about summary refs log tree commit diff
path: root/compiler/rustc_mir_dataflow/src/framework/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_dataflow/src/framework/mod.rs')
-rw-r--r--compiler/rustc_mir_dataflow/src/framework/mod.rs546
1 files changed, 546 insertions, 0 deletions
diff --git a/compiler/rustc_mir_dataflow/src/framework/mod.rs b/compiler/rustc_mir_dataflow/src/framework/mod.rs
new file mode 100644
index 00000000000..0bf62db1ada
--- /dev/null
+++ b/compiler/rustc_mir_dataflow/src/framework/mod.rs
@@ -0,0 +1,546 @@
+//! A framework that can express both [gen-kill] and generic dataflow problems.
+//!
+//! To actually use this framework, you must implement either the `Analysis` or the
+//! `GenKillAnalysis` trait. If your transfer function can be expressed with only gen/kill
+//! operations, prefer `GenKillAnalysis` since it will run faster while iterating to fixpoint. The
+//! `impls` module contains several examples of gen/kill dataflow analyses.
+//!
+//! Create an `Engine` for your analysis using the `into_engine` method on the `Analysis` trait,
+//! then call `iterate_to_fixpoint`. From there, you can use a `ResultsCursor` to inspect the
+//! fixpoint solution to your dataflow problem, or implement the `ResultsVisitor` interface and use
+//! `visit_results`. The following example uses the `ResultsCursor` approach.
+//!
+//! ```ignore (cross-crate-imports)
+//! use rustc_mir::dataflow::Analysis; // Makes `into_engine` available.
+//!
+//! fn do_my_analysis(tcx: TyCtxt<'tcx>, body: &mir::Body<'tcx>) {
+//!     let analysis = MyAnalysis::new()
+//!         .into_engine(tcx, body)
+//!         .iterate_to_fixpoint()
+//!         .into_results_cursor(body);
+//!
+//!     // Print the dataflow state *after* each statement in the start block.
+//!     for (_, statement_index) in body.block_data[START_BLOCK].statements.iter_enumerated() {
+//!         cursor.seek_after(Location { block: START_BLOCK, statement_index });
+//!         let state = cursor.get();
+//!         println!("{:?}", state);
+//!     }
+//! }
+//! ```
+//!
+//! [gen-kill]: https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems
+
+use std::borrow::BorrowMut;
+use std::cmp::Ordering;
+
+use rustc_index::bit_set::{BitSet, HybridBitSet};
+use rustc_index::vec::Idx;
+use rustc_middle::mir::{self, BasicBlock, Location};
+use rustc_middle::ty::TyCtxt;
+
+mod cursor;
+mod direction;
+mod engine;
+pub mod fmt;
+pub mod graphviz;
+pub mod lattice;
+mod visitor;
+
+pub use self::cursor::{ResultsCursor, ResultsRefCursor};
+pub use self::direction::{Backward, Direction, Forward};
+pub use self::engine::{Engine, Results};
+pub use self::lattice::{JoinSemiLattice, MeetSemiLattice};
+pub use self::visitor::{visit_results, ResultsVisitable, ResultsVisitor};
+
+/// Define the domain of a dataflow problem.
+///
+/// This trait specifies the lattice on which this analysis operates (the domain) as well as its
+/// initial value at the entry point of each basic block.
+pub trait AnalysisDomain<'tcx> {
+    /// The type that holds the dataflow state at any given point in the program.
+    type Domain: Clone + JoinSemiLattice;
+
+    /// The direction of this analysis. Either `Forward` or `Backward`.
+    type Direction: Direction = Forward;
+
+    /// A descriptive name for this analysis. Used only for debugging.
+    ///
+    /// This name should be brief and contain no spaces, periods or other characters that are not
+    /// suitable as part of a filename.
+    const NAME: &'static str;
+
+    /// The initial value of the dataflow state upon entry to each basic block.
+    fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain;
+
+    /// Mutates the initial value of the dataflow state upon entry to the `START_BLOCK`.
+    ///
+    /// For backward analyses, initial state besides the bottom value is not yet supported. Trying
+    /// to mutate the initial state will result in a panic.
