about summary refs log tree commit diff
path: root/compiler/rustc_mir/src/transform/const_prop.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir/src/transform/const_prop.rs')
-rw-r--r--compiler/rustc_mir/src/transform/const_prop.rs1276
1 files changed, 1276 insertions, 0 deletions
diff --git a/compiler/rustc_mir/src/transform/const_prop.rs b/compiler/rustc_mir/src/transform/const_prop.rs
new file mode 100644
index 00000000000..56479b047fa
--- /dev/null
+++ b/compiler/rustc_mir/src/transform/const_prop.rs
@@ -0,0 +1,1276 @@
+//! Propagates constants for early reporting of statically known
+//! assertion failures
+
+use std::cell::Cell;
+
+use rustc_ast::Mutability;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_hir::def::DefKind;
+use rustc_hir::HirId;
+use rustc_index::bit_set::BitSet;
+use rustc_index::vec::IndexVec;
+use rustc_middle::mir::interpret::{InterpResult, Scalar};
+use rustc_middle::mir::visit::{
+    MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
+};
+use rustc_middle::mir::{
+    AssertKind, BasicBlock, BinOp, Body, ClearCrossCrate, Constant, Local, LocalDecl, LocalKind,
+    Location, Operand, Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement,
+    StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE,
+};
+use rustc_middle::ty::layout::{HasTyCtxt, LayoutError, TyAndLayout};
+use rustc_middle::ty::subst::{InternalSubsts, Subst};
+use rustc_middle::ty::{self, ConstInt, ConstKind, Instance, ParamEnv, Ty, TyCtxt, TypeFoldable};
+use rustc_session::lint;
+use rustc_span::{def_id::DefId, Span};
+use rustc_target::abi::{HasDataLayout, LayoutOf, Size, TargetDataLayout};
+use rustc_trait_selection::traits;
+
+use crate::const_eval::ConstEvalErr;
+use crate::interpret::{
+    self, compile_time_machine, truncate, AllocId, Allocation, ConstValue, Frame, ImmTy, Immediate,
+    InterpCx, LocalState, LocalValue, MemPlace, Memory, MemoryKind, OpTy, Operand as InterpOperand,
+    PlaceTy, Pointer, ScalarMaybeUninit, StackPopCleanup,
+};
+use crate::transform::{MirPass, MirSource};
+
+/// The maximum number of bytes that we'll allocate space for a local or the return value.
+/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
+/// Severely regress performance.
+const MAX_ALLOC_LIMIT: u64 = 1024;
+
+/// Macro for machine-specific `InterpError` without allocation.
+/// (These will never be shown to the user, but they help diagnose ICEs.)
+macro_rules! throw_machine_stop_str {
+    ($($tt:tt)*) => {{
+        // We make a new local type for it. The type itself does not carry any information,
+        // but its vtable (for the `MachineStopType` trait) does.
+        struct Zst;
+        // Printing this type shows the desired string.
+        impl std::fmt::Display for Zst {
+            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+                write!(f, $($tt)*)
+            }
+        }
+        impl rustc_middle::mir::interpret::MachineStopType for Zst {}
+        throw_machine_stop!(Zst)
+    }};
+}
+
+pub struct ConstProp;
+
+impl<'tcx> MirPass<'tcx> for ConstProp {
+    fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut Body<'tcx>) {
+        // will be evaluated by miri and produce its errors there
+        if source.promoted.is_some() {
+            return;
+        }
+
+        use rustc_middle::hir::map::blocks::FnLikeNode;
+        let hir_id = tcx.hir().local_def_id_to_hir_id(source.def_id().expect_local());
+
+        let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
+        let is_assoc_const = tcx.def_kind(source.def_id()) == DefKind::AssocConst;
+
+        // Only run const prop on functions, methods, closures and associated constants
+        if !is_fn_like && !is_assoc_const {
+            // skip anon_const/statics/consts because they'll be evaluated by miri anyway
+            trace!("ConstProp skipped for {:?}", source.def_id());
+            return;
+        }
+
+        let is_generator = tcx.type_of(source.def_id()).is_generator();
+        // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
+        // computing their layout.
+        if is_generator {
+            trace!("ConstProp skipped for generator {:?}", source.def_id());
+            return;
+        }
+
+        // Check if it's even possible to satisfy the 'where' clauses
+        // for this item.
+        // This branch will never be taken for any normal function.
+        // However, it's possible to `#!feature(trivial_bounds)]` to write
+        // a function with impossible to satisfy clauses, e.g.:
+        // `fn foo() where String: Copy {}`
+        //
+        // We don't usually need to worry about this kind of case,
+        // since we would get a compilation error if the user tried
+        // to call it. However, since we can do const propagation
+        // even without any calls to the function, we need to make
+        // sure that it even makes sense to try to evaluate the body.
+        // If there are unsatisfiable where clauses, then all bets are
+        // off, and we just give up.
+        //
+        // We manually filter the predicates, skipping anything that's not
+        // "global". We are in a potentially generic context
+        // (e.g. we are evaluating a function without substituting generic
+        // parameters, so this filtering serves two purposes:
+        //
+        // 1. We skip evaluating any predicates that we would
+        // never be able prove are unsatisfiable (e.g. `<T as Foo>`
+        // 2. We avoid trying to normalize predicates involving generic
+        // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
+        // the normalization code (leading to cycle errors), since
+        // it's usually never invoked in this way.
