about summary refs log tree commit diff
path: root/compiler/rustc_mir/src/interpret/intrinsics.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir/src/interpret/intrinsics.rs')
-rw-r--r--compiler/rustc_mir/src/interpret/intrinsics.rs537
1 files changed, 537 insertions, 0 deletions
diff --git a/compiler/rustc_mir/src/interpret/intrinsics.rs b/compiler/rustc_mir/src/interpret/intrinsics.rs
new file mode 100644
index 00000000000..b37dcd42f4c
--- /dev/null
+++ b/compiler/rustc_mir/src/interpret/intrinsics.rs
@@ -0,0 +1,537 @@
+//! Intrinsics and other functions that the miri engine executes without
+//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
+//! and miri.
+
+use std::convert::TryFrom;
+
+use rustc_hir::def_id::DefId;
+use rustc_middle::mir::{
+    self,
+    interpret::{uabs, ConstValue, GlobalId, InterpResult, Scalar},
+    BinOp,
+};
+use rustc_middle::ty;
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::{Ty, TyCtxt};
+use rustc_span::symbol::{sym, Symbol};
+use rustc_target::abi::{Abi, LayoutOf as _, Primitive, Size};
+
+use super::{
+    util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, Machine, OpTy, PlaceTy,
+};
+
+mod caller_location;
+mod type_name;
+
+fn numeric_intrinsic<'tcx, Tag>(
+    name: Symbol,
+    bits: u128,
+    kind: Primitive,
+) -> InterpResult<'tcx, Scalar<Tag>> {
+    let size = match kind {
+        Primitive::Int(integer, _) => integer.size(),
+        _ => bug!("invalid `{}` argument: {:?}", name, bits),
+    };
+    let extra = 128 - u128::from(size.bits());
+    let bits_out = match name {
+        sym::ctpop => u128::from(bits.count_ones()),
+        sym::ctlz => u128::from(bits.leading_zeros()) - extra,
+        sym::cttz => u128::from((bits << extra).trailing_zeros()) - extra,
+        sym::bswap => (bits << extra).swap_bytes(),
+        sym::bitreverse => (bits << extra).reverse_bits(),
+        _ => bug!("not a numeric intrinsic: {}", name),
+    };
+    Ok(Scalar::from_uint(bits_out, size))
+}
+
+/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
+/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
+crate fn eval_nullary_intrinsic<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    param_env: ty::ParamEnv<'tcx>,
+    def_id: DefId,
+    substs: SubstsRef<'tcx>,
+) -> InterpResult<'tcx, ConstValue<'tcx>> {
+    let tp_ty = substs.type_at(0);
+    let name = tcx.item_name(def_id);
+    Ok(match name {
+        sym::type_name => {
+            ensure_monomorphic_enough(tcx, tp_ty)?;
+            let alloc = type_name::alloc_type_name(tcx, tp_ty);
+            ConstValue::Slice { data: alloc, start: 0, end: alloc.len() }
+        }
+        sym::needs_drop => ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)),
+        sym::size_of | sym::min_align_of | sym::pref_align_of => {
+            let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
+            let n = match name {
+                sym::pref_align_of => layout.align.pref.bytes(),
+                sym::min_align_of => layout.align.abi.bytes(),
+                sym::size_of => layout.size.bytes(),
+                _ => bug!(),
+            };
+            ConstValue::from_machine_usize(n, &tcx)
+        }
+        sym::type_id => {
+            ensure_monomorphic_enough(tcx, tp_ty)?;
+            ConstValue::from_u64(tcx.type_id_hash(tp_ty))
+        }
+        sym::variant_count => {
+            if let ty::Adt(ref adt, _) = tp_ty.kind {
+                ConstValue::from_machine_usize(adt.variants.len() as u64, &tcx)
+            } else {
+                ConstValue::from_machine_usize(0u64, &tcx)
+            }
+        }
+        other => bug!("`{}` is not a zero arg intrinsic", other),
+    })
+}
+
+impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
+    /// Returns `true` if emulation happened.
+    pub fn emulate_intrinsic(
+        &mut self,
+        instance: ty::Instance<'tcx>,
+        args: &[OpTy<'tcx, M::PointerTag>],
+        ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
+    ) -> InterpResult<'tcx, bool> {
+        let substs = instance.substs;
+        let intrinsic_name = self.tcx.item_name(instance.def_id());
+
+        // First handle intrinsics without return place.