+    //
+    // FIXME: For backward dataflow analyses, the initial state should be applied to every basic
+    // block where control flow could exit the MIR body (e.g., those terminated with `return` or
+    // `resume`). It's not obvious how to handle `yield` points in generators, however.
+    fn initialize_start_block(&self, body: &mir::Body<'tcx>, state: &mut Self::Domain);
+}
+
+/// A dataflow problem with an arbitrarily complex transfer function.
+///
+/// # Convergence
+///
+/// When implementing this trait directly (not via [`GenKillAnalysis`]), it's possible to choose a
+/// transfer function such that the analysis does not reach fixpoint. To guarantee convergence,
+/// your transfer functions must maintain the following invariant:
+///
+/// > If the dataflow state **before** some point in the program changes to be greater
+/// than the prior state **before** that point, the dataflow state **after** that point must
+/// also change to be greater than the prior state **after** that point.
+///
+/// This invariant guarantees that the dataflow state at a given point in the program increases
+/// monotonically until fixpoint is reached. Note that this monotonicity requirement only applies
+/// to the same point in the program at different points in time. The dataflow state at a given
+/// point in the program may or may not be greater than the state at any preceding point.
+pub trait Analysis<'tcx>: AnalysisDomain<'tcx> {
+    /// Updates the current dataflow state with the effect of evaluating a statement.
+    fn apply_statement_effect(
+        &self,
+        state: &mut Self::Domain,
+        statement: &mir::Statement<'tcx>,
+        location: Location,
+    );
+
+    /// Updates the current dataflow state with an effect that occurs immediately *before* the
+    /// given statement.
+    ///
+    /// This method is useful if the consumer of the results of this analysis needs only to observe
+    /// *part* of the effect of a statement (e.g. for two-phase borrows). As a general rule,
+    /// analyses should not implement this without implementing `apply_statement_effect`.
+    fn apply_before_statement_effect(
+        &self,
+        _state: &mut Self::Domain,
+        _statement: &mir::Statement<'tcx>,
+        _location: Location,
+    ) {
+    }
+
+    /// Updates the current dataflow state with the effect of evaluating a terminator.
+    ///
+    /// The effect of a successful return from a `Call` terminator should **not** be accounted for
+    /// in this function. That should go in `apply_call_return_effect`. For example, in the
+    /// `InitializedPlaces` analyses, the return place for a function call is not marked as
+    /// initialized here.
+    fn apply_terminator_effect(
+        &self,
+        state: &mut Self::Domain,
+        terminator: &mir::Terminator<'tcx>,
+        location: Location,
+    );
+
+    /// Updates the current dataflow state with an effect that occurs immediately *before* the
+    /// given terminator.
+    ///
+    /// This method is useful if the consumer of the results of this analysis needs only to observe
+    /// *part* of the effect of a terminator (e.g. for two-phase borrows). As a general rule,
+    /// analyses should not implement this without implementing `apply_terminator_effect`.
+    fn apply_before_terminator_effect(
+        &self,
+        _state: &mut Self::Domain,
+        _terminator: &mir::Terminator<'tcx>,
+        _location: Location,
+    ) {
+    }
+
+    /* Edge-specific effects */
+
+    /// Updates the current dataflow state with the effect of a successful return from a `Call`
+    /// terminator.
+    ///
+    /// This is separate from `apply_terminator_effect` to properly track state across unwind
+    /// edges.
+    fn apply_call_return_effect(
+        &self,
+        state: &mut Self::Domain,
+        block: BasicBlock,
+        func: &mir::Operand<'tcx>,
+        args: &[mir::Operand<'tcx>],
+        return_place: mir::Place<'tcx>,
+    );
+
+    /// Updates the current dataflow state with the effect of resuming from a `Yield` terminator.
+    ///
+    /// This is similar to `apply_call_return_effect` in that it only takes place after the
+    /// generator is resumed, not when it is dropped.
+    ///
+    /// By default, no effects happen.
+    fn apply_yield_resume_effect(
+        &self,
+        _state: &mut Self::Domain,
+        _resume_block: BasicBlock,
+        _resume_place: mir::Place<'tcx>,
+    ) {
+    }
+
+    /// Updates the current dataflow state with the effect of taking a particular branch in a
+    /// `SwitchInt` terminator.