+        let predicates = tcx
+            .predicates_of(source.def_id())
+            .predicates
+            .iter()
+            .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
+        if traits::impossible_predicates(
+            tcx,
+            traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
+        ) {
+            trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", source.def_id());
+            return;
+        }
+
+        trace!("ConstProp starting for {:?}", source.def_id());
+
+        let dummy_body = &Body::new(
+            body.basic_blocks().clone(),
+            body.source_scopes.clone(),
+            body.local_decls.clone(),
+            Default::default(),
+            body.arg_count,
+            Default::default(),
+            tcx.def_span(source.def_id()),
+            body.generator_kind,
+        );
+
+        // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
+        // constants, instead of just checking for const-folding succeeding.
+        // That would require an uniform one-def no-mutation analysis
+        // and RPO (or recursing when needing the value of a local).
+        let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx, source);
+        optimization_finder.visit_body(body);
+
+        trace!("ConstProp done for {:?}", source.def_id());
+    }
+}
+
+struct ConstPropMachine<'mir, 'tcx> {
+    /// The virtual call stack.
+    stack: Vec<Frame<'mir, 'tcx, (), ()>>,
+    /// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end.
+    written_only_inside_own_block_locals: FxHashSet<Local>,
+    /// Locals that need to be cleared after every block terminates.
+    only_propagate_inside_block_locals: BitSet<Local>,
+    can_const_prop: IndexVec<Local, ConstPropMode>,
+}
+
+impl<'mir, 'tcx> ConstPropMachine<'mir, 'tcx> {
+    fn new(
+        only_propagate_inside_block_locals: BitSet<Local>,
+        can_const_prop: IndexVec<Local, ConstPropMode>,
+    ) -> Self {
+        Self {
+            stack: Vec::new(),
+            written_only_inside_own_block_locals: Default::default(),
+            only_propagate_inside_block_locals,
+            can_const_prop,
+        }
+    }
+}
+
+impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
+    compile_time_machine!(<'mir, 'tcx>);
+
+    type MemoryExtra = ();
+
+    fn find_mir_or_eval_fn(
+        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+        _instance: ty::Instance<'tcx>,
+        _args: &[OpTy<'tcx>],
+        _ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
+        _unwind: Option<BasicBlock>,
+    ) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> {
+        Ok(None)
+    }
+
+    fn call_intrinsic(
+        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+        _instance: ty::Instance<'tcx>,
+        _args: &[OpTy<'tcx>],
+        _ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
+        _unwind: Option<BasicBlock>,
+    ) -> InterpResult<'tcx> {
+        throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
+    }
+
+    fn assert_panic(
+        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+        _msg: &rustc_middle::mir::AssertMessage<'tcx>,
+        _unwind: Option<rustc_middle::mir::BasicBlock>,
+    ) -> InterpResult<'tcx> {
+        bug!("panics terminators are not evaluated in ConstProp")
+    }
+
+    fn ptr_to_int(_mem: &Memory<'mir, 'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx, u64> {
+        throw_unsup!(ReadPointerAsBytes)
+    }
+
+    fn binary_ptr_op(
+        _ecx: &InterpCx<'mir, 'tcx, Self>,
+        _bin_op: BinOp,
+        _left: ImmTy<'tcx>,
+        _right: ImmTy<'tcx>,
+    ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
+        // We can't do this because aliasing of memory can differ between const eval and llvm
+        throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
+    }
+
+    fn box_alloc(
+        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+        _dest: PlaceTy<'tcx>,
+    ) -> InterpResult<'tcx> {
+        throw_machine_stop_str!("can't const prop heap allocations")
+    }
+
+    fn access_local(
+        _ecx: &InterpCx<'mir, 'tcx, Self>,
+        frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
+        local: Local,
+    ) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
+        let l = &frame.locals[local];
+
+        if l.value == LocalValue::Uninitialized {
+            throw_machine_stop_str!("tried to access an uninitialized local")
+        }
+
+        l.access()
+    }
+
+    fn access_local_mut<'a>(
+        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
+        frame: usize,
+        local: Local,
+    ) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
+    {
+        if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation {
+            throw_machine_stop_str!("tried to write to a local that is marked as not propagatable")
+        }
+        if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) {
+            trace!(
+                "mutating local {:?} which is restricted to its block. \
+                Will remove it from const-prop after block is finished.",
+                local
+            );
+            ecx.machine.written_only_inside_own_block_locals.insert(local);
+        }
+        ecx.machine.stack[frame].locals[local].access_mut()
+    }
+
+    fn before_access_global(
+        _memory_extra: &(),
+        _alloc_id: AllocId,
+        allocation: &Allocation<Self::PointerTag, Self::AllocExtra>,
+        _static_def_id: Option<DefId>,
+        is_write: bool,
+    ) -> InterpResult<'tcx> {
+        if is_write {
+            throw_machine_stop_str!("can't write to global");
+        }
+        // If the static allocation is mutable, then we can't const prop it as its content
+        // might be different at runtime.
+        if allocation.mutability == Mutability::Mut {
+            throw_machine_stop_str!("can't access mutable globals in ConstProp");
+        }
+
+        Ok(())
+    }
+
+    #[inline(always)]
+    fn init_frame_extra(
+        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+        frame: Frame<'mir, 'tcx>,
+    ) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
+        Ok(frame)
+    }
+
+    #[inline(always)]
+    fn stack(
+        ecx: &'a InterpCx<'mir, 'tcx, Self>,
+    ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] {
+        &ecx.machine.stack
+    }
+
+    #[inline(always)]
+    fn stack_mut(
+        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
+    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>> {
+        &mut ecx.machine.stack
+    }
+}
+
+/// Finds optimization opportunities on the MIR.
+struct ConstPropagator<'mir, 'tcx> {
+    ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
+    tcx: TyCtxt<'tcx>,
+    param_env: ParamEnv<'tcx>,
+    // FIXME(eddyb) avoid cloning these two fields more than once,
+    // by accessing them through `ecx` instead.