+        let (dest, ret) = match ret {
+            None => match intrinsic_name {
+                sym::transmute => throw_ub_format!("transmuting to uninhabited type"),
+                sym::unreachable => throw_ub!(Unreachable),
+                sym::abort => M::abort(self)?,
+                // Unsupported diverging intrinsic.
+                _ => return Ok(false),
+            },
+            Some(p) => p,
+        };
+
+        // Keep the patterns in this match ordered the same as the list in
+        // `src/librustc_middle/ty/constness.rs`
+        match intrinsic_name {
+            sym::caller_location => {
+                let span = self.find_closest_untracked_caller_location();
+                let location = self.alloc_caller_location_for_span(span);
+                self.write_scalar(location.ptr, dest)?;
+            }
+
+            sym::min_align_of_val | sym::size_of_val => {
+                let place = self.deref_operand(args[0])?;
+                let (size, align) = self
+                    .size_and_align_of(place.meta, place.layout)?
+                    .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
+
+                let result = match intrinsic_name {
+                    sym::min_align_of_val => align.bytes(),
+                    sym::size_of_val => size.bytes(),
+                    _ => bug!(),
+                };
+
+                self.write_scalar(Scalar::from_machine_usize(result, self), dest)?;
+            }
+
+            sym::min_align_of
+            | sym::pref_align_of
+            | sym::needs_drop
+            | sym::size_of
+            | sym::type_id
+            | sym::type_name
+            | sym::variant_count => {
+                let gid = GlobalId { instance, promoted: None };
+                let ty = match intrinsic_name {
+                    sym::min_align_of | sym::pref_align_of | sym::size_of | sym::variant_count => {
+                        self.tcx.types.usize
+                    }
+                    sym::needs_drop => self.tcx.types.bool,
+                    sym::type_id => self.tcx.types.u64,
+                    sym::type_name => self.tcx.mk_static_str(),
+                    _ => bug!("already checked for nullary intrinsics"),
+                };
+                let val = self.const_eval(gid, ty)?;
+                self.copy_op(val, dest)?;
+            }
+
+            sym::ctpop
+            | sym::cttz
+            | sym::cttz_nonzero
+            | sym::ctlz
+            | sym::ctlz_nonzero
+            | sym::bswap
+            | sym::bitreverse => {
+                let ty = substs.type_at(0);
+                let layout_of = self.layout_of(ty)?;
+                let val = self.read_scalar(args[0])?.check_init()?;
+                let bits = self.force_bits(val, layout_of.size)?;
+                let kind = match layout_of.abi {
+                    Abi::Scalar(ref scalar) => scalar.value,
+                    _ => span_bug!(
+                        self.cur_span(),
+                        "{} called on invalid type {:?}",
+                        intrinsic_name,
+                        ty
+                    ),
+                };
+                let (nonzero, intrinsic_name) = match intrinsic_name {
+                    sym::cttz_nonzero => (true, sym::cttz),
+                    sym::ctlz_nonzero => (true, sym::ctlz),
+                    other => (false, other),
+                };
+                if nonzero && bits == 0 {
+                    throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
+                }
+                let out_val = numeric_intrinsic(intrinsic_name, bits, kind)?;
+                self.write_scalar(out_val, dest)?;
+            }
+            sym::wrapping_add
+            | sym::wrapping_sub
+            | sym::wrapping_mul
+            | sym::add_with_overflow
+            | sym::sub_with_overflow
+            | sym::mul_with_overflow => {
+                let lhs = self.read_immediate(args[0])?;
+                let rhs = self.read_immediate(args[1])?;
+                let (bin_op, ignore_overflow) = match intrinsic_name {
+                    sym::wrapping_add => (BinOp::Add, true),
+                    sym::wrapping_sub => (BinOp::Sub, true),
+                    sym::wrapping_mul => (BinOp::Mul, true),
+                    sym::add_with_overflow => (BinOp::Add, false),
+                    sym::sub_with_overflow => (BinOp::Sub, false),
+                    sym::mul_with_overflow => (BinOp::Mul, false),
+                    _ => bug!("Already checked for int ops"),
+                };
+                if ignore_overflow {
+                    self.binop_ignore_overflow(bin_op, lhs, rhs, dest)?;
+                } else {
+                    self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
+                }
+            }
+            sym::saturating_add | sym::saturating_sub => {
+                let l = self.read_immediate(args[0])?;
+                let r = self.read_immediate(args[1])?;
+                let is_add = intrinsic_name == sym::saturating_add;
+                let (val, overflowed, _ty) =
+                    self.overflowing_binary_op(if is_add { BinOp::Add } else { BinOp::Sub }, l, r)?;
+                let val = if overflowed {
+                    let num_bits = l.layout.size.bits();
+                    if l.layout.abi.is_signed() {
+                        // For signed ints the saturated value depends on the sign of the first
+                        // term since the sign of the second term can be inferred from this and
+                        // the fact that the operation has overflowed (if either is 0 no
+                        // overflow can occur)
+                        let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
+                        let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
+                        if first_term_positive {
+                            // Negative overflow not possible since the positive first term
+                            // can only increase an (in range) negative term for addition
+                            // or corresponding negated positive term for subtraction
