index: v }; + let (start, end) = self.tcx.layout_scalar_valid_range(def.did); + match st.abi { + Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { + // the asserts ensure that we are not using the + // `#[rustc_layout_scalar_valid_range(n)]` + // attribute to widen the range of anything as that would probably + // result in UB somewhere + // FIXME(eddyb) the asserts are probably not needed, + // as larger validity ranges would result in missed + // optimizations, *not* wrongly assuming the inner + // value is valid. e.g. unions enlarge validity ranges, + // because the values may be uninitialized. + if let Bound::Included(start) = start { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + assert!(*scalar.valid_range.start() <= start); + scalar.valid_range = start..=*scalar.valid_range.end(); + } + if let Bound::Included(end) = end { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + assert!(*scalar.valid_range.end() >= end); + scalar.valid_range = *scalar.valid_range.start()..=end; + } + + // Update `largest_niche` if we have introduced a larger niche. + let niche = if def.repr.hide_niche() { + None + } else { + Niche::from_scalar(dl, Size::ZERO, scalar.clone()) + }; + if let Some(niche) = niche { + match &st.largest_niche { + Some(largest_niche) => { + // Replace the existing niche even if they're equal, + // because this one is at a lower offset. + if largest_niche.available(dl) <= niche.available(dl) { + st.largest_niche = Some(niche); + } + } + None => st.largest_niche = Some(niche), + } + } + } + _ => assert!( + start == Bound::Unbounded && end == Bound::Unbounded, + "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", + def, + st, + ), + } + + return Ok(tcx.intern_layout(st)); + } + + // At this point, we have handled all unions and + // structs. (We have also handled univariant enums + // that allow representation optimization.) + assert!(def.is_enum()); + + // The current code for niche-filling relies on variant indices + // instead of actual discriminants, so dataful enums with + // explicit discriminants (RFC #2363) would misbehave. + let no_explicit_discriminants = def + .variants + .iter_enumerated() + .all(|(i, v)| v.discr == ty::VariantDiscr::Relative(i.as_u32())); + + let mut niche_filling_layout = None; + + // Niche-filling enum optimization. + if !def.repr.inhibit_enum_layout_opt() && no_explicit_discriminants { + let mut dataful_variant = None; + let mut niche_variants = VariantIdx::MAX..=VariantIdx::new(0); + + // Find one non-ZST variant. + 'variants: for (v, fields) in variants.iter_enumerated() { + if absent(fields) { + continue 'variants; + } + for f in fields { + if !f.is_zst() { + if dataful_variant.is_none() { + dataful_variant = Some(v); + continue 'variants; + } else { + dataful_variant = None; + break 'variants; + } + } + } + niche_variants = *niche_variants.start().min(&v)..=v; + } + + if niche_variants.start() > niche_variants.end() { + dataful_variant = None; + } + + if let Some(i) = dataful_variant { + let count = (niche_variants.end().as_u32() + - niche_variants.start().as_u32() + + 1) as u128; + + // Find the field with the largest niche + let niche_candidate = variants[i] + .iter() + .enumerate() + .filter_map(|(j, &field)| Some((j, field.largest_niche.as_ref()?))) + .max_by_key(|(_, niche)| niche.available(dl)); + + if let Some((field_index, niche, (niche_start, niche_scalar))) = + niche_candidate.and_then(|(field_index, niche)| { + Some((field_index, niche, niche.reserve(self, count)?)) + }) + { + let mut align = dl.aggregate_align; + let st = variants + .iter_enumerated() + .map(|(j, v)| { + let mut st = self.univariant_uninterned( + ty, + v, + &def.repr, + StructKind::AlwaysSized, + )?; + st.variants = Variants::Single { index: j }; + + align = align.max(st.align); + + Ok(st) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + let offset = st[i].fields.offset(field_index) + niche.offset; + let size = st[i].size; + + let abi = if st.iter().all(|v| v.abi.is_uninhabited()) { + Abi::Uninhabited + } else { + match st[i].abi { + Abi::Scalar(_) => Abi::Scalar(niche_scalar.clone()), + Abi::ScalarPair(ref first, ref second) => { + // We need to use scalar_unit to reset the + // valid range to the maximal one for that + // primitive, because only the niche is + // guaranteed to be initialised, not the + // other primitive. + if offset.bytes() == 0 { + Abi::ScalarPair( + niche_scalar.clone(), + scalar_unit(second.value), + ) + } else { + Abi::ScalarPair( + scalar_unit(first.value), + niche_scalar.clone(), + ) + } + } + _ => Abi::Aggregate { sized: true }, + } + }; + + let largest_niche = + Niche::from_scalar(dl, offset, niche_scalar.clone()); + + niche_filling_layout = Some(Layout { + variants: Variants::Multiple { + tag: niche_scalar, + tag_encoding: TagEncoding::Niche { + dataful_variant: i, + niche_variants, + niche_start, + }, + tag_field: 0, + variants: st, + }, + fields: FieldsShape::Arbitrary { + offsets: vec![offset], + memory_index: vec![0], + }, + abi, + largest_niche, + size, + align, + }); + } + } + } + + let (mut min, mut max) = (i128::MAX, i128::MIN); + let discr_type = def.repr.discr_type(); + let bits = Integer::from_attr(self, discr_type).size().bits(); + for (i, discr) in def.discriminants(tcx) { + if variants[i].iter().any(|f| f.abi.is_uninhabited()) { + continue; + } + let mut x = discr.val as i128; + if discr_type.is_signed() { + // sign extend the raw representation to be an i128 + x = (x << (128 - bits)) >> (128 - bits); + } + if x < min { + min = x; + } + if x > max { + max = x; + } + } + // We might have no inhabited variants, so pretend there's at least one. + if (min, max) == (i128::MAX, i128::MIN) { + min = 0; + max = 0; + } + assert!(min <= max, "discriminant range is {}...{}", min, max); + let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr, min, max); + + let mut align = dl.aggregate_align; + let mut size = Size::ZERO; + + // We're interested in the smallest alignment, so start large. + let mut start_align = Align::from_bytes(256).unwrap(); + assert_eq!(Integer::for_align(dl, start_align), None); + + // repr(C) on an enum tells us to make a (tag, union) layout, + // so we need to grow the prefix alignment to be at least + // the alignment of the union. (This value is used both for + // determining the alignment of the overall enum, and the + // determining the alignment of the payload after the tag.) + let mut prefix_align = min_ity.align(dl).abi; + if def.repr.c() { + for fields in &variants { + for field in fields { + prefix_align = prefix_align.max(field.align.abi); + } + } + } + + // Create the set of structs that represent each variant. + let mut layout_variants = variants + .iter_enumerated() + .map(|(i, field_layouts)| { + let mut st = self.univariant_uninterned( + ty, + &field_layouts, + &def.repr, + StructKind::Prefixed(min_ity.size(), prefix_align), + )?; + st.variants = Variants::Single { index: i }; + // Find the first field we can't move later + // to make room for a larger discriminant. + for field in + st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) + { + if !field.is_zst() || field.align.abi.bytes() != 1 { + start_align = start_align.min(field.align.abi); + break; + } + } + size = cmp::max(size, st.size); + align = align.max(st.align); + Ok(st) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + // Align the maximum variant size to the largest alignment. + size = size.align_to(align.abi); + + if size.bytes() >= dl.obj_size_bound() { + return Err(LayoutError::SizeOverflow(ty)); + } + + let typeck_ity = Integer::from_attr(dl, def.repr.discr_type()); + if typeck_ity < min_ity { + // It is a bug if Layout decided on a greater discriminant size than typeck for + // some reason at this point (based on values discriminant can take on). Mostly + // because this discriminant will be loaded, and then stored into variable of + // type calculated by typeck. Consider such case (a bug): typeck decided on + // byte-sized discriminant, but layout thinks we need a 16-bit to store all + // discriminant values. That would be a bug, because then, in codegen, in order + // to store this 16-bit discriminant into 8-bit sized temporary some of the + // space necessary to represent would have to be discarded (or layout is wrong + // on thinking it needs 16 bits) + bug!