+    source_scopes: IndexVec<SourceScope, SourceScopeData>,
+    local_decls: IndexVec<Local, LocalDecl<'tcx>>,
+    // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
+    // the last known `SourceInfo` here and just keep revisiting it.
+    source_info: Option<SourceInfo>,
+}
+
+impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> {
+    type Ty = Ty<'tcx>;
+    type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
+
+    fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout {
+        self.tcx.layout_of(self.param_env.and(ty))
+    }
+}
+
+impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> {
+    #[inline]
+    fn data_layout(&self) -> &TargetDataLayout {
+        &self.tcx.data_layout
+    }
+}
+
+impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> {
+    #[inline]
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+}
+
+impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
+    fn new(
+        body: &Body<'tcx>,
+        dummy_body: &'mir Body<'tcx>,
+        tcx: TyCtxt<'tcx>,
+        source: MirSource<'tcx>,
+    ) -> ConstPropagator<'mir, 'tcx> {
+        let def_id = source.def_id();
+        let substs = &InternalSubsts::identity_for_item(tcx, def_id);
+        let param_env = tcx.param_env_reveal_all_normalized(def_id);
+
+        let span = tcx.def_span(def_id);
+        // FIXME: `CanConstProp::check` computes the layout of all locals, return those layouts
+        // so we can write them to `ecx.frame_mut().locals.layout, reducing the duplication in
+        // `layout_of` query invocations.
+        let can_const_prop = CanConstProp::check(tcx, param_env, body);
+        let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
+        for (l, mode) in can_const_prop.iter_enumerated() {
+            if *mode == ConstPropMode::OnlyInsideOwnBlock {
+                only_propagate_inside_block_locals.insert(l);
+            }
+        }
+        let mut ecx = InterpCx::new(
+            tcx,
+            span,
+            param_env,
+            ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
+            (),
+        );
+
+        let ret = ecx
+            .layout_of(body.return_ty().subst(tcx, substs))
+            .ok()
+            // Don't bother allocating memory for ZST types which have no values
+            // or for large values.
+            .filter(|ret_layout| {
+                !ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
+            })
+            .map(|ret_layout| ecx.allocate(ret_layout, MemoryKind::Stack));
+
+        ecx.push_stack_frame(
+            Instance::new(def_id, substs),
+            dummy_body,
+            ret.map(Into::into),
+            StackPopCleanup::None { cleanup: false },
+        )
+        .expect("failed to push initial stack frame");
+
+        ConstPropagator {
+            ecx,
+            tcx,
+            param_env,
+            // FIXME(eddyb) avoid cloning these two fields more than once,
+            // by accessing them through `ecx` instead.
+            source_scopes: body.source_scopes.clone(),
+            //FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
+            local_decls: body.local_decls.clone(),
+            source_info: None,
+        }
+    }
+
+    fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
+        let op = match self.ecx.eval_place_to_op(place, None) {
+            Ok(op) => op,
+            Err(e) => {
+                trace!("get_const failed: {}", e);
+                return None;
+            }
+        };
+
+        // Try to read the local as an immediate so that if it is representable as a scalar, we can
+        // handle it as such, but otherwise, just return the value as is.
+        Some(match self.ecx.try_read_immediate(op) {
+            Ok(Ok(imm)) => imm.into(),
+            _ => op,
+        })
+    }
+
+    /// Remove `local` from the pool of `Locals`. Allows writing to them,
+    /// but not reading from them anymore.
+    fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
+        ecx.frame_mut().locals[local] =
+            LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
+    }
+
+    fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
+        match &self.source_scopes[source_info.scope].local_data {
+            ClearCrossCrate::Set(data) => Some(data.lint_root),
+            ClearCrossCrate::Clear => None,
+        }
+    }
+
+    fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
+    where
+        F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
+    {
+        match f(self) {
+            Ok(val) => Some(val),
+            Err(error) => {
+                trace!("InterpCx operation failed: {:?}", error);
+                // Some errors shouldn't come up because creating them causes
+                // an allocation, which we should avoid. When that happens,
+                // dedicated error variants should be introduced instead.
+                assert!(
+                    !error.kind.allocates(),
+                    "const-prop encountered allocating error: {}",
+                    error
+                );
+                None
+            }
+        }
+    }
+
+    /// Returns the value, if any, of evaluating `c`.
+    fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
+        // FIXME we need to revisit this for #67176
+        if c.needs_subst() {
+            return None;
+        }
+
+        match self.ecx.const_to_op(c.literal, None) {
+            Ok(op) => Some(op),
+            Err(error) => {
+                let tcx = self.ecx.tcx.at(c.span);
+                let err = ConstEvalErr::new(&self.ecx, error, Some(c.span));
+                if let Some(lint_root) = self.lint_root(source_info) {
+                    let lint_only = match c.literal.val {
+                        // Promoteds must lint and not error as the user didn't ask for them
+                        ConstKind::Unevaluated(_, _, Some(_)) => true,
+                        // Out of backwards compatibility we cannot report hard errors in unused
+                        // generic functions using associated constants of the generic parameters.
+                        _ => c.literal.needs_subst(),
+                    };
+                    if lint_only {
+                        // Out of backwards compatibility we cannot report hard errors in unused
+                        // generic functions using associated constants of the generic parameters.
+                        err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span));
+                    } else {
+                        err.report_as_error(tcx, "erroneous constant used");
+                    }
+                } else {
+                    err.report_as_error(tcx, "erroneous constant used");
+                }
+                None
+            }
+        }
+    }
+
+    /// Returns the value, if any, of evaluating `place`.
