about summary refs log tree commit diff
path: root/compiler/rustc_monomorphize
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_monomorphize')
-rw-r--r--compiler/rustc_monomorphize/Cargo.toml20
-rw-r--r--compiler/rustc_monomorphize/src/collector.rs1412
-rw-r--r--compiler/rustc_monomorphize/src/lib.rs49
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/default.rs557
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/merging.rs111
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/mod.rs466
-rw-r--r--compiler/rustc_monomorphize/src/polymorphize.rs399
-rw-r--r--compiler/rustc_monomorphize/src/util.rs73
8 files changed, 3087 insertions, 0 deletions
diff --git a/compiler/rustc_monomorphize/Cargo.toml b/compiler/rustc_monomorphize/Cargo.toml
new file mode 100644
index 00000000000..93a964bf3cc
--- /dev/null
+++ b/compiler/rustc_monomorphize/Cargo.toml
@@ -0,0 +1,20 @@
+[package]
+authors = ["The Rust Project Developers"]
+name = "rustc_monomorphize"
+version = "0.0.0"
+edition = "2018"
+
+[lib]
+doctest = false
+
+[dependencies]
+smallvec = { version = "1.6.1", features = ["union", "may_dangle"] }
+tracing = "0.1"
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_errors = { path = "../rustc_errors" }
+rustc_hir = { path = "../rustc_hir" }
+rustc_index = { path = "../rustc_index" }
+rustc_middle = { path = "../rustc_middle" }
+rustc_session = { path = "../rustc_session" }
+rustc_span = { path = "../rustc_span" }
+rustc_target = { path = "../rustc_target" }
diff --git a/compiler/rustc_monomorphize/src/collector.rs b/compiler/rustc_monomorphize/src/collector.rs
new file mode 100644
index 00000000000..1e39b1bd5e8
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/collector.rs
@@ -0,0 +1,1412 @@
+//! Mono Item Collection
+//! ====================
+//!
+//! This module is responsible for discovering all items that will contribute
+//! to code generation of the crate. The important part here is that it not only
+//! needs to find syntax-level items (functions, structs, etc) but also all
+//! their monomorphized instantiations. Every non-generic, non-const function
+//! maps to one LLVM artifact. Every generic function can produce
+//! from zero to N artifacts, depending on the sets of type arguments it
+//! is instantiated with.
+//! This also applies to generic items from other crates: A generic definition
+//! in crate X might produce monomorphizations that are compiled into crate Y.
+//! We also have to collect these here.
+//!
+//! The following kinds of "mono items" are handled here:
+//!
+//! - Functions
+//! - Methods
+//! - Closures
+//! - Statics
+//! - Drop glue
+//!
+//! The following things also result in LLVM artifacts, but are not collected
+//! here, since we instantiate them locally on demand when needed in a given
+//! codegen unit:
+//!
+//! - Constants
+//! - Vtables
+//! - Object Shims
+//!
+//!
+//! General Algorithm
+//! -----------------
+//! Let's define some terms first:
+//!
+//! - A "mono item" is something that results in a function or global in
+//!   the LLVM IR of a codegen unit. Mono items do not stand on their
+//!   own, they can reference other mono items. For example, if function
+//!   `foo()` calls function `bar()` then the mono item for `foo()`
+//!   references the mono item for function `bar()`. In general, the
+//!   definition for mono item A referencing a mono item B is that
+//!   the LLVM artifact produced for A references the LLVM artifact produced
+//!   for B.
+//!
+//! - Mono items and the references between them form a directed graph,
+//!   where the mono items are the nodes and references form the edges.
+//!   Let's call this graph the "mono item graph".
+//!
+//! - The mono item graph for a program contains all mono items
+//!   that are needed in order to produce the complete LLVM IR of the program.
+//!
+//! The purpose of the algorithm implemented in this module is to build the
+//! mono item graph for the current crate. It runs in two phases:
+//!
+//! 1. Discover the roots of the graph by traversing the HIR of the crate.
+//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
+//!    representation of the item corresponding to a given node, until no more
+//!    new nodes are found.
+//!
+//! ### Discovering roots
+//!
+//! The roots of the mono item graph correspond to the public non-generic
+//! syntactic items in the source code. We find them by walking the HIR of the
+//! crate, and whenever we hit upon a public function, method, or static item,
+//! we create a mono item consisting of the items DefId and, since we only
+//! consider non-generic items, an empty type-substitution set. (In eager
+//! collection mode, during incremental compilation, all non-generic functions
+//! are considered as roots, as well as when the `-Clink-dead-code` option is
+//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
+//! functions also always act as roots.)
+//!
+//! ### Finding neighbor nodes
+//! Given a mono item node, we can discover neighbors by inspecting its
+//! MIR. We walk the MIR and any time we hit upon something that signifies a
+//! reference to another mono item, we have found a neighbor. Since the
+//! mono item we are currently at is always monomorphic, we also know the
+//! concrete type arguments of its neighbors, and so all neighbors again will be
+//! monomorphic. The specific forms a reference to a neighboring node can take
+//! in MIR are quite diverse. Here is an overview:
+//!