( + "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", + min_ity, + typeck_ity + ); + // However, it is fine to make discr type however large (as an optimisation) + // after this point – we’ll just truncate the value we load in codegen. + } + + // Check to see if we should use a different type for the + // discriminant. We can safely use a type with the same size + // as the alignment of the first field of each variant. + // We increase the size of the discriminant to avoid LLVM copying + // padding when it doesn't need to. This normally causes unaligned + // load/stores and excessive memcpy/memset operations. By using a + // bigger integer size, LLVM can be sure about its contents and + // won't be so conservative. + + // Use the initial field alignment + let mut ity = if def.repr.c() || def.repr.int.is_some() { + min_ity + } else { + Integer::for_align(dl, start_align).unwrap_or(min_ity) + }; + + // If the alignment is not larger than the chosen discriminant size, + // don't use the alignment as the final size. + if ity <= min_ity { + ity = min_ity; + } else { + // Patch up the variants' first few fields. + let old_ity_size = min_ity.size(); + let new_ity_size = ity.size(); + for variant in &mut layout_variants { + match variant.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for i in offsets { + if *i <= old_ity_size { + assert_eq!(*i, old_ity_size); + *i = new_ity_size; + } + } + // We might be making the struct larger. + if variant.size <= old_ity_size { + variant.size = new_ity_size; + } + } + _ => bug!(), + } + } + } + + let tag_mask = !0u128 >> (128 - ity.size().bits()); + let tag = Scalar { + value: Int(ity, signed), + valid_range: (min as u128 & tag_mask)..=(max as u128 & tag_mask), + }; + let mut abi = Abi::Aggregate { sized: true }; + if tag.value.size(dl) == size { + abi = Abi::Scalar(tag.clone()); + } else { + // Try to use a ScalarPair for all tagged enums. + let mut common_prim = None; + for (field_layouts, layout_variant) in variants.iter().zip(&layout_variants) { + let offsets = match layout_variant.fields { + FieldsShape::Arbitrary { ref offsets, .. } => offsets, + _ => bug!(), + }; + let mut fields = + field_layouts.iter().zip(offsets).filter(|p| !p.0.is_zst()); + let (field, offset) = match (fields.next(), fields.next()) { + (None, None) => continue, + (Some(pair), None) => pair, + _ => { + common_prim = None; + break; + } + }; + let prim = match field.abi { + Abi::Scalar(ref scalar) => scalar.value, + _ => { + common_prim = None; + break; + } + }; + if let Some(pair) = common_prim { + // This is pretty conservative. We could go fancier + // by conflating things like i32 and u32, or even + // realising that (u8, u8) could just cohabit with + // u16 or even u32. + if pair != (prim, offset) { + common_prim = None; + break; + } + } else { + common_prim = Some((prim, offset)); + } + } + if let Some((prim, offset)) = common_prim { + let pair = self.scalar_pair(tag.clone(), scalar_unit(prim)); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if pair_offsets[0] == Size::ZERO + && pair_offsets[1] == *offset + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + } + + if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } + + let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag.clone()); + + let tagged_layout = Layout { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: 0, + variants: layout_variants, + }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO], + memory_index: vec![0], + }, + largest_niche, + abi, + align, + size, + }; + + let best_layout = match (tagged_layout, niche_filling_layout) { + (tagged_layout, Some(niche_filling_layout)) => { + // Pick the smaller layout; otherwise, + // pick the layout with the larger niche; otherwise, + // pick tagged as it has simpler codegen. + cmp::min_by_key(tagged_layout, niche_filling_layout, |layout| { + let niche_size = + layout.largest_niche.as_ref().map_or(0, |n| n.available(dl)); + (layout.size, cmp::Reverse(niche_size)) + }) + } + (tagged_layout, None) => tagged_layout, + }; + + tcx.intern_layout(best_layout) + } + + // Types with no meaningful known layout. + ty::Projection(_) | ty::Opaque(..) => { + let normalized = tcx.normalize_erasing_regions(param_env, ty); + if ty == normalized { + return Err(LayoutError::Unknown(ty)); + } + tcx.layout_raw(param_env.and(normalized))? + } + + ty::Bound(..) | ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { + bug!("Layout::compute: unexpected type `{}`", ty) + } + + ty::Param(_) | ty::Error(_) => { + return Err(LayoutError::Unknown(ty)); + } + }) + } +} + +/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. +#[derive(Clone, Debug, PartialEq)] +enum SavedLocalEligibility { + Unassigned, + Assigned(VariantIdx), + // FIXME: Use newtype_index so we aren't wasting bytes + Ineligible(Option<u32>), +} + +// When laying out generators, we divide our saved local fields into two +// categories: overlap-eligible and overlap-ineligible. +// +// Those fields which are ineligible for overlap go in a "prefix" at the +// beginning of the layout, and always have space reserved for them. +// +// Overlap-eligible fields are only assigned to one variant, so we lay +// those fields out for each variant and put them right after the +// prefix. +// +// Finally, in the layout details, we point to the fields from the +// variants they are assigned to. It is possible for some fields to be +// included in multiple variants. No field ever "moves around" in the +// layout; its offset is always the same. +// +// Also included in the layout are the upvars and the discriminant. +// These are included as fields on the "outer" layout; they are not part +// of any variant. +impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { + /// Compute the eligibility and assignment of each local. + fn generator_saved_local_eligibility( + &self, + info: &GeneratorLayout<'tcx>, + ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) { + use SavedLocalEligibility::*; + + let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> = + IndexVec::from_elem_n(Unassigned, info.field_tys.len()); + + // The saved locals not eligible for overlap. These will get + // "promoted" to the prefix of our generator. + let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); + + // Figure out which of our saved locals are fields in only + // one variant. The rest are deemed ineligible for overlap. + for (variant_index, fields) in info.variant_fields.iter_enumerated() { + for local in fields { + match assignments[*local] { + Unassigned => { + assignments[*local] = Assigned(variant_index); + } + Assigned(idx) => { + // We've already seen this local at another suspension + // point, so it is no longer a candidate. + trace!( + "removing local {:?} in >1 variant ({:?}, {:?