+    fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
+        trace!("eval_place(place={:?})", place);
+        self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
+    }
+
+    /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
+    /// or `eval_place`, depending on the variant of `Operand` used.
+    fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
+        match *op {
+            Operand::Constant(ref c) => self.eval_constant(c, source_info),
+            Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
+        }
+    }
+
+    fn report_assert_as_lint(
+        &self,
+        lint: &'static lint::Lint,
+        source_info: SourceInfo,
+        message: &'static str,
+        panic: AssertKind<impl std::fmt::Debug>,
+    ) -> Option<()> {
+        let lint_root = self.lint_root(source_info)?;
+        self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| {
+            let mut err = lint.build(message);
+            err.span_label(source_info.span, format!("{:?}", panic));
+            err.emit()
+        });
+        None
+    }
+
+    fn check_unary_op(
+        &mut self,
+        op: UnOp,
+        arg: &Operand<'tcx>,
+        source_info: SourceInfo,
+    ) -> Option<()> {
+        if let (val, true) = self.use_ecx(|this| {
+            let val = this.ecx.read_immediate(this.ecx.eval_operand(arg, None)?)?;
+            let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, val)?;
+            Ok((val, overflow))
+        })? {
+            // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
+            // appropriate to use.
+            assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
+            self.report_assert_as_lint(
+                lint::builtin::ARITHMETIC_OVERFLOW,
+                source_info,
+                "this arithmetic operation will overflow",
+                AssertKind::OverflowNeg(val.to_const_int()),
+            )?;
+        }
+
+        Some(())
+    }
+
+    fn check_binary_op(
+        &mut self,
+        op: BinOp,
+        left: &Operand<'tcx>,
+        right: &Operand<'tcx>,
+        source_info: SourceInfo,
+    ) -> Option<()> {
+        let r = self.use_ecx(|this| this.ecx.read_immediate(this.ecx.eval_operand(right, None)?));
+        let l = self.use_ecx(|this| this.ecx.read_immediate(this.ecx.eval_operand(left, None)?));
+        // Check for exceeding shifts *even if* we cannot evaluate the LHS.
+        if op == BinOp::Shr || op == BinOp::Shl {
+            let r = r?;
+            // We need the type of the LHS. We cannot use `place_layout` as that is the type
+            // of the result, which for checked binops is not the same!
+            let left_ty = left.ty(&self.local_decls, self.tcx);
+            let left_size = self.ecx.layout_of(left_ty).ok()?.size;
+            let right_size = r.layout.size;
+            let r_bits = r.to_scalar().ok();
+            // This is basically `force_bits`.
+            let r_bits = r_bits.and_then(|r| r.to_bits_or_ptr(right_size, &self.tcx).ok());
+            if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
+                debug!("check_binary_op: reporting assert for {:?}", source_info);
+                self.report_assert_as_lint(
+                    lint::builtin::ARITHMETIC_OVERFLOW,
+                    source_info,
+                    "this arithmetic operation will overflow",
+                    AssertKind::Overflow(
+                        op,
+                        match l {
+                            Some(l) => l.to_const_int(),
+                            // Invent a dummy value, the diagnostic ignores it anyway
+                            None => ConstInt::new(
+                                1,
+                                left_size,
+                                left_ty.is_signed(),
+                                left_ty.is_ptr_sized_integral(),
+                            ),
+                        },
+                        r.to_const_int(),
+                    ),
+                )?;
+            }
+        }
+
+        if let (Some(l), Some(r)) = (l, r) {
+            // The remaining operators are handled through `overflowing_binary_op`.
+            if self.use_ecx(|this| {
+                let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
+                Ok(overflow)
+            })? {
+                self.report_assert_as_lint(
+                    lint::builtin::ARITHMETIC_OVERFLOW,
+                    source_info,
+                    "this arithmetic operation will overflow",
+                    AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
+                )?;
+            }
+        }
+        Some(())
+    }
+
+    fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
+        match *operand {
+            Operand::Copy(l) | Operand::Move(l) => {
+                if let Some(value) = self.get_const(l) {
+                    if self.should_const_prop(value) {
+                        // FIXME(felix91gr): this code only handles `Scalar` cases.
+                        // For now, we're not handling `ScalarPair` cases because
+                        // doing so here would require a lot of code duplication.
+                        // We should hopefully generalize `Operand` handling into a fn,
+                        // and use it to do const-prop here and everywhere else
+                        // where it makes sense.
+                        if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
+                            ScalarMaybeUninit::Scalar(scalar),
+                        )) = *value
+                        {
+                            *operand = self.operand_from_scalar(
+                                scalar,
+                                value.layout.ty,
+                                self.source_info.unwrap().span,
+                            );
+                        }
+                    }
+                }
+            }
+            Operand::Constant(_) => (),
+        }
+    }
+
+    fn const_prop(
+        &mut self,
+        rvalue: &Rvalue<'tcx>,
+        source_info: SourceInfo,
+        place: Place<'tcx>,
+    ) -> Option<()> {
+        // Perform any special handling for specific Rvalue types.
+        // Generally, checks here fall into one of two categories:
+        //   1. Additional checking to provide useful lints to the user
+        //        - In this case, we will do some validation and then fall through to the
+        //          end of the function which evals the assignment.
+        //   2. Working around bugs in other parts of the compiler
+        //        - In this case, we'll return `None` from this function to stop evaluation.
+        match rvalue {
+            // Additional checking: give lints to the user if an overflow would occur.
+            // We do this here and not in the `Assert` terminator as that terminator is
+            // only sometimes emitted (overflow checks can be disabled), but we want to always
+            // lint.