+                            Scalar::from_uint(
+                                (1u128 << (num_bits - 1)) - 1, // max positive
+                                Size::from_bits(num_bits),
+                            )
+                        } else {
+                            // Positive overflow not possible for similar reason
+                            // max negative
+                            Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
+                        }
+                    } else {
+                        // unsigned
+                        if is_add {
+                            // max unsigned
+                            Scalar::from_uint(
+                                u128::MAX >> (128 - num_bits),
+                                Size::from_bits(num_bits),
+                            )
+                        } else {
+                            // underflow to 0
+                            Scalar::from_uint(0u128, Size::from_bits(num_bits))
+                        }
+                    }
+                } else {
+                    val
+                };
+                self.write_scalar(val, dest)?;
+            }
+            sym::discriminant_value => {
+                let place = self.deref_operand(args[0])?;
+                let discr_val = self.read_discriminant(place.into())?.0;
+                self.write_scalar(discr_val, dest)?;
+            }
+            sym::unchecked_shl
+            | sym::unchecked_shr
+            | sym::unchecked_add
+            | sym::unchecked_sub
+            | sym::unchecked_mul
+            | sym::unchecked_div
+            | sym::unchecked_rem => {
+                let l = self.read_immediate(args[0])?;
+                let r = self.read_immediate(args[1])?;
+                let bin_op = match intrinsic_name {
+                    sym::unchecked_shl => BinOp::Shl,
+                    sym::unchecked_shr => BinOp::Shr,
+                    sym::unchecked_add => BinOp::Add,
+                    sym::unchecked_sub => BinOp::Sub,
+                    sym::unchecked_mul => BinOp::Mul,
+                    sym::unchecked_div => BinOp::Div,
+                    sym::unchecked_rem => BinOp::Rem,
+                    _ => bug!("Already checked for int ops"),
+                };
+                let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
+                if overflowed {
+                    let layout = self.layout_of(substs.type_at(0))?;
+                    let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
+                    if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
+                        throw_ub_format!("overflowing shift by {} in `{}`", r_val, intrinsic_name);
+                    } else {
+                        throw_ub_format!("overflow executing `{}`", intrinsic_name);
+                    }
+                }
+                self.write_scalar(val, dest)?;
+            }
+            sym::rotate_left | sym::rotate_right => {
+                // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
+                // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
+                let layout = self.layout_of(substs.type_at(0))?;
+                let val = self.read_scalar(args[0])?.check_init()?;
+                let val_bits = self.force_bits(val, layout.size)?;
+                let raw_shift = self.read_scalar(args[1])?.check_init()?;
+                let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
+                let width_bits = u128::from(layout.size.bits());
+                let shift_bits = raw_shift_bits % width_bits;
+                let inv_shift_bits = (width_bits - shift_bits) % width_bits;
+                let result_bits = if intrinsic_name == sym::rotate_left {
+                    (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
+                } else {
+                    (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
+                };
+                let truncated_bits = self.truncate(result_bits, layout);
+                let result = Scalar::from_uint(truncated_bits, layout.size);
+                self.write_scalar(result, dest)?;
+            }
+            sym::offset => {
+                let ptr = self.read_scalar(args[0])?.check_init()?;
+                let offset_count = self.read_scalar(args[1])?.to_machine_isize(self)?;
+                let pointee_ty = substs.type_at(0);
+
+                let offset_ptr = self.ptr_offset_inbounds(ptr, pointee_ty, offset_count)?;
+                self.write_scalar(offset_ptr, dest)?;
+            }
+            sym::arith_offset => {
+                let ptr = self.read_scalar(args[0])?.check_init()?;
+                let offset_count = self.read_scalar(args[1])?.to_machine_isize(self)?;
+                let pointee_ty = substs.type_at(0);
+
+                let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
+                let offset_bytes = offset_count.wrapping_mul(pointee_size);
+                let offset_ptr = ptr.ptr_wrapping_signed_offset(offset_bytes, self);
+                self.write_scalar(offset_ptr, dest)?;
+            }
+            sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
+                let a = self.read_immediate(args[0])?.to_scalar()?;
+                let b = self.read_immediate(args[1])?.to_scalar()?;
+                let cmp = if intrinsic_name == sym::ptr_guaranteed_eq {
+                    self.guaranteed_eq(a, b)
+                } else {
+                    self.guaranteed_ne(a, b)
+                };
+                self.write_scalar(Scalar::from_bool(cmp), dest)?;
+            }
+            sym::ptr_offset_from => {
+                let a = self.read_immediate(args[0])?.to_scalar()?;
+                let b = self.read_immediate(args[1])?.to_scalar()?;
+
+                // Special case: if both scalars are *equal integers*
+                // and not NULL, we pretend there is an allocation of size 0 right there,
+                // and their offset is 0. (There's never a valid object at NULL, making it an
+                // exception from the exception.)