})", + local, + variant_index, + idx + ); + ineligible_locals.insert(*local); + assignments[*local] = Ineligible(None); + } + Ineligible(_) => {} + } + } + } + + // Next, check every pair of eligible locals to see if they + // conflict. + for local_a in info.storage_conflicts.rows() { + let conflicts_a = info.storage_conflicts.count(local_a); + if ineligible_locals.contains(local_a) { + continue; + } + + for local_b in info.storage_conflicts.iter(local_a) { + // local_a and local_b are storage live at the same time, therefore they + // cannot overlap in the generator layout. The only way to guarantee + // this is if they are in the same variant, or one is ineligible + // (which means it is stored in every variant). + if ineligible_locals.contains(local_b) + || assignments[local_a] == assignments[local_b] + { + continue; + } + + // If they conflict, we will choose one to make ineligible. + // This is not always optimal; it's just a greedy heuristic that + // seems to produce good results most of the time. + let conflicts_b = info.storage_conflicts.count(local_b); + let (remove, other) = + if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; + ineligible_locals.insert(remove); + assignments[remove] = Ineligible(None); + trace!("removing local {:?} due to conflict with {:?}", remove, other); + } + } + + // Count the number of variants in use. If only one of them, then it is + // impossible to overlap any locals in our layout. In this case it's + // always better to make the remaining locals ineligible, so we can + // lay them out with the other locals in the prefix and eliminate + // unnecessary padding bytes. + { + let mut used_variants = BitSet::new_empty(info.variant_fields.len()); + for assignment in &assignments { + if let Assigned(idx) = assignment { + used_variants.insert(*idx); + } + } + if used_variants.count() < 2 { + for assignment in assignments.iter_mut() { + *assignment = Ineligible(None); + } + ineligible_locals.insert_all(); + } + } + + // Write down the order of our locals that will be promoted to the prefix. + { + for (idx, local) in ineligible_locals.iter().enumerate() { + assignments[local] = Ineligible(Some(idx as u32)); + } + } + debug!("generator saved local assignments: {:?}", assignments); + + (ineligible_locals, assignments) + } + + /// Compute the full generator layout. + fn generator_layout( + &self, + ty: Ty<'tcx>, + def_id: hir::def_id::DefId, + substs: SubstsRef<'tcx>, + ) -> Result<&'tcx Layout, LayoutError<'tcx>> { + use SavedLocalEligibility::*; + let tcx = self.tcx; + + let subst_field = |ty: Ty<'tcx>| ty.subst(tcx, substs); + + let info = tcx.generator_layout(def_id); + let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info); + + // Build a prefix layout, including "promoting" all ineligible + // locals as part of the prefix. We compute the layout of all of + // these fields at once to get optimal packing. + let tag_index = substs.as_generator().prefix_tys().count(); + + // `info.variant_fields` already accounts for the reserved variants, so no need to add them. + let max_discr = (info.variant_fields.len() - 1) as u128; + let discr_int = Integer::fit_unsigned(max_discr); + let discr_int_ty = discr_int.to_ty(tcx, false); + let tag = Scalar { value: Primitive::Int(discr_int, false), valid_range: 0..=max_discr }; + let tag_layout = self.tcx.intern_layout(Layout::scalar(self, tag.clone())); + let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; + + let promoted_layouts = ineligible_locals + .iter() + .map(|local| subst_field(info.field_tys[local])) + .map(|ty| tcx.mk_maybe_uninit(ty)) + .map(|ty| self.layout_of(ty)); + let prefix_layouts = substs + .as_generator() + .prefix_tys() + .map(|ty| self.layout_of(ty)) + .chain(iter::once(Ok(tag_layout))) + .chain(promoted_layouts) + .collect::<Result<Vec<_>, _>>()?; + let prefix = self.univariant_uninterned( + ty, + &prefix_layouts, + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + + let (prefix_size, prefix_align) = (prefix.size, prefix.align); + + // Split the prefix layout into the "outer" fields (upvars and + // discriminant) and the "promoted" fields. Promoted fields will + // get included in each variant that requested them in + // GeneratorLayout. + debug!("prefix = {:#?}", prefix); + let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { + FieldsShape::Arbitrary { mut offsets, memory_index } => { + let mut inverse_memory_index = invert_mapping(&memory_index); + + // "a" (`0..b_start`) and "b" (`b_start..`) correspond to + // "outer" and "promoted" fields respectively. + let b_start = (tag_index + 1) as u32; + let offsets_b = offsets.split_off(b_start as usize); + let offsets_a = offsets; + + // Disentangle the "a" and "b" components of `inverse_memory_index` + // by preserving the order but keeping only one disjoint "half" each. + // FIXME(eddyb) build a better abstraction for permutations, if possible. + let inverse_memory_index_b: Vec<_> = + inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); + inverse_memory_index.retain(|&i| i < b_start); + let inverse_memory_index_a = inverse_memory_index; + + // Since `inverse_memory_index_{a,b}` each only refer to their + // respective fields, they can be safely inverted + let memory_index_a = invert_mapping(&inverse_memory_index_a); + let memory_index_b = invert_mapping(&inverse_memory_index_b); + + let outer_fields = + FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; + (outer_fields, offsets_b, memory_index_b) + } + _ => bug!(), + }; + + let mut size = prefix.size; + let mut align = prefix.align; + let variants = info + .variant_fields + .iter_enumerated() + .map(|(index, variant_fields)| { + // Only include overlap-eligible fields when we compute our variant layout. + let variant_only_tys = variant_fields + .iter() + .filter(|local| match assignments[**local] { + Unassigned => bug!(), + Assigned(v) if v == index => true, + Assigned(_) => bug!("assignment does not match variant"), + Ineligible(_) => false, + }) + .map(|local| subst_field(info.field_tys[*local])); + + let mut variant = self.univariant_uninterned( + ty, + &variant_only_tys + .map(|ty| self.layout_of(ty)) + .collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + StructKind::Prefixed(prefix_size, prefix_align.abi), + )?; + variant.variants = Variants::Single { index }; + + let (offsets, memory_index) = match variant.fields { + FieldsShape::Arbitrary { offsets, memory_index } => (offsets, memory_index), + _ => bug!(), + }; + + // Now, stitch the promoted and variant-only fields back together in + // the order they are mentioned by our GeneratorLayout. + // Because we only use some subset (that can differ between variants) + // of the promoted fields, we can't just pick those elements of the + // `promoted_memory_index` (as we'd end up with gaps). + // So instead, we build an "inverse memory_index", as if all of the + // promoted fields were being used, but leave the elements not in the + // subset as `INVALID_FIELD_IDX`, which we can filter out later to + // obtain a valid (bijective) mapping. + const INVALID_FIELD_IDX: u32 = !0; + let mut combined_inverse_memory_index = + vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; + let mut offsets_and_memory_index = offsets.into_iter().zip(memory_index); + let combined_offsets = variant_fields + .iter() + .enumerate() + .map(|(i, local)| { + let (offset, memory_index) = match assignments[*local] { + Unassigned => bug!