+    ///
+    /// Unlike the other edge-specific effects, which are allowed to mutate `Self::Domain`
+    /// directly, overriders of this method must pass a callback to
+    /// `SwitchIntEdgeEffects::apply`. The callback will be run once for each outgoing edge and
+    /// will have access to the dataflow state that will be propagated along that edge.
+    ///
+    /// This interface is somewhat more complex than the other visitor-like "effect" methods.
+    /// However, it is both more ergonomic—callers don't need to recompute or cache information
+    /// about a given `SwitchInt` terminator for each one of its edges—and more efficient—the
+    /// engine doesn't need to clone the exit state for a block unless
+    /// `SwitchIntEdgeEffects::apply` is actually called.
+    ///
+    /// FIXME: This class of effects is not supported for backward dataflow analyses.
+    fn apply_switch_int_edge_effects(
+        &self,
+        _block: BasicBlock,
+        _discr: &mir::Operand<'tcx>,
+        _apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
+    ) {
+    }
+
+    /* Extension methods */
+
+    /// Creates an `Engine` to find the fixpoint for this dataflow problem.
+    ///
+    /// You shouldn't need to override this outside this module, since the combination of the
+    /// default impl and the one for all `A: GenKillAnalysis` will do the right thing.
+    /// Its purpose is to enable method chaining like so:
+    ///
+    /// ```ignore (cross-crate-imports)
+    /// let results = MyAnalysis::new(tcx, body)
+    ///     .into_engine(tcx, body, def_id)
+    ///     .iterate_to_fixpoint()
+    ///     .into_results_cursor(body);
+    /// ```
+    fn into_engine(self, tcx: TyCtxt<'tcx>, body: &'mir mir::Body<'tcx>) -> Engine<'mir, 'tcx, Self>
+    where
+        Self: Sized,
+    {
+        Engine::new_generic(tcx, body, self)
+    }
+}
+
+/// A gen/kill dataflow problem.
+///
+/// Each method in this trait has a corresponding one in `Analysis`. However, these methods only
+/// allow modification of the dataflow state via "gen" and "kill" operations. By defining transfer
+/// functions for each statement in this way, the transfer function for an entire basic block can
+/// be computed efficiently.
+///
+/// `Analysis` is automatically implemented for all implementers of `GenKillAnalysis`.
+pub trait GenKillAnalysis<'tcx>: Analysis<'tcx> {
+    type Idx: Idx;
+
+    /// See `Analysis::apply_statement_effect`.
+    fn statement_effect(
+        &self,
+        trans: &mut impl GenKill<Self::Idx>,
+        statement: &mir::Statement<'tcx>,
+        location: Location,
+    );
+
+    /// See `Analysis::apply_before_statement_effect`.
+    fn before_statement_effect(
+        &self,
+        _trans: &mut impl GenKill<Self::Idx>,
+        _statement: &mir::Statement<'tcx>,
+        _location: Location,
+    ) {
+    }
+
+    /// See `Analysis::apply_terminator_effect`.
+    fn terminator_effect(
+        &self,
+        trans: &mut impl GenKill<Self::Idx>,
+        terminator: &mir::Terminator<'tcx>,
+        location: Location,
+    );
+
+    /// See `Analysis::apply_before_terminator_effect`.
+    fn before_terminator_effect(
+        &self,
+        _trans: &mut impl GenKill<Self::Idx>,
+        _terminator: &mir::Terminator<'tcx>,
+        _location: Location,
+    ) {
+    }
+
+    /* Edge-specific effects */
+
+    /// See `Analysis::apply_call_return_effect`.
+    fn call_return_effect(
+        &self,
+        trans: &mut impl GenKill<Self::Idx>,
+        block: BasicBlock,
+        func: &mir::Operand<'tcx>,
+        args: &[mir::Operand<'tcx>],
+        return_place: mir::Place<'tcx>,
+    );
+
+    /// See `Analysis::apply_yield_resume_effect`.
+    fn yield_resume_effect(
+        &self,
+        _trans: &mut impl GenKill<Self::Idx>,
+        _resume_block: BasicBlock,
+        _resume_place: mir::Place<'tcx>,
+    ) {
+    }
+
+    /// See `Analysis::apply_switch_int_edge_effects`.