+//! #### Calling Functions/Methods
+//! The most obvious form of one mono item referencing another is a
+//! function or method call (represented by a CALL terminator in MIR). But
+//! calls are not the only thing that might introduce a reference between two
+//! function mono items, and as we will see below, they are just a
+//! specialization of the form described next, and consequently will not get any
+//! special treatment in the algorithm.
+//!
+//! #### Taking a reference to a function or method
+//! A function does not need to actually be called in order to be a neighbor of
+//! another function. It suffices to just take a reference in order to introduce
+//! an edge. Consider the following example:
+//!
+//! ```rust
+//! fn print_val<T: Display>(x: T) {
+//!     println!("{}", x);
+//! }
+//!
+//! fn call_fn(f: &Fn(i32), x: i32) {
+//!     f(x);
+//! }
+//!
+//! fn main() {
+//!     let print_i32 = print_val::<i32>;
+//!     call_fn(&print_i32, 0);
+//! }
+//! ```
+//! The MIR of none of these functions will contain an explicit call to
+//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
+//! an instance of this function. Thus, whenever we encounter a function or
+//! method in operand position, we treat it as a neighbor of the current
+//! mono item. Calls are just a special case of that.
+//!
+//! #### Closures
+//! In a way, closures are a simple case. Since every closure object needs to be
+//! constructed somewhere, we can reliably discover them by observing
+//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
+//! true for closures inlined from other crates.
+//!
+//! #### Drop glue
+//! Drop glue mono items are introduced by MIR drop-statements. The
+//! generated mono item will again have drop-glue item neighbors if the
+//! type to be dropped contains nested values that also need to be dropped. It
+//! might also have a function item neighbor for the explicit `Drop::drop`
+//! implementation of its type.
+//!
+//! #### Unsizing Casts
+//! A subtle way of introducing neighbor edges is by casting to a trait object.
+//! Since the resulting fat-pointer contains a reference to a vtable, we need to
+//! instantiate all object-save methods of the trait, as we need to store
+//! pointers to these functions even if they never get called anywhere. This can
+//! be seen as a special case of taking a function reference.
+//!
+//! #### Boxes
+//! Since `Box` expression have special compiler support, no explicit calls to
+//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
+//! compiler will generate them. We have to observe `Rvalue::Box` expressions
+//! and Box-typed drop-statements for that purpose.
+//!
+//!
+//! Interaction with Cross-Crate Inlining
+//! -------------------------------------
+//! The binary of a crate will not only contain machine code for the items
+//! defined in the source code of that crate. It will also contain monomorphic
+//! instantiations of any extern generic functions and of functions marked with
+//! `#[inline]`.
+//! The collection algorithm handles this more or less mono. If it is
+//! about to create a mono item for something with an external `DefId`,
+//! it will take a look if the MIR for that item is available, and if so just
+//! proceed normally. If the MIR is not available, it assumes that the item is
+//! just linked to and no node is created; which is exactly what we want, since
+//! no machine code should be generated in the current crate for such an item.
+//!
+//! Eager and Lazy Collection Mode
+//! ------------------------------
+//! Mono item collection can be performed in one of two modes:
+//!
+//! - Lazy mode means that items will only be instantiated when actually
+//!   referenced. The goal is to produce the least amount of machine code
+//!   possible.
+//!
+//! - Eager mode is meant to be used in conjunction with incremental compilation
+//!   where a stable set of mono items is more important than a minimal
+//!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
+//!   in the crate, even if no drop call for that type exists (yet). It will
+//!   also instantiate default implementations of trait methods, something that
+//!   otherwise is only done on demand.
+//!
+//!
+//! Open Issues
+//! -----------
+//! Some things are not yet fully implemented in the current version of this
+//! module.
+//!
+//! ### Const Fns
+//! Ideally, no mono item should be generated for const fns unless there
+//! is a call to them that cannot be evaluated at compile time. At the moment
+//! this is not implemented however: a mono item will be produced
+//! regardless of whether it is actually needed or not.
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync::{par_iter, MTLock, MTRef, ParallelIterator};
+use rustc_errors::{ErrorReported, FatalError};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LOCAL_CRATE};
+use rustc_hir::itemlikevisit::ItemLikeVisitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_index::bit_set::GrowableBitSet;
+use rustc_middle::mir::interpret::{AllocId, ConstValue};
+use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
+use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
+use rustc_middle::mir::visit::Visitor as MirVisitor;
+use rustc_middle::mir::{self, Local, Location};
+use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
+use rustc_middle::ty::{self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, VtblEntry};
+use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
+use rustc_session::config::EntryFnType;
+use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
+use rustc_session::Limit;
+use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
+use rustc_target::abi::Size;
+use smallvec::SmallVec;
+use std::iter;
+use std::ops::Range;
+use std::path::PathBuf;
+
+#[derive(PartialEq)]
+pub enum MonoItemCollectionMode {
+    Eager,
+    Lazy,
+}
+
+/// Maps every mono item to all mono items it references in its
+/// body.