(), + Assigned(_) => { + let (offset, memory_index) = + offsets_and_memory_index.next().unwrap(); + (offset, promoted_memory_index.len() as u32 + memory_index) + } + Ineligible(field_idx) => { + let field_idx = field_idx.unwrap() as usize; + (promoted_offsets[field_idx], promoted_memory_index[field_idx]) + } + }; + combined_inverse_memory_index[memory_index as usize] = i as u32; + offset + }) + .collect(); + + // Remove the unused slots and invert the mapping to obtain the + // combined `memory_index` (also see previous comment). + combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); + let combined_memory_index = invert_mapping(&combined_inverse_memory_index); + + variant.fields = FieldsShape::Arbitrary { + offsets: combined_offsets, + memory_index: combined_memory_index, + }; + + size = size.max(variant.size); + align = align.max(variant.align); + Ok(variant) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + size = size.align_to(align.abi); + + let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) + { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let layout = tcx.intern_layout(Layout { + variants: Variants::Multiple { + tag: tag, + tag_encoding: TagEncoding::Direct, + tag_field: tag_index, + variants, + }, + fields: outer_fields, + abi, + largest_niche: prefix.largest_niche, + size, + align, + }); + debug!("generator layout ({:?}): {:#?}", ty, layout); + Ok(layout) + } + + /// This is invoked by the `layout_raw` query to record the final + /// layout of each type. + #[inline(always)] + fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) { + // If we are running with `-Zprint-type-sizes`, maybe record layouts + // for dumping later. + if self.tcx.sess.opts.debugging_opts.print_type_sizes { + self.record_layout_for_printing_outlined(layout) + } + } + + fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) { + // Ignore layouts that are done with non-empty environments or + // non-monomorphic layouts, as the user only wants to see the stuff + // resulting from the final codegen session. + if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() { + return; + } + + // (delay format until we actually need it) + let record = |kind, packed, opt_discr_size, variants| { + let type_desc = format!("{:?}", layout.ty); + self.tcx.sess.code_stats.record_type_size( + kind, + type_desc, + layout.align.abi, + layout.size, + packed, + opt_discr_size, + variants, + ); + }; + + let adt_def = match layout.ty.kind { + ty::Adt(ref adt_def, _) => { + debug!("print-type-size t: `{:?}` process adt", layout.ty); + adt_def + } + + ty::Closure(..) => { + debug!("print-type-size t: `{:?}` record closure", layout.ty); + record(DataTypeKind::Closure, false, None, vec![]); + return; + } + + _ => { + debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); + return; + } + }; + + let adt_kind = adt_def.adt_kind(); + let adt_packed = adt_def.repr.pack.is_some(); + + let build_variant_info = |n: Option<Ident>, flds: &[Symbol], layout: TyAndLayout<'tcx>| { + let mut min_size = Size::ZERO; + let field_info: Vec<_> = flds + .iter() + .enumerate() + .map(|(i, &name)| match layout.field(self, i) { + Err(err) => { + bug!("no layout found for field {}: `{:?}`", name, err); + } + Ok(field_layout) => { + let offset = layout.fields.offset(i); + let field_end = offset + field_layout.size; + if min_size < field_end { + min_size = field_end; + } + FieldInfo { + name: name.to_string(), + offset: offset.bytes(), + size: field_layout.size.bytes(), + align: field_layout.align.abi.bytes(), + } + } + }) + .collect(); + + VariantInfo { + name: n.map(|n| n.to_string()), + kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, + align: layout.align.abi.bytes(), + size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, + fields: field_info, + } + }; + + match layout.variants { + Variants::Single { index } => { + debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variants[index].ident); + if !adt_def.variants.is_empty() { + let variant_def = &adt_def.variants[index]; + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.ident.name).collect(); + record( + adt_kind.into(), + adt_packed, + None, + vec![build_variant_info(Some(variant_def.ident), &fields, layout)], + ); + } else { + // (This case arises for *empty* enums; so give it + // zero variants.) + record(adt_kind.into(), adt_packed, None, vec![]); + } + } + + Variants::Multiple { ref tag, ref tag_encoding, .. } => { + debug!( + "print-type-size `{:#?}` adt general variants def {}", + layout.ty, + adt_def.variants.len() + ); + let variant_infos: Vec<_> = adt_def + .variants + .iter_enumerated() + .map(|(i, variant_def)| { + let fields: Vec<_> = + variant_def.fields.iter().map(|f| f.ident.name).collect(); + build_variant_info( + Some(variant_def.ident), + &fields, + layout.for_variant(self, i), + ) + }) + .collect(); + record( + adt_kind.into(), + adt_packed, + match tag_encoding { + TagEncoding::Direct => Some(tag.value.size(self)), + _ => None, + }, + variant_infos, + ); + } + } + } +} + +/// Type size "skeleton", i.e., the only information determining a type's size. +/// While this is conservative, (aside from constant sizes, only pointers, +/// newtypes thereof and null pointer optimized enums are allowed), it is +/// enough to statically check common use cases of transmute. +#[derive(Copy, Clone, Debug)] +pub enum SizeSkeleton<'tcx> { + /// Any statically computable Layout. + Known(Size), + + /// A potentially-fat pointer. + Pointer { + /// If true, this pointer is never null. + non_zero: bool, + /// The type which determines the unsized metadata, if any, + /// of this pointer. Either a type parameter or a projection + /// depending on one, with regions erased. + tail: Ty<'tcx>, + }, +} + +impl<'tcx> SizeSkeleton<'tcx> { + pub fn compute( + ty: Ty<'tcx>, + tcx: TyCtxt<'tcx>, + param_env: ty::ParamEnv<'tcx>, + ) -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> { + debug_assert!(!ty.has_infer_types_or_consts()); + + // First try computing a static layout. + let err = match tcx.layout_of(param_env.and(ty)) { + Ok(layout) => { + return Ok(SizeSkeleton::Known(layout.size)); + } + Err(err) => err, + }; + + match ty.kind { + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let non_zero = !ty.is_unsafe_ptr(); + let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + match tail.kind { + ty::Param(_) | ty::Projection(_) => { + debug_assert!(tail.has_param_types_or_consts()); + Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(&tail) }) + } + _ => bug!( + "SizeSkeleton::compute({}): layout errored ({}), yet \ + tail `{}` is not a type parameter or a projection", + ty, + err, + tail + ), + } + } + + ty::Adt(def, substs) => { + // Only newtypes and enums w/ nullable pointer optimization. + if def.is_union() || def.variants.is_empty() || def.variants.len() > 2 { + return Err(err); + } + + // Get a zero-sized variant or a pointer newtype. + let zero_or_ptr_variant = |i| { + let i = VariantIdx::new(i); + let fields = def.variants[i] + .fields + .iter() + .map(|field| SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env)); + let mut ptr = None; + for field in fields { + let field = field?; + match field { + SizeSkeleton::Known(size) => { + if size.bytes() > 0 { + return Err(err); + } + } + SizeSkeleton::Pointer { .. } => { + if ptr.is_some() { + return Err(err); + } + ptr = Some(field); + } + } + } + Ok(ptr) + }; + + let v0 = zero_or_ptr_variant(0)?; + // Newtype. + if def.variants.len() == 1 { + if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 { + return Ok(SizeSkeleton::Pointer { + non_zero: non_zero + || match tcx.layout_scalar_valid_range(def.did) { + (Bound::Included(start), Bound::Unbounded) => start > 0, + (Bound::Included(start), Bound::Included(end)) => { + 0 < start && start < end + } + _ => false, + }, + tail, + }); + } else { + return Err(err); + } + } + + let v1 = zero_or_ptr_variant(1)?; + // Nullable pointer enum optimization. + match (v0, v1) { + (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None) + | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => { + Ok(SizeSkeleton::Pointer { non_zero: false, tail }) + } + _ => Err(err), + } + } + + ty::Projection(_) | ty::Opaque(..) => { + let normalized = tcx.normalize_erasing_regions(param_env, ty); + if ty == normalized { + Err(err) + } else { + SizeSkeleton::compute(normalized, tcx, param_env) + } + } + + _ => Err(err), + } + } + + pub fn same_size(self, other: SizeSkeleton<'_>) -> bool { + match (self, other) { + (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b, + (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => { + a == b + } + _ => false, + } + } +} + +pub trait HasTyCtxt<'tcx>: HasDataLayout { + fn tcx(&self) -> TyCtxt<'tcx>; +} + +pub trait HasParamEnv<'tcx> { + fn param_env(&self) -> ty::ParamEnv<'tcx>; +} + +impl<'tcx> HasDataLayout for TyCtxt<'tcx> { + fn data_layout(&self) -> &TargetDataLayout { + &self.data_layout + } +} + +impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> { + fn tcx(&self) -> TyCtxt<'tcx> { + *self + } +} + +impl<'tcx, C> HasParamEnv<'tcx> for LayoutCx<'tcx, C> { + fn param_env(&self) -> ty::ParamEnv<'tcx> { + self.param_env + } +} + +impl<'tcx, T: HasDataLayout> HasDataLayout for LayoutCx<'tcx, T> { + fn data_layout(&self) -> &TargetDataLayout { + self.tcx.data_layout() + } +} + +impl<'tcx, T: HasTyCtxt<'tcx>> HasTyCtxt<'tcx> for LayoutCx<'tcx, T> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.tcx.tcx() + } +} + +pub type TyAndLayout<'tcx> = ::rustc_target::abi::TyAndLayout<'tcx, Ty<'tcx>>; + +impl<'tcx> LayoutOf for LayoutCx<'tcx, TyCtxt<'tcx>> { + type Ty = Ty<'tcx>; + type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>; + + /// Computes the layout of a type. Note that this implicitly + /// executes in "reveal all" mode. + fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout { + let param_env = self.param_env.with_reveal_all_normalized(self.tcx); + let ty = self.tcx.normalize_erasing_regions(param_env, ty); + let layout = self.tcx.layout_raw(param_env.and(ty))?; + let layout = TyAndLayout { ty, layout }; + + // N.B., this recording is normally disabled; when enabled, it + // can however trigger recursive invocations of `layout_of`. + // Therefore, we execute it *after* the main query has + // completed, to avoid problems around recursive structures + // and the like. (Admittedly, I wasn't able to reproduce a problem + // here, but it seems like the right thing to do. -nmatsakis) + self.record_layout_for_printing(layout); + + Ok(layout) + } +} + +impl LayoutOf for LayoutCx<'tcx, ty::query::TyCtxtAt<'tcx>> { + type Ty = Ty<'tcx>; + type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>; + + /// Computes the layout of a type. Note that this implicitly + /// executes in "reveal all" mode. + fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout { + let param_env = self.param_env.with_reveal_all_normalized(*self.tcx); + let ty = self.tcx.normalize_erasing_regions(param_env, ty); + let layout = self.tcx.layout_raw(param_env.and(ty))?; + let layout = TyAndLayout { ty, layout }; + + // N.B., this recording is normally disabled; when enabled, it + // can however trigger recursive invocations of `layout_of`. + // Therefore, we execute it *after* the main query has + // completed, to avoid problems around recursive structures + // and the like. (Admittedly, I wasn't able to reproduce a problem + // here, but it seems like the right thing to do. -nmatsakis) + let cx = LayoutCx { tcx: *self.tcx, param_env: self.param_env }; + cx.record_layout_for_printing(layout); + + Ok(layout) + } +} + +// Helper (inherent) `layout_of` methods to avoid pushing `LayoutCx` to users. +impl TyCtxt<'tcx> { + /// Computes the layout of a type. Note that this implicitly + /// executes in "reveal all" mode. + #[inline] + pub fn layout_of( + self, + param_env_and_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, + ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> { + let cx = LayoutCx { tcx: self, param_env: param_env_and_ty.param_env }; + cx.layout_of(param_env_and_ty.value) + } +} + +impl ty::query::TyCtxtAt<'tcx> { + /// Computes the layout of a type. Note that this implicitly + /// executes in "reveal all" mode. + #[inline] + pub fn layout_of( + self, + param_env_and_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, + ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> { + let cx = LayoutCx { tcx: self.at(self.span), param_env: param_env_and_ty.param_env }; + cx.layout_of(param_env_and_ty.value) + } +} + +impl<'tcx, C> TyAndLayoutMethods<'tcx, C> for Ty<'tcx> +where + C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout: MaybeResult<TyAndLayout<'tcx>>> + + HasTyCtxt<'tcx> + + HasParamEnv<'tcx>, +{ + fn for_variant( + this: TyAndLayout<'tcx>, + cx: &C, + variant_index: VariantIdx, + ) -> TyAndLayout<'tcx> { + let layout = match this.variants { + Variants::Single { index } + // If all variants but one are uninhabited, the variant layout is the enum layout. + if index == variant_index && + // Don't confuse variants of uninhabited enums with the enum itself. + // For more details see https://github.com/rust-lang/rust/issues/69763. + this.fields != FieldsShape::Primitive => + { + this.layout + } + + Variants::Single { index } => { + // Deny calling for_variant more than once for non-Single enums. + if let Ok(original_layout) = cx.layout_of(this.ty).to_result() { + assert_eq!(original_layout.variants, Variants::Single { index }); + } + + let fields = match this.ty.kind { + ty::Adt(def, _) if def.variants.is_empty() => + bug!("for_variant called on zero-variant enum"), + ty::Adt(def, _) => def.variants[variant_index].fields.len(), + _ => bug!(), + }; + let tcx = cx.tcx(); + tcx.intern_layout(Layout { + variants: Variants::Single { index: variant_index }, + fields: match NonZeroUsize::new(fields) { + Some(fields) => FieldsShape::Union(fields), + None => FieldsShape::Arbitrary { offsets: vec![], memory_index: vec![] }, + }, + abi: Abi::Uninhabited, + largest_niche: None, + align: tcx.data_layout.i8_align, + size: Size::ZERO, + }) + } + + Variants::Multiple { ref variants, .. } => &variants[variant_index], + }; + + assert_eq!(layout.variants, Variants::Single { index: variant_index }); + + TyAndLayout { ty: this.ty, layout } + } + + fn field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> C::TyAndLayout { + let tcx = cx.tcx(); + let tag_layout = |tag: &Scalar| -> C::TyAndLayout { + let layout = Layout::scalar(cx, tag.clone()); + MaybeResult::from(Ok(TyAndLayout { + layout: tcx.intern_layout(layout), + ty: tag.value.to_ty(tcx), + })) + }; + + cx.layout_of(match this.ty.kind { + ty::Bool + | ty::Char + | ty::Int(_) + | ty::Uint(_) + | ty::Float(_) + | ty::FnPtr(_) + | ty::Never + | ty::FnDef(..) + | ty::GeneratorWitness(..) + | ty::Foreign(..) + | ty::Dynamic(..) => bug!("TyAndLayout::field_type({:?}): not applicable", this), + + // Potentially-fat pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + assert!