+                // This is the dual to the special exception for offset-by-0
+                // in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
+                //
+                // Control flow is weird because we cannot early-return (to reach the
+                // `go_to_block` at the end).
+                let done = if a.is_bits() && b.is_bits() {
+                    let a = a.to_machine_usize(self)?;
+                    let b = b.to_machine_usize(self)?;
+                    if a == b && a != 0 {
+                        self.write_scalar(Scalar::from_machine_isize(0, self), dest)?;
+                        true
+                    } else {
+                        false
+                    }
+                } else {
+                    false
+                };
+
+                if !done {
+                    // General case: we need two pointers.
+                    let a = self.force_ptr(a)?;
+                    let b = self.force_ptr(b)?;
+                    if a.alloc_id != b.alloc_id {
+                        throw_ub_format!(
+                            "ptr_offset_from cannot compute offset of pointers into different \
+                            allocations.",
+                        );
+                    }
+                    let usize_layout = self.layout_of(self.tcx.types.usize)?;
+                    let isize_layout = self.layout_of(self.tcx.types.isize)?;
+                    let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
+                    let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
+                    let (val, _overflowed, _ty) =
+                        self.overflowing_binary_op(BinOp::Sub, a_offset, b_offset)?;
+                    let pointee_layout = self.layout_of(substs.type_at(0))?;
+                    let val = ImmTy::from_scalar(val, isize_layout);
+                    let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
+                    self.exact_div(val, size, dest)?;
+                }
+            }
+
+            sym::transmute => {
+                self.copy_op_transmute(args[0], dest)?;
+            }
+            sym::simd_insert => {
+                let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
+                let elem = args[2];
+                let input = args[0];
+                let (len, e_ty) = input.layout.ty.simd_size_and_type(*self.tcx);
+                assert!(
+                    index < len,
+                    "Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
+                    index,
+                    e_ty,
+                    len
+                );
+                assert_eq!(
+                    input.layout, dest.layout,
+                    "Return type `{}` must match vector type `{}`",
+                    dest.layout.ty, input.layout.ty
+                );
+                assert_eq!(
+                    elem.layout.ty, e_ty,
+                    "Scalar element type `{}` must match vector element type `{}`",
+                    elem.layout.ty, e_ty
+                );
+
+                for i in 0..len {
+                    let place = self.place_index(dest, i)?;
+                    let value = if i == index { elem } else { self.operand_index(input, i)? };
+                    self.copy_op(value, place)?;
+                }
+            }
+            sym::simd_extract => {
+                let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
+                let (len, e_ty) = args[0].layout.ty.simd_size_and_type(*self.tcx);
+                assert!(
+                    index < len,
+                    "index `{}` is out-of-bounds of vector type `{}` with length `{}`",
+                    index,
+                    e_ty,
+                    len
+                );
+                assert_eq!(
+                    e_ty, dest.layout.ty,
+                    "Return type `{}` must match vector element type `{}`",
+                    dest.layout.ty, e_ty
+                );
+                self.copy_op(self.operand_index(args[0], index)?, dest)?;
+            }
+            sym::likely | sym::unlikely => {
+                // These just return their argument
+                self.copy_op(args[0], dest)?;
+            }
+            _ => return Ok(false),
+        }
+
+        trace!("{:?}", self.dump_place(*dest));
+        self.go_to_block(ret);
+        Ok(true)
+    }
+
+    fn guaranteed_eq(&mut self, a: Scalar<M::PointerTag>, b: Scalar<M::PointerTag>) -> bool {
+        match (a, b) {
+            // Comparisons between integers are always known.