+            Rvalue::UnaryOp(op, arg) => {
+                trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
+                self.check_unary_op(*op, arg, source_info)?;
+            }
+            Rvalue::BinaryOp(op, left, right) => {
+                trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
+                self.check_binary_op(*op, left, right, source_info)?;
+            }
+            Rvalue::CheckedBinaryOp(op, left, right) => {
+                trace!(
+                    "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
+                    op,
+                    left,
+                    right
+                );
+                self.check_binary_op(*op, left, right, source_info)?;
+            }
+
+            // Do not try creating references (#67862)
+            Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
+                trace!("skipping AddressOf | Ref for {:?}", place);
+
+                // This may be creating mutable references or immutable references to cells.
+                // If that happens, the pointed to value could be mutated via that reference.
+                // Since we aren't tracking references, the const propagator loses track of what
+                // value the local has right now.
+                // Thus, all locals that have their reference taken
+                // must not take part in propagation.
+                Self::remove_const(&mut self.ecx, place.local);
+
+                return None;
+            }
+            Rvalue::ThreadLocalRef(def_id) => {
+                trace!("skipping ThreadLocalRef({:?})", def_id);
+
+                return None;
+            }
+
+            // There's no other checking to do at this time.
+            Rvalue::Aggregate(..)
+            | Rvalue::Use(..)
+            | Rvalue::Repeat(..)
+            | Rvalue::Len(..)
+            | Rvalue::Cast(..)
+            | Rvalue::Discriminant(..)
+            | Rvalue::NullaryOp(..) => {}
+        }
+
+        // FIXME we need to revisit this for #67176
+        if rvalue.needs_subst() {
+            return None;
+        }
+
+        if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 3 {
+            self.eval_rvalue_with_identities(rvalue, place)
+        } else {
+            self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place))
+        }
+    }
+
+    // Attempt to use albegraic identities to eliminate constant expressions
+    fn eval_rvalue_with_identities(
+        &mut self,
+        rvalue: &Rvalue<'tcx>,
+        place: Place<'tcx>,
+    ) -> Option<()> {
+        self.use_ecx(|this| {
+            match rvalue {
+                Rvalue::BinaryOp(op, left, right) | Rvalue::CheckedBinaryOp(op, left, right) => {
+                    let l = this.ecx.eval_operand(left, None);
+                    let r = this.ecx.eval_operand(right, None);
+
+                    let const_arg = match (l, r) {
+                        (Ok(x), Err(_)) | (Err(_), Ok(x)) => this.ecx.read_immediate(x)?,
+                        (Err(e), Err(_)) => return Err(e),
+                        (Ok(_), Ok(_)) => {
+                            this.ecx.eval_rvalue_into_place(rvalue, place)?;
+                            return Ok(());
+                        }
+                    };
+
+                    let arg_value =
+                        this.ecx.force_bits(const_arg.to_scalar()?, const_arg.layout.size)?;
+                    let dest = this.ecx.eval_place(place)?;
+
+                    match op {
+                        BinOp::BitAnd => {
+                            if arg_value == 0 {
+                                this.ecx.write_immediate(*const_arg, dest)?;
+                            }
+                        }
+                        BinOp::BitOr => {
+                            if arg_value == truncate(u128::MAX, const_arg.layout.size)
+                                || (const_arg.layout.ty.is_bool() && arg_value == 1)
+                            {
+                                this.ecx.write_immediate(*const_arg, dest)?;
+                            }
+                        }
+                        BinOp::Mul => {
+                            if const_arg.layout.ty.is_integral() && arg_value == 0 {
+                                if let Rvalue::CheckedBinaryOp(_, _, _) = rvalue {
+                                    let val = Immediate::ScalarPair(
+                                        const_arg.to_scalar()?.into(),
+                                        Scalar::from_bool(false).into(),
+                                    );
+                                    this.ecx.write_immediate(val, dest)?;
+                                } else {
+                                    this.ecx.write_immediate(*const_arg, dest)?;
+                                }
+                            }
+                        }
+                        _ => {
+                            this.ecx.eval_rvalue_into_place(rvalue, place)?;
+                        }
+                    }
+                }
+                _ => {
+                    this.ecx.eval_rvalue_into_place(rvalue, place)?;
+                }
+            }
+
+            Ok(())
+        })
+    }
+
+    /// Creates a new `Operand::Constant` from a `Scalar` value
+    fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
+        Operand::Constant(Box::new(Constant {
+            span,
+            user_ty: None,
+            literal: ty::Const::from_scalar(self.tcx, scalar, ty),
+        }))
+    }
+
+    fn replace_with_const(
+        &mut self,
+        rval: &mut Rvalue<'tcx>,
+        value: OpTy<'tcx>,
+        source_info: SourceInfo,
+    ) {
+        if let Rvalue::Use(Operand::Constant(c)) = rval {
+            if !matches!(c.literal.val, ConstKind::Unevaluated(..)) {
+                trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
+                return;
+            }
+        }
+
+        trace!("attepting to replace {:?} with {:?}", rval, value);
+        if let Err(e) = self.ecx.const_validate_operand(
+            value,
+            vec![],
+            // FIXME: is ref tracking too expensive?