(i < this.fields.count()); + + // Reuse the fat `*T` type as its own thin pointer data field. + // This provides information about, e.g., DST struct pointees + // (which may have no non-DST form), and will work as long + // as the `Abi` or `FieldsShape` is checked by users. + if i == 0 { + let nil = tcx.mk_unit(); + let ptr_ty = if this.ty.is_unsafe_ptr() { + tcx.mk_mut_ptr(nil) + } else { + tcx.mk_mut_ref(tcx.lifetimes.re_static, nil) + }; + return MaybeResult::from(cx.layout_of(ptr_ty).to_result().map( + |mut ptr_layout| { + ptr_layout.ty = this.ty; + ptr_layout + }, + )); + } + + match tcx.struct_tail_erasing_lifetimes(pointee, cx.param_env()).kind { + ty::Slice(_) | ty::Str => tcx.types.usize, + ty::Dynamic(_, _) => { + tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.usize, 3)) + /* FIXME: use actual fn pointers + Warning: naively computing the number of entries in the + vtable by counting the methods on the trait + methods on + all parent traits does not work, because some methods can + be not object safe and thus excluded from the vtable. + Increase this counter if you tried to implement this but + failed to do it without duplicating a lot of code from + other places in the compiler: 2 + tcx.mk_tup(&[ + tcx.mk_array(tcx.types.usize, 3), + tcx.mk_array(Option<fn()>), + ]) + */ + } + _ => bug!("TyAndLayout::field_type({:?}): not applicable", this), + } + } + + // Arrays and slices. + ty::Array(element, _) | ty::Slice(element) => element, + ty::Str => tcx.types.u8, + + // Tuples, generators and closures. + ty::Closure(_, ref substs) => substs.as_closure().upvar_tys().nth(i).unwrap(), + + ty::Generator(def_id, ref substs, _) => match this.variants { + Variants::Single { index } => substs + .as_generator() + .state_tys(def_id, tcx) + .nth(index.as_usize()) + .unwrap() + .nth(i) + .unwrap(), + Variants::Multiple { ref tag, tag_field, .. } => { + if i == tag_field { + return tag_layout(tag); + } + substs.as_generator().prefix_tys().nth(i).unwrap() + } + }, + + ty::Tuple(tys) => tys[i].expect_ty(), + + // SIMD vector types. + ty::Adt(def, ..) if def.repr.simd() => this.ty.simd_type(tcx), + + // ADTs. + ty::Adt(def, substs) => { + match this.variants { + Variants::Single { index } => def.variants[index].fields[i].ty(tcx, substs), + + // Discriminant field for enums (where applicable). + Variants::Multiple { ref tag, .. } => { + assert_eq!(i, 0); + return tag_layout(tag); + } + } + } + + ty::Projection(_) + | ty::Bound(..) + | ty::Placeholder(..) + | ty::Opaque(..) + | ty::Param(_) + | ty::Infer(_) + | ty::Error(_) => bug!("TyAndLayout::field_type: unexpected type `{}`", this.ty), + }) + } + + fn pointee_info_at(this: TyAndLayout<'tcx>, cx: &C, offset: Size) -> Option<PointeeInfo> { + let addr_space_of_ty = |ty: Ty<'tcx>| { + if ty.is_fn() { cx.data_layout().instruction_address_space } else { AddressSpace::DATA } + }; + + let pointee_info = match this.ty.kind { + ty::RawPtr(mt) if offset.bytes() == 0 => { + cx.layout_of(mt.ty).to_result().ok().map(|layout| PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: None, + address_space: addr_space_of_ty(mt.ty), + }) + } + ty::FnPtr(fn_sig) if offset.bytes() == 0 => { + cx.layout_of(cx.tcx().mk_fn_ptr(fn_sig)).to_result().ok().map(|layout| { + PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: None, + address_space: cx.data_layout().instruction_address_space, + } + }) + } + ty::Ref(_, ty, mt) if offset.bytes() == 0 => { + let address_space = addr_space_of_ty(ty); + let tcx = cx.tcx(); + let is_freeze = ty.is_freeze(tcx.at(DUMMY_SP), cx.param_env()); + let kind = match mt { + hir::Mutability::Not => { + if is_freeze { + PointerKind::Frozen + } else { + PointerKind::Shared + } + } + hir::Mutability::Mut => { + // Previously we would only emit noalias annotations for LLVM >= 6 or in + // panic=abort mode. That was deemed right, as prior versions had many bugs + // in conjunction with unwinding, but later versions didn’t seem to have + // said issues. See issue #31681. + // + // Alas, later on we encountered a case where noalias would generate wrong + // code altogether even with recent versions of LLVM in *safe* code with no + // unwinding involved. See #54462. + // + // For now, do not enable mutable_noalias by default at all, while the + // issue is being figured out. + if tcx.sess.opts.debugging_opts.mutable_noalias { + PointerKind::UniqueBorrowed + } else { + PointerKind::Shared + } + } + }; + + cx.layout_of(ty).to_result().ok().map(|layout| PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: Some(kind), + address_space, + }) + } + + _ => { + let mut data_variant = match this.variants { + // Within the discriminant field, only the niche itself is + // always initialized, so we only check for a pointer at its + // offset. + // + // If the niche is a pointer, it's either valid (according + // to its type), or null (which the niche field's scalar + // validity range encodes). This allows using + // `dereferenceable_or_null` for e.g., `Option<&T>`, and + // this will continue to work as long as we don't start + // using more niches than just null (e.g., the first page of + // the address space, or unaligned pointers). + Variants::Multiple { + tag_encoding: TagEncoding::Niche { dataful_variant, .. }, + tag_field, + .. + } if this.fields.offset(tag_field) == offset => { + Some(this.for_variant(cx, dataful_variant)) + } + _ => Some(this), + }; + + if let Some(variant) = data_variant { + // We're not interested in any unions. + if let FieldsShape::Union(_) = variant.fields { + data_variant = None; + } + } + + let mut result = None; + + if let Some(variant) = data_variant { + let ptr_end = offset + Pointer.size(cx); + for i in 0..variant.fields.count() { + let field_start = variant.fields.offset(i); + if field_start <= offset { + let field = variant.field(cx, i); + result = field.to_result().ok().and_then(|field| { + if ptr_end <= field_start + field.size { + // We found the right field, look inside it. + let field_info = + field.pointee_info_at(cx, offset - field_start); + field_info + } else { + None + } + }); + if result.is_some() { + break; + } + } + } + } + + // FIXME(eddyb) This should be for `ptr::Unique<T>`, not `Box<T>`. + if let Some(ref mut pointee) = result { + if let ty::Adt(def, _) = this.ty.kind { + if def.is_box() && offset.bytes() == 0 { + pointee.safe = Some(PointerKind::UniqueOwned); + } + } + } + + result + } + }; + + debug!( + "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}", + offset, this.ty.kind, pointee_info + ); + + pointee_info + } +} + +impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for LayoutError<'tcx> { + fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { + use crate::ty::layout::LayoutError::*; + mem::discriminant(self).hash_stable(hcx, hasher); + + match *self { + Unknown(t) | SizeOverflow(t) => t.hash_stable(hcx, hasher), + } + } +} + +impl<'tcx> ty::Instance<'tcx> { + // NOTE(eddyb) this is private to avoid using it from outside of + // `FnAbi::of_instance` - any other uses are either too high-level + // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), + // or should go through `FnAbi` instead, to avoid losing any + // adjustments `FnAbi::of_instance` might be performing. + fn fn_sig_for_fn_abi(&self, tcx: TyCtxt<'tcx>) -> ty::PolyFnSig<'tcx> { + // FIXME(davidtwco,eddyb): A `ParamEnv` should be passed through to this function. + let ty = self.ty(tcx, ty::ParamEnv::reveal_all()); + match ty.kind { + ty::FnDef(..) => { + // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering + // parameters unused if they show up in the signature, but not in the `mir::Body` + // (i.e. due to being inside a projection that got normalized, see + // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping + // track of a polymorphization `ParamEnv` to allow normalizing later. + let mut sig = match ty.kind { + ty::FnDef(def_id, substs) => tcx + .normalize_erasing_regions(tcx.param_env(def_id), tcx.fn_sig(def_id)) + .subst(tcx, substs), + _ => unreachable!