+    fn switch_int_edge_effects<G: GenKill<Self::Idx>>(
+        &self,
+        _block: BasicBlock,
+        _discr: &mir::Operand<'tcx>,
+        _edge_effects: &mut impl SwitchIntEdgeEffects<G>,
+    ) {
+    }
+}
+
+impl<A> Analysis<'tcx> for A
+where
+    A: GenKillAnalysis<'tcx>,
+    A::Domain: GenKill<A::Idx> + BorrowMut<BitSet<A::Idx>>,
+{
+    fn apply_statement_effect(
+        &self,
+        state: &mut A::Domain,
+        statement: &mir::Statement<'tcx>,
+        location: Location,
+    ) {
+        self.statement_effect(state, statement, location);
+    }
+
+    fn apply_before_statement_effect(
+        &self,
+        state: &mut A::Domain,
+        statement: &mir::Statement<'tcx>,
+        location: Location,
+    ) {
+        self.before_statement_effect(state, statement, location);
+    }
+
+    fn apply_terminator_effect(
+        &self,
+        state: &mut A::Domain,
+        terminator: &mir::Terminator<'tcx>,
+        location: Location,
+    ) {
+        self.terminator_effect(state, terminator, location);
+    }
+
+    fn apply_before_terminator_effect(
+        &self,
+        state: &mut A::Domain,
+        terminator: &mir::Terminator<'tcx>,
+        location: Location,
+    ) {
+        self.before_terminator_effect(state, terminator, location);
+    }
+
+    /* Edge-specific effects */
+
+    fn apply_call_return_effect(
+        &self,
+        state: &mut A::Domain,
+        block: BasicBlock,
+        func: &mir::Operand<'tcx>,
+        args: &[mir::Operand<'tcx>],
+        return_place: mir::Place<'tcx>,
+    ) {
+        self.call_return_effect(state, block, func, args, return_place);
+    }
+
+    fn apply_yield_resume_effect(
+        &self,
+        state: &mut A::Domain,
+        resume_block: BasicBlock,
+        resume_place: mir::Place<'tcx>,
+    ) {
+        self.yield_resume_effect(state, resume_block, resume_place);
+    }
+
+    fn apply_switch_int_edge_effects(
+        &self,
+        block: BasicBlock,
+        discr: &mir::Operand<'tcx>,
+        edge_effects: &mut impl SwitchIntEdgeEffects<A::Domain>,
+    ) {
+        self.switch_int_edge_effects(block, discr, edge_effects);
+    }
+
+    /* Extension methods */
+
+    fn into_engine(self, tcx: TyCtxt<'tcx>, body: &'mir mir::Body<'tcx>) -> Engine<'mir, 'tcx, Self>
+    where
+        Self: Sized,
+    {
+        Engine::new_gen_kill(tcx, body, self)
+    }
+}
+
+/// The legal operations for a transfer function in a gen/kill problem.
+///
+/// This abstraction exists because there are two different contexts in which we call the methods in
+/// `GenKillAnalysis`. Sometimes we need to store a single transfer function that can be efficiently
+/// applied multiple times, such as when computing the cumulative transfer function for each block.
+/// These cases require a `GenKillSet`, which in turn requires two `BitSet`s of storage. Oftentimes,
+/// however, we only need to apply an effect once. In *these* cases, it is more efficient to pass the
+/// `BitSet` representing the state vector directly into the `*_effect` methods as opposed to
+/// building up a `GenKillSet` and then throwing it away.
+pub trait GenKill<T> {
+    /// Inserts `elem` into the state vector.
+    fn gen(&mut self, elem: T);
+
+    /// Removes `elem` from the state vector.
+    fn kill(&mut self, elem: T);
+
+    /// Calls `gen` for each element in `elems`.
+    fn gen_all(&mut self, elems: impl IntoIterator<Item = T>) {
+        for elem in elems {
+            self.gen(elem);
+        }
+    }
+
+    /// Calls `kill` for each element in `elems`.
+    fn kill_all(&mut self, elems: impl IntoIterator<Item = T>) {
+        for elem in elems {
+            self.kill(elem);
+        }
+    }
+}
+
+/// Stores a transfer function for a gen/kill problem.