+            &mut interpret::RefTracking::empty(),
+            /*may_ref_to_static*/ true,
+        ) {
+            trace!("validation error, attempt failed: {:?}", e);
+            return;
+        }
+
+        // FIXME> figure out what to do when try_read_immediate fails
+        let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value));
+
+        if let Some(Ok(imm)) = imm {
+            match *imm {
+                interpret::Immediate::Scalar(ScalarMaybeUninit::Scalar(scalar)) => {
+                    *rval = Rvalue::Use(self.operand_from_scalar(
+                        scalar,
+                        value.layout.ty,
+                        source_info.span,
+                    ));
+                }
+                Immediate::ScalarPair(
+                    ScalarMaybeUninit::Scalar(_),
+                    ScalarMaybeUninit::Scalar(_),
+                ) => {
+                    // Found a value represented as a pair. For now only do const-prop if the type
+                    // of `rvalue` is also a tuple with two scalars.
+                    // FIXME: enable the general case stated above ^.
+                    let ty = &value.layout.ty;
+                    // Only do it for tuples
+                    if let ty::Tuple(substs) = ty.kind {
+                        // Only do it if tuple is also a pair with two scalars
+                        if substs.len() == 2 {
+                            let alloc = self.use_ecx(|this| {
+                                let ty1 = substs[0].expect_ty();
+                                let ty2 = substs[1].expect_ty();
+                                let ty_is_scalar = |ty| {
+                                    this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
+                                        == Some(true)
+                                };
+                                if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
+                                    let alloc = this
+                                        .ecx
+                                        .intern_with_temp_alloc(value.layout, |ecx, dest| {
+                                            ecx.write_immediate_to_mplace(*imm, dest)
+                                        })
+                                        .unwrap();
+                                    Ok(Some(alloc))
+                                } else {
+                                    Ok(None)
+                                }
+                            });
+
+                            if let Some(Some(alloc)) = alloc {
+                                // Assign entire constant in a single statement.
+                                // We can't use aggregates, as we run after the aggregate-lowering `MirPhase`.
+                                *rval = Rvalue::Use(Operand::Constant(Box::new(Constant {
+                                    span: source_info.span,
+                                    user_ty: None,
+                                    literal: self.ecx.tcx.mk_const(ty::Const {
+                                        ty,
+                                        val: ty::ConstKind::Value(ConstValue::ByRef {
+                                            alloc,
+                                            offset: Size::ZERO,
+                                        }),
+                                    }),
+                                })));
+                            }
+                        }
+                    }
+                }
+                // Scalars or scalar pairs that contain undef values are assumed to not have
+                // successfully evaluated and are thus not propagated.
+                _ => {}
+            }
+        }
+    }
+
+    /// Returns `true` if and only if this `op` should be const-propagated into.
+    fn should_const_prop(&mut self, op: OpTy<'tcx>) -> bool {
+        let mir_opt_level = self.tcx.sess.opts.debugging_opts.mir_opt_level;
+
+        if mir_opt_level == 0 {
+            return false;
+        }
+
+        match *op {
+            interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUninit::Scalar(s))) => {
+                s.is_bits()
+            }
+            interpret::Operand::Immediate(Immediate::ScalarPair(
+                ScalarMaybeUninit::Scalar(l),
+                ScalarMaybeUninit::Scalar(r),
+            )) => l.is_bits() && r.is_bits(),
+            _ => false,
+        }
+    }
+}
+
+/// The mode that `ConstProp` is allowed to run in for a given `Local`.
+#[derive(Clone, Copy, Debug, PartialEq)]
+enum ConstPropMode {
+    /// The `Local` can be propagated into and reads of this `Local` can also be propagated.
+    FullConstProp,
+    /// The `Local` can only be propagated into and from its own block.
+    OnlyInsideOwnBlock,
+    /// The `Local` can be propagated into but reads cannot be propagated.
+    OnlyPropagateInto,
+    /// The `Local` cannot be part of propagation at all. Any statement
+    /// referencing it either for reading or writing will not get propagated.
+    NoPropagation,
+}
+
+struct CanConstProp {
+    can_const_prop: IndexVec<Local, ConstPropMode>,
+    // False at the beginning. Once set, no more assignments are allowed to that local.
+    found_assignment: BitSet<Local>,
+    // Cache of locals' information
+    local_kinds: IndexVec<Local, LocalKind>,
+}
+
+impl CanConstProp {
+    /// Returns true if `local` can be propagated
+    fn check(
+        tcx: TyCtxt<'tcx>,
+        param_env: ParamEnv<'tcx>,
+        body: &Body<'tcx>,
+    ) -> IndexVec<Local, ConstPropMode> {
+        let mut cpv = CanConstProp {
+            can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
+            found_assignment: BitSet::new_empty(body.local_decls.len()),
+            local_kinds: IndexVec::from_fn_n(
+                |local| body.local_kind(local),
+                body.local_decls.len(),
+            ),
+        };
+        for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
+            let ty = body.local_decls[local].ty;
+            match tcx.layout_of(param_env.and(ty)) {
+                Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
+                // Either the layout fails to compute, then we can't use this local anyway
+                // or the local is too large, then we don't want to.
+                _ => {
+                    *val = ConstPropMode::NoPropagation;
+                    continue;
+                }
+            }
+            // Cannot use args at all
+            // Cannot use locals because if x < y { y - x } else { x - y } would
+            //        lint for x != y
+            // FIXME(oli-obk): lint variables until they are used in a condition
+            // FIXME(oli-obk): lint if return value is constant
+            if cpv.local_kinds[local] == LocalKind::Arg {
+                *val = ConstPropMode::OnlyPropagateInto;
+                trace!(
+                    "local {:?} can't be const propagated because it's a function argument",
+                    local
+                );
+            } else if cpv.local_kinds[local] == LocalKind::Var {
+                *val = ConstPropMode::OnlyInsideOwnBlock;
+                trace!(
+                    "local {:?} will only be propagated inside its block, because it's a user variable",
+                    local
+                );
+            }
+        }
+        cpv.visit_body(&body);
+        cpv.can_const_prop
+    }
+}
+
+impl<'tcx> Visitor<'tcx> for CanConstProp {
+    fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) {
+        use rustc_middle::mir::visit::PlaceContext::*;
+        match context {
+            // Projections are fine, because `&mut foo.x` will be caught by
+            // `MutatingUseContext::Borrow` elsewhere.