(), + }; + + if let ty::InstanceDef::VtableShim(..) = self.def { + // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. + sig = sig.map_bound(|mut sig| { + let mut inputs_and_output = sig.inputs_and_output.to_vec(); + inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); + sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); + sig + }); + } + sig + } + ty::Closure(def_id, substs) => { + let sig = substs.as_closure().sig(); + + let env_ty = tcx.closure_env_ty(def_id, substs).unwrap(); + sig.map_bound(|sig| { + tcx.mk_fn_sig( + iter::once(env_ty.skip_binder()).chain(sig.inputs().iter().cloned()), + sig.output(), + sig.c_variadic, + sig.unsafety, + sig.abi, + ) + }) + } + ty::Generator(_, substs, _) => { + let sig = substs.as_generator().poly_sig(); + + let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv); + let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); + + let pin_did = tcx.require_lang_item(LangItem::Pin, None); + let pin_adt_ref = tcx.adt_def(pin_did); + let pin_substs = tcx.intern_substs(&[env_ty.into()]); + let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); + + sig.map_bound(|sig| { + let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); + let state_adt_ref = tcx.adt_def(state_did); + let state_substs = + tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); + let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); + + tcx.mk_fn_sig( + [env_ty, sig.resume_ty].iter(), + &ret_ty, + false, + hir::Unsafety::Normal, + rustc_target::spec::abi::Abi::Rust, + ) + }) + } + _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), + } + } +} + +pub trait FnAbiExt<'tcx, C> +where + C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout = TyAndLayout<'tcx>> + + HasDataLayout + + HasTargetSpec + + HasTyCtxt<'tcx> + + HasParamEnv<'tcx>, +{ + /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. + /// + /// NB: this doesn't handle virtual calls - those should use `FnAbi::of_instance` + /// instead, where the instance is a `InstanceDef::Virtual`. + fn of_fn_ptr(cx: &C, sig: ty::PolyFnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> Self; + + /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for + /// direct calls to an `fn`. + /// + /// NB: that includes virtual calls, which are represented by "direct calls" + /// to a `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`). + fn of_instance(cx: &C, instance: ty::Instance<'tcx>, extra_args: &[Ty<'tcx>]) -> Self; + + fn new_internal( + cx: &C, + sig: ty::PolyFnSig<'tcx>, + extra_args: &[Ty<'tcx>], + caller_location: Option<Ty<'tcx>>, + codegen_fn_attr_flags: CodegenFnAttrFlags, + mk_arg_type: impl Fn(Ty<'tcx>, Option<usize>) -> ArgAbi<'tcx, Ty<'tcx>>, + ) -> Self; + fn adjust_for_abi(&mut self, cx: &C, abi: SpecAbi); +} + +fn fn_can_unwind( + panic_strategy: PanicStrategy, + codegen_fn_attr_flags: CodegenFnAttrFlags, + call_conv: Conv, +) -> bool { + if panic_strategy != PanicStrategy::Unwind { + // In panic=abort mode we assume nothing can unwind anywhere, so + // optimize based on this! + false + } else if codegen_fn_attr_flags.contains(CodegenFnAttrFlags::UNWIND) { + // If a specific #[unwind] attribute is present, use that. + true + } else if codegen_fn_attr_flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) { + // Special attribute for allocator functions, which can't unwind. + false + } else { + if call_conv == Conv::Rust { + // Any Rust method (or `extern "Rust" fn` or `extern + // "rust-call" fn`) is explicitly allowed to unwind + // (unless it has no-unwind attribute, handled above). + true + } else { + // Anything else is either: + // + // 1. A foreign item using a non-Rust ABI (like `extern "C" { fn foo(); }`), or + // + // 2. A Rust item using a non-Rust ABI (like `extern "C" fn foo() { ... }`). + // + // Foreign items (case 1) are assumed to not unwind; it is + // UB otherwise. (At least for now; see also + // rust-lang/rust#63909 and Rust RFC 2753.) + // + // Items defined in Rust with non-Rust ABIs (case 2) are also + // not supposed to unwind. Whether this should be enforced + // (versus stating it is UB) and *how* it would be enforced + // is currently under discussion; see rust-lang/rust#58794. + // + // In either case, we mark item as explicitly nounwind. + false + } + } +} + +impl<'tcx, C> FnAbiExt<'tcx, C> for call::FnAbi<'tcx, Ty<'tcx>> +where + C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout = TyAndLayout<'tcx>> + + HasDataLayout + + HasTargetSpec + + HasTyCtxt<'tcx> + + HasParamEnv<'tcx>, +{ + fn of_fn_ptr(cx: &C, sig: ty::PolyFnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> Self { + // Assume that fn pointers may always unwind + let codegen_fn_attr_flags = CodegenFnAttrFlags::UNWIND; + + call::FnAbi::new_internal(cx, sig, extra_args, None, codegen_fn_attr_flags, |ty, _| { + ArgAbi::new(cx.layout_of(ty)) + }) + } + + fn of_instance(cx: &C, instance: ty::Instance<'tcx>, extra_args: &[Ty<'tcx>]) -> Self { + let sig = instance.fn_sig_for_fn_abi(cx.tcx()); + + let caller_location = if instance.def.requires_caller_location(cx.tcx()) { + Some(cx.tcx().caller_location_ty()) + } else { + None + }; + + let attrs = cx.tcx().codegen_fn_attrs(instance.def_id()).flags; + + call::FnAbi::new_internal(cx, sig, extra_args, caller_location, attrs, |ty, arg_idx| { + let mut layout = cx.layout_of(ty); + // Don't pass the vtable, it's not an argument of the virtual fn. + // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` + // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen + if let (ty::InstanceDef::Virtual(..), Some(0)) = (&instance.def, arg_idx) { + let fat_pointer_ty = if layout.is_unsized() { + // unsized `self` is passed as a pointer to `self` + // FIXME (mikeyhew) change this to use &own if it is ever added to the language + cx.tcx().mk_mut_ptr(layout.ty) + } else { + match layout.abi { + Abi::ScalarPair(..) => (), + _ => bug!("receiver type has unsupported layout: {:?}", layout), + } + + // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self> + // with a Scalar (not ScalarPair) ABI. This is a hack that is understood + // elsewhere in the compiler as a method on a `dyn Trait`. + // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we + // get a built-in pointer type + let mut fat_pointer_layout = layout; + 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() + && !fat_pointer_layout.ty.is_region_ptr() + { + for i in 0..fat_pointer_layout.fields.count() { + let field_layout = fat_pointer_layout.field(cx, i); + + if !field_layout.is_zst() { + fat_pointer_layout = field_layout; + continue 'descend_newtypes; + } + } + + bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); + } + + fat_pointer_layout.ty + }; + + // we now have a type like `*mut RcBox<dyn Trait>` + // change its layout to that of `*mut ()`, a thin pointer, but keep the same type + // this is understood as a special case elsewhere in the compiler + let unit_pointer_ty = cx.tcx().mk_mut_ptr(cx.tcx().mk_unit()); + layout = cx.layout_of(unit_pointer_ty); + layout.ty = fat_pointer_ty; + } + ArgAbi::new(layout) + }) + } + + fn new_internal( + cx: &C, + sig: ty::PolyFnSig<'tcx>, + extra_args: &[Ty<'tcx>], + caller_location: Option<Ty<'tcx>>, + codegen_fn_attr_flags: CodegenFnAttrFlags, + mk_arg_type: impl Fn(Ty<'tcx>, Option<usize>) -> ArgAbi<'tcx, Ty<'tcx>>, + ) -> Self { + debug!("FnAbi::new_internal({:?}, {:?})", sig, extra_args); + + let sig = cx.tcx().normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig); + + use rustc_target::spec::abi::Abi::*; + let conv = match cx.tcx().sess.target.target.adjust_abi(sig.abi) { + RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, + + // It's the ABI's job to select this, not ours. + System => bug!