+            (Scalar::Raw { .. }, Scalar::Raw { .. }) => a == b,
+            // Equality with integers can never be known for sure.
+            (Scalar::Raw { .. }, Scalar::Ptr(_)) | (Scalar::Ptr(_), Scalar::Raw { .. }) => false,
+            // FIXME: return `true` for when both sides are the same pointer, *except* that
+            // some things (like functions and vtables) do not have stable addresses
+            // so we need to be careful around them.
+            (Scalar::Ptr(_), Scalar::Ptr(_)) => false,
+        }
+    }
+
+    fn guaranteed_ne(&mut self, a: Scalar<M::PointerTag>, b: Scalar<M::PointerTag>) -> bool {
+        match (a, b) {
+            // Comparisons between integers are always known.
+            (Scalar::Raw { .. }, Scalar::Raw { .. }) => a != b,
+            // Comparisons of abstract pointers with null pointers are known if the pointer
+            // is in bounds, because if they are in bounds, the pointer can't be null.
+            (Scalar::Raw { data: 0, .. }, Scalar::Ptr(ptr))
+            | (Scalar::Ptr(ptr), Scalar::Raw { data: 0, .. }) => !self.memory.ptr_may_be_null(ptr),
+            // Inequality with integers other than null can never be known for sure.
+            (Scalar::Raw { .. }, Scalar::Ptr(_)) | (Scalar::Ptr(_), Scalar::Raw { .. }) => false,
+            // FIXME: return `true` for at least some comparisons where we can reliably
+            // determine the result of runtime inequality tests at compile-time.
+            // Examples include comparison of addresses in static items, for these we can
+            // give reliable results.
+            (Scalar::Ptr(_), Scalar::Ptr(_)) => false,
+        }
+    }
+
+    pub fn exact_div(
+        &mut self,
+        a: ImmTy<'tcx, M::PointerTag>,
+        b: ImmTy<'tcx, M::PointerTag>,
+        dest: PlaceTy<'tcx, M::PointerTag>,
+    ) -> InterpResult<'tcx> {
+        // Performs an exact division, resulting in undefined behavior where
+        // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
+        // First, check x % y != 0 (or if that computation overflows).
+        let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, a, b)?;
+        if overflow || res.assert_bits(a.layout.size) != 0 {
+            // Then, check if `b` is -1, which is the "MIN / -1" case.
+            let minus1 = Scalar::from_int(-1, dest.layout.size);
+            let b_scalar = b.to_scalar().unwrap();
+            if b_scalar == minus1 {
+                throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
+            } else {
+                throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b,)
+            }
+        }
+        // `Rem` says this is all right, so we can let `Div` do its job.
+        self.binop_ignore_overflow(BinOp::Div, a, b, dest)
+    }
+
+    /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
+    /// allocation. For integer pointers, we consider each of them their own tiny allocation of size
+    /// 0, so offset-by-0 (and only 0) is okay -- except that NULL cannot be offset by _any_ value.
+    pub fn ptr_offset_inbounds(
+        &self,
+        ptr: Scalar<M::PointerTag>,
+        pointee_ty: Ty<'tcx>,
+        offset_count: i64,
+    ) -> InterpResult<'tcx, Scalar<M::PointerTag>> {
+        // We cannot overflow i64 as a type's size must be <= isize::MAX.
+        let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
+        // The computed offset, in bytes, cannot overflow an isize.
+        let offset_bytes =
+            offset_count.checked_mul(pointee_size).ok_or(err_ub!(PointerArithOverflow))?;
+        // The offset being in bounds cannot rely on "wrapping around" the address space.
+        // So, first rule out overflows in the pointer arithmetic.
+        let offset_ptr = ptr.ptr_signed_offset(offset_bytes, self)?;
+        // ptr and offset_ptr must be in bounds of the same allocated object. This means all of the
+        // memory between these pointers must be accessible. Note that we do not require the
+        // pointers to be properly aligned (unlike a read/write operation).
+        let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr };
+        let size: u64 = uabs(offset_bytes);
+        // This call handles checking for integer/NULL pointers.
+        self.memory.check_ptr_access_align(
+            min_ptr,
+            Size::from_bytes(size),
+            None,
+            CheckInAllocMsg::InboundsTest,
+        )?;
+        Ok(offset_ptr)
+    }
+}