+            MutatingUse(MutatingUseContext::Projection)
+            // These are just stores, where the storing is not propagatable, but there may be later
+            // mutations of the same local via `Store`
+            | MutatingUse(MutatingUseContext::Call)
+            // Actual store that can possibly even propagate a value
+            | MutatingUse(MutatingUseContext::Store) => {
+                if !self.found_assignment.insert(local) {
+                    match &mut self.can_const_prop[local] {
+                        // If the local can only get propagated in its own block, then we don't have
+                        // to worry about multiple assignments, as we'll nuke the const state at the
+                        // end of the block anyway, and inside the block we overwrite previous
+                        // states as applicable.
+                        ConstPropMode::OnlyInsideOwnBlock => {}
+                        ConstPropMode::NoPropagation => {}
+                        ConstPropMode::OnlyPropagateInto => {}
+                        other @ ConstPropMode::FullConstProp => {
+                            trace!(
+                                "local {:?} can't be propagated because of multiple assignments. Previous state: {:?}",
+                                local, other,
+                            );
+                            *other = ConstPropMode::OnlyInsideOwnBlock;
+                        }
+                    }
+                }
+            }
+            // Reading constants is allowed an arbitrary number of times
+            NonMutatingUse(NonMutatingUseContext::Copy)
+            | NonMutatingUse(NonMutatingUseContext::Move)
+            | NonMutatingUse(NonMutatingUseContext::Inspect)
+            | NonMutatingUse(NonMutatingUseContext::Projection)
+            | NonUse(_) => {}
+
+            // These could be propagated with a smarter analysis or just some careful thinking about
+            // whether they'd be fine right now.
+            MutatingUse(MutatingUseContext::AsmOutput)
+            | MutatingUse(MutatingUseContext::Yield)
+            | MutatingUse(MutatingUseContext::Drop)
+            | MutatingUse(MutatingUseContext::Retag)
+            // These can't ever be propagated under any scheme, as we can't reason about indirect
+            // mutation.
+            | NonMutatingUse(NonMutatingUseContext::SharedBorrow)
+            | NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
+            | NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
+            | NonMutatingUse(NonMutatingUseContext::AddressOf)
+            | MutatingUse(MutatingUseContext::Borrow)
+            | MutatingUse(MutatingUseContext::AddressOf) => {
+                trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
+                self.can_const_prop[local] = ConstPropMode::NoPropagation;
+            }
+        }
+    }
+}
+
+impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> {
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn visit_body(&mut self, body: &mut Body<'tcx>) {
+        for (bb, data) in body.basic_blocks_mut().iter_enumerated_mut() {
+            self.visit_basic_block_data(bb, data);
+        }
+    }
+
+    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
+        self.super_operand(operand, location);
+
+        // Only const prop copies and moves on `mir_opt_level=3` as doing so
+        // currently increases compile time.
+        if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 3 {
+            self.propagate_operand(operand)
+        }
+    }
+
+    fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
+        trace!("visit_constant: {:?}", constant);
+        self.super_constant(constant, location);
+        self.eval_constant(constant, self.source_info.unwrap());
+    }
+
+    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
+        trace!("visit_statement: {:?}", statement);
+        let source_info = statement.source_info;
+        self.source_info = Some(source_info);
+        if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind {
+            let can_const_prop = self.ecx.machine.can_const_prop[place.local];
+            if let Some(()) = self.const_prop(rval, source_info, place) {
+                // This will return None if the above `const_prop` invocation only "wrote" a
+                // type whose creation requires no write. E.g. a generator whose initial state
+                // consists solely of uninitialized memory (so it doesn't capture any locals).
+                if let Some(value) = self.get_const(place) {
+                    if self.should_const_prop(value) {
+                        trace!("replacing {:?} with {:?}", rval, value);
+                        self.replace_with_const(rval, value, source_info);
+                        if can_const_prop == ConstPropMode::FullConstProp
+                            || can_const_prop == ConstPropMode::OnlyInsideOwnBlock
+                        {
+                            trace!("propagated into {:?}", place);
+                        }
+                    }
+                }
+                match can_const_prop {
+                    ConstPropMode::OnlyInsideOwnBlock => {
+                        trace!(
+                            "found local restricted to its block. \
+                                Will remove it from const-prop after block is finished. Local: {:?}",
+                            place.local
+                        );
+                    }
+                    ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
+                        trace!("can't propagate into {:?}", place);
+                        if place.local != RETURN_PLACE {
+                            Self::remove_const(&mut self.ecx, place.local);
+                        }
+                    }
+                    ConstPropMode::FullConstProp => {}
+                }
+            } else {
+                // Const prop failed, so erase the destination, ensuring that whatever happens
+                // from here on, does not know about the previous value.
+                // This is important in case we have
+                // ```rust
+                // let mut x = 42;
+                // x = SOME_MUTABLE_STATIC;
+                // // x must now be uninit
+                // ```
+                // FIXME: we overzealously erase the entire local, because that's easier to
+                // implement.
+                trace!(
+                    "propagation into {:?} failed.