("system abi should be selected elsewhere"), + EfiApi => bug!("eficall abi should be selected elsewhere"), + + Stdcall => Conv::X86Stdcall, + Fastcall => Conv::X86Fastcall, + Vectorcall => Conv::X86VectorCall, + Thiscall => Conv::X86ThisCall, + C => Conv::C, + Unadjusted => Conv::C, + Win64 => Conv::X86_64Win64, + SysV64 => Conv::X86_64SysV, + Aapcs => Conv::ArmAapcs, + PtxKernel => Conv::PtxKernel, + Msp430Interrupt => Conv::Msp430Intr, + X86Interrupt => Conv::X86Intr, + AmdGpuKernel => Conv::AmdGpuKernel, + AvrInterrupt => Conv::AvrInterrupt, + AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, + + // These API constants ought to be more specific... + Cdecl => Conv::C, + }; + + let mut inputs = sig.inputs(); + let extra_args = if sig.abi == RustCall { + assert!(!sig.c_variadic && extra_args.is_empty()); + + if let Some(input) = sig.inputs().last() { + if let ty::Tuple(tupled_arguments) = input.kind { + inputs = &sig.inputs()[0..sig.inputs().len() - 1]; + tupled_arguments.iter().map(|k| k.expect_ty()).collect() + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + assert!(sig.c_variadic || extra_args.is_empty()); + extra_args.to_vec() + }; + + let target = &cx.tcx().sess.target.target; + let target_env_gnu_like = matches!(&target.target_env[..], "gnu" | "musl"); + let win_x64_gnu = + target.target_os == "windows" && target.arch == "x86_64" && target.target_env == "gnu"; + let linux_s390x_gnu_like = + target.target_os == "linux" && target.arch == "s390x" && target_env_gnu_like; + let linux_sparc64_gnu_like = + target.target_os == "linux" && target.arch == "sparc64" && target_env_gnu_like; + let linux_powerpc_gnu_like = + target.target_os == "linux" && target.arch == "powerpc" && target_env_gnu_like; + let rust_abi = match sig.abi { + RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true, + _ => false, + }; + + // Handle safe Rust thin and fat pointers. + let adjust_for_rust_scalar = |attrs: &mut ArgAttributes, + scalar: &Scalar, + layout: TyAndLayout<'tcx>, + offset: Size, + is_return: bool| { + // Booleans are always an i1 that needs to be zero-extended. + if scalar.is_bool() { + attrs.set(ArgAttribute::ZExt); + return; + } + + // Only pointer types handled below. + if scalar.value != Pointer { + return; + } + + if scalar.valid_range.start() < scalar.valid_range.end() { + if *scalar.valid_range.start() > 0 { + attrs.set(ArgAttribute::NonNull); + } + } + + if let Some(pointee) = layout.pointee_info_at(cx, offset) { + if let Some(kind) = pointee.safe { + attrs.pointee_align = Some(pointee.align); + + // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable + // for the entire duration of the function as they can be deallocated + // at any time. Set their valid size to 0. + attrs.pointee_size = match kind { + PointerKind::UniqueOwned => Size::ZERO, + _ => pointee.size, + }; + + // `Box` pointer parameters never alias because ownership is transferred + // `&mut` pointer parameters never alias other parameters, + // or mutable global data + // + // `&T` where `T` contains no `UnsafeCell<U>` is immutable, + // and can be marked as both `readonly` and `noalias`, as + // LLVM's definition of `noalias` is based solely on memory + // dependencies rather than pointer equality + let no_alias = match kind { + PointerKind::Shared => false, + PointerKind::UniqueOwned => true, + PointerKind::Frozen | PointerKind::UniqueBorrowed => !is_return, + }; + if no_alias { + attrs.set(ArgAttribute::NoAlias); + } + + if kind == PointerKind::Frozen && !is_return { + attrs.set(ArgAttribute::ReadOnly); + } + } + } + }; + + let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| { + let is_return = arg_idx.is_none(); + let mut arg = mk_arg_type(ty, arg_idx); + if arg.layout.is_zst() { + // For some forsaken reason, x86_64-pc-windows-gnu + // doesn't ignore zero-sized struct arguments. + // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl}. + if is_return + || rust_abi + || (!win_x64_gnu + && !linux_s390x_gnu_like + && !linux_sparc64_gnu_like + && !linux_powerpc_gnu_like) + { + arg.mode = PassMode::Ignore; + } + } + + // FIXME(eddyb) other ABIs don't have logic for scalar pairs. + if !is_return && rust_abi { + if let Abi::ScalarPair(ref a, ref b) = arg.layout.abi { + let mut a_attrs = ArgAttributes::new(); + let mut b_attrs = ArgAttributes::new(); + adjust_for_rust_scalar(&mut a_attrs, a, arg.layout, Size::ZERO, false); + adjust_for_rust_scalar( + &mut b_attrs, + b, + arg.layout, + a.value.size(cx).align_to(b.value.align(cx).abi), + false, + ); + arg.mode = PassMode::Pair(a_attrs, b_attrs); + return arg; + } + } + + if let Abi::Scalar(ref scalar) = arg.layout.abi { + if let PassMode::Direct(ref mut attrs) = arg.mode { + adjust_for_rust_scalar(attrs, scalar, arg.layout, Size::ZERO, is_return); + } + } + + arg + }; + + let mut fn_abi = FnAbi { + ret: arg_of(sig.output(), None), + args: inputs + .iter() + .cloned() + .chain(extra_args) + .chain(caller_location) + .enumerate() + .map(|(i, ty)| arg_of(ty, Some(i))) + .collect(), + c_variadic: sig.c_variadic, + fixed_count: inputs.len(), + conv, + can_unwind: fn_can_unwind(cx.tcx().sess.panic_strategy(), codegen_fn_attr_flags, conv), + }; + fn_abi.adjust_for_abi(cx, sig.abi); + fn_abi + } + + fn adjust_for_abi(&mut self, cx: &C, abi: SpecAbi) { + if abi == SpecAbi::Unadjusted { + return; + } + + if abi == SpecAbi::Rust + || abi == SpecAbi::RustCall + || abi == SpecAbi::RustIntrinsic + || abi == SpecAbi::PlatformIntrinsic + { + let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| { + if arg.is_ignore() { + return; + } + + match arg.layout.abi { + Abi::Aggregate { .. } => {} + + // This is a fun case! The gist of what this is doing is + // that we want callers and callees to always agree on the + // ABI of how they pass SIMD arguments. If we were to *not* + // make these arguments indirect then they'd be immediates + // in LLVM, which means that they'd used whatever the + // appropriate ABI is for the callee and the caller. That + // means, for example, if the caller doesn't have AVX + // enabled but the callee does, then passing an AVX argument + // across this boundary would cause corrupt data to show up. + // + // This problem is fixed by unconditionally passing SIMD + // arguments through memory between callers and callees + // which should get them all to agree on ABI regardless of + // target feature sets. Some more information about this + // issue can be found in #44367. + // + // Note that the platform intrinsic ABI is exempt here as + // that's how we connect up to LLVM and it's unstable + // anyway, we control all calls to it in libstd. + Abi::Vector { .. } + if abi != SpecAbi::PlatformIntrinsic + && cx.tcx().sess.target.target.options.simd_types_indirect => + { + arg.make_indirect(); + return; + } + + _ => return, + } + + let size = arg.layout.size; + if arg.layout.is_unsized() || size > Pointer.size(cx) { + arg.make_indirect(); + } else { + // We want to pass small aggregates as immediates, but using + // a LLVM aggregate type for this leads to bad optimizations, + // so we pick an appropriately sized integer type instead. + arg.cast_to(Reg { kind: RegKind::Integer, size }); + } + }; + fixup(&mut self.ret); + for arg in &mut self.args { + fixup(arg); + } + if let PassMode::Indirect(ref mut attrs, _) = self.ret.mode { + attrs.set(ArgAttribute::StructRet); + } + return; + } + + if let Err(msg) = self.adjust_for_cabi(cx, abi) { + cx.tcx().sess.fatal(&msg); + } + } +} |