+///
+/// Calling `gen`/`kill` on a `GenKillSet` will "build up" a transfer function so that it can be
+/// applied multiple times efficiently. When there are multiple calls to `gen` and/or `kill` for
+/// the same element, the most recent one takes precedence.
+#[derive(Clone)]
+pub struct GenKillSet<T> {
+    gen: HybridBitSet<T>,
+    kill: HybridBitSet<T>,
+}
+
+impl<T: Idx> GenKillSet<T> {
+    /// Creates a new transfer function that will leave the dataflow state unchanged.
+    pub fn identity(universe: usize) -> Self {
+        GenKillSet {
+            gen: HybridBitSet::new_empty(universe),
+            kill: HybridBitSet::new_empty(universe),
+        }
+    }
+
+    pub fn apply(&self, state: &mut BitSet<T>) {
+        state.union(&self.gen);
+        state.subtract(&self.kill);
+    }
+}
+
+impl<T: Idx> GenKill<T> for GenKillSet<T> {
+    fn gen(&mut self, elem: T) {
+        self.gen.insert(elem);
+        self.kill.remove(elem);
+    }
+
+    fn kill(&mut self, elem: T) {
+        self.kill.insert(elem);
+        self.gen.remove(elem);
+    }
+}
+
+impl<T: Idx> GenKill<T> for BitSet<T> {
+    fn gen(&mut self, elem: T) {
+        self.insert(elem);
+    }
+
+    fn kill(&mut self, elem: T) {
+        self.remove(elem);
+    }
+}
+
+impl<T: Idx> GenKill<T> for lattice::Dual<BitSet<T>> {
+    fn gen(&mut self, elem: T) {
+        self.0.insert(elem);
+    }
+
+    fn kill(&mut self, elem: T) {
+        self.0.remove(elem);
+    }
+}
+
+// NOTE: DO NOT CHANGE VARIANT ORDER. The derived `Ord` impls rely on the current order.
+#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
+pub enum Effect {
+    /// The "before" effect (e.g., `apply_before_statement_effect`) for a statement (or
+    /// terminator).
+    Before,
+
+    /// The "primary" effect (e.g., `apply_statement_effect`) for a statement (or terminator).
+    Primary,
+}
+
+impl Effect {
+    pub const fn at_index(self, statement_index: usize) -> EffectIndex {
+        EffectIndex { effect: self, statement_index }
+    }
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub struct EffectIndex {
+    statement_index: usize,
+    effect: Effect,
+}
+
+impl EffectIndex {
+    fn next_in_forward_order(self) -> Self {
+        match self.effect {
+            Effect::Before => Effect::Primary.at_index(self.statement_index),
+            Effect::Primary => Effect::Before.at_index(self.statement_index + 1),
+        }
+    }
+
+    fn next_in_backward_order(self) -> Self {
+        match self.effect {
+            Effect::Before => Effect::Primary.at_index(self.statement_index),
+            Effect::Primary => Effect::Before.at_index(self.statement_index - 1),
+        }
+    }
+
+    /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
+    /// in forward order.
+    fn precedes_in_forward_order(self, other: Self) -> bool {
+        let ord = self
+            .statement_index
+            .cmp(&other.statement_index)
+            .then_with(|| self.effect.cmp(&other.effect));
+        ord == Ordering::Less
+    }
+
+    /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
+    /// in backward order.
+    fn precedes_in_backward_order(self, other: Self) -> bool {
+        let ord = other
+            .statement_index
+            .cmp(&self.statement_index)
+            .then_with(|| self.effect.cmp(&other.effect));
+        ord == Ordering::Less
+    }
+}
+
+pub struct SwitchIntTarget {
+    pub value: Option<u128>,
+    pub target: BasicBlock,
+}
+
+/// A type that records the edge-specific effects for a `SwitchInt` terminator.
+pub trait SwitchIntEdgeEffects<D> {
+    /// Calls `apply_edge_effect` for each outgoing edge from a `SwitchInt` terminator and
+    /// records the results.
+    fn apply(&mut self, apply_edge_effect: impl FnMut(&mut D, SwitchIntTarget));
+}
+
+#[cfg(test)]
+mod tests;