+                        Nuking the entire site from orbit, it's the only way to be sure",
+                    place,
+                );
+                Self::remove_const(&mut self.ecx, place.local);
+            }
+        } else {
+            match statement.kind {
+                StatementKind::SetDiscriminant { ref place, .. } => {
+                    match self.ecx.machine.can_const_prop[place.local] {
+                        ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
+                            if self.use_ecx(|this| this.ecx.statement(statement)).is_some() {
+                                trace!("propped discriminant into {:?}", place);
+                            } else {
+                                Self::remove_const(&mut self.ecx, place.local);
+                            }
+                        }
+                        ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
+                            Self::remove_const(&mut self.ecx, place.local);
+                        }
+                    }
+                }
+                StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
+                    let frame = self.ecx.frame_mut();
+                    frame.locals[local].value =
+                        if let StatementKind::StorageLive(_) = statement.kind {
+                            LocalValue::Uninitialized
+                        } else {
+                            LocalValue::Dead
+                        };
+                }
+                _ => {}
+            }
+        }
+
+        self.super_statement(statement, location);
+    }
+
+    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
+        let source_info = terminator.source_info;
+        self.source_info = Some(source_info);
+        self.super_terminator(terminator, location);
+        match &mut terminator.kind {
+            TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
+                if let Some(value) = self.eval_operand(&cond, source_info) {
+                    trace!("assertion on {:?} should be {:?}", value, expected);
+                    let expected = ScalarMaybeUninit::from(Scalar::from_bool(*expected));
+                    let value_const = self.ecx.read_scalar(value).unwrap();
+                    if expected != value_const {
+                        enum DbgVal<T> {
+                            Val(T),
+                            Underscore,
+                        }
+                        impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
+                            fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+                                match self {
+                                    Self::Val(val) => val.fmt(fmt),
+                                    Self::Underscore => fmt.write_str("_"),
+                                }
+                            }
+                        }
+                        let mut eval_to_int = |op| {
+                            // This can be `None` if the lhs wasn't const propagated and we just
+                            // triggered the assert on the value of the rhs.
+                            match self.eval_operand(op, source_info) {
+                                Some(op) => {
+                                    DbgVal::Val(self.ecx.read_immediate(op).unwrap().to_const_int())
+                                }
+                                None => DbgVal::Underscore,
+                            }
+                        };
+                        let msg = match msg {
+                            AssertKind::DivisionByZero(op) => {
+                                Some(AssertKind::DivisionByZero(eval_to_int(op)))
+                            }
+                            AssertKind::RemainderByZero(op) => {
+                                Some(AssertKind::RemainderByZero(eval_to_int(op)))
+                            }
+                            AssertKind::BoundsCheck { ref len, ref index } => {
+                                let len = eval_to_int(len);
+                                let index = eval_to_int(index);
+                                Some(AssertKind::BoundsCheck { len, index })
+                            }
+                            // Overflow is are already covered by checks on the binary operators.
+                            AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
+                            // Need proper const propagator for these.
+                            _ => None,
+                        };
+                        // Poison all places this operand references so that further code
+                        // doesn't use the invalid value
+                        match cond {
+                            Operand::Move(ref place) | Operand::Copy(ref place) => {
+                                Self::remove_const(&mut self.ecx, place.local);
+                            }
+                            Operand::Constant(_) => {}
+                        }
+                        if let Some(msg) = msg {
+                            self.report_assert_as_lint(
+                                lint::builtin::UNCONDITIONAL_PANIC,
+                                source_info,
+                                "this operation will panic at runtime",
+                                msg,
+                            );
+                        }
+                    } else {
+                        if self.should_const_prop(value) {
+                            if let ScalarMaybeUninit::Scalar(scalar) = value_const {
+                                *cond = self.operand_from_scalar(
+                                    scalar,
+                                    self.tcx.types.bool,
+                                    source_info.span,
+                                );
+                            }
+                        }
+                    }
+                }
+            }
+            TerminatorKind::SwitchInt { ref mut discr, .. } => {
+                // FIXME: This is currently redundant with `visit_operand`, but sadly
+                // always visiting operands currently causes a perf regression in LLVM codegen, so
+                // `visit_operand` currently only runs for propagates places for `mir_opt_level=3`.
+                self.propagate_operand(discr)
+            }
+            // None of these have Operands to const-propagate.
+            TerminatorKind::Goto { .. }
+            | TerminatorKind::Resume
+            | TerminatorKind::Abort
+            | TerminatorKind::Return
+            | TerminatorKind::Unreachable
+            | TerminatorKind::Drop { .. }
+            | TerminatorKind::DropAndReplace { .. }
+            | TerminatorKind::Yield { .. }
+            | TerminatorKind::GeneratorDrop
+            | TerminatorKind::FalseEdge { .. }
+            | TerminatorKind::FalseUnwind { .. }
+            | TerminatorKind::InlineAsm { .. } => {}
+            // Every argument in our function calls have already been propagated in `visit_operand`.
+            //
+            // NOTE: because LLVM codegen gives performance regressions with it, so this is gated
+            // on `mir_opt_level=3`.
+            TerminatorKind::Call { .. } => {}
+        }
+
+        // We remove all Locals which are restricted in propagation to their containing blocks and
+        // which were modified in the current block.
+        // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
+        let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
+        for &local in locals.iter() {
+            Self::remove_const(&mut self.ecx, local);
+        }
+        locals.clear();
+        // Put it back so we reuse the heap of the storage
+        self.ecx.machine.written_only_inside_own_block_locals = locals;
+        if cfg!(debug_assertions) {
+            // Ensure we are correctly erasing locals with the non-debug-assert logic.
+            for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
+                assert!(
+                    self.get_const(local.into()).is_none()
+                        || self
+                            .layout_of(self.local_decls[local].ty)
+                            .map_or(true, |layout| layout.is_zst())
+                )
+            }
+        }
+    }
+}