+pub struct InliningMap<'tcx> {
+    // Maps a source mono item to the range of mono items
+    // accessed by it.
+    // The range selects elements within the `targets` vecs.
+    index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
+    targets: Vec<MonoItem<'tcx>>,
+
+    // Contains one bit per mono item in the `targets` field. That bit
+    // is true if that mono item needs to be inlined into every CGU.
+    inlines: GrowableBitSet<usize>,
+}
+
+impl<'tcx> InliningMap<'tcx> {
+    fn new() -> InliningMap<'tcx> {
+        InliningMap {
+            index: FxHashMap::default(),
+            targets: Vec::new(),
+            inlines: GrowableBitSet::with_capacity(1024),
+        }
+    }
+
+    fn record_accesses(&mut self, source: MonoItem<'tcx>, new_targets: &[(MonoItem<'tcx>, bool)]) {
+        let start_index = self.targets.len();
+        let new_items_count = new_targets.len();
+        let new_items_count_total = new_items_count + self.targets.len();
+
+        self.targets.reserve(new_items_count);
+        self.inlines.ensure(new_items_count_total);
+
+        for (i, (target, inline)) in new_targets.iter().enumerate() {
+            self.targets.push(*target);
+            if *inline {
+                self.inlines.insert(i + start_index);
+            }
+        }
+
+        let end_index = self.targets.len();
+        assert!(self.index.insert(source, start_index..end_index).is_none());
+    }
+
+    // Internally iterate over all items referenced by `source` which will be
+    // made available for inlining.
+    pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
+    where
+        F: FnMut(MonoItem<'tcx>),
+    {
+        if let Some(range) = self.index.get(&source) {
+            for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
+                if self.inlines.contains(range.start + i) {
+                    f(*candidate);
+                }
+            }
+        }
+    }
+
+    // Internally iterate over all items and the things each accesses.
+    pub fn iter_accesses<F>(&self, mut f: F)
+    where
+        F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
+    {
+        for (&accessor, range) in &self.index {
+            f(accessor, &self.targets[range.clone()])
+        }
+    }
+}
+
+pub fn collect_crate_mono_items(
+    tcx: TyCtxt<'_>,
+    mode: MonoItemCollectionMode,
+) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
+    let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
+
+    let roots =
+        tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
+
+    debug!("building mono item graph, beginning at roots");
+
+    let mut visited = MTLock::new(FxHashSet::default());
+    let mut inlining_map = MTLock::new(InliningMap::new());
+    let recursion_limit = tcx.recursion_limit();
+
+    {
+        let visited: MTRef<'_, _> = &mut visited;
+        let inlining_map: MTRef<'_, _> = &mut inlining_map;
+
+        tcx.sess.time("monomorphization_collector_graph_walk", || {
+            par_iter(roots).for_each(|root| {
+                let mut recursion_depths = DefIdMap::default();
+                collect_items_rec(
+                    tcx,
+                    dummy_spanned(root),
+                    visited,
+                    &mut recursion_depths,
+                    recursion_limit,
+                    inlining_map,
+                );
+            });
+        });
+    }
+
+    (visited.into_inner(), inlining_map.into_inner())
+}
+
+// Find all non-generic items by walking the HIR. These items serve as roots to
+// start monomorphizing from.
+fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
+    debug!("collecting roots");
+    let mut roots = Vec::new();
+
+    {
+        let entry_fn = tcx.entry_fn(());
+
+        debug!("collect_roots: entry_fn = {:?}", entry_fn);
+
+        let mut visitor = RootCollector { tcx, mode, entry_fn, output: &mut roots };
+
+        tcx.hir().krate().visit_all_item_likes(&mut visitor);
+
+        visitor.push_extra_entry_roots();
+    }
+
+    // We can only codegen items that are instantiable - items all of
+    // whose predicates hold. Luckily, items that aren't instantiable
+    // can't actually be used, so we can just skip codegenning them.
+    roots
+        .into_iter()
+        .filter_map(|root| root.node.is_instantiable(tcx).then_some(root.node))
+        .collect()
+}
+
+/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
+/// post-monorphization error is encountered during a collection step.
+fn collect_items_rec<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    starting_point: Spanned<MonoItem<'tcx>>,
+    visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
+    recursion_depths: &mut DefIdMap<usize>,
+    recursion_limit: Limit,
+    inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
+) {
+    if !visited.lock_mut().insert(starting_point.node) {
+        // We've been here already, no need to search again.
+        return;
+    }
+    debug!("BEGIN collect_items_rec({})", starting_point.node);
+
+    let mut neighbors = Vec::new();
+    let recursion_depth_reset;
+
+    //
+    // Post-monomorphization errors MVP
+    //
+    // We can encounter errors while monomorphizing an item, but we don't have a good way of
+    // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
+    // (It's also currently unclear exactly which diagnostics and information would be interesting
+    // to report in such cases)
+    //
+    // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
+    // shown with just a spanned piece of code causing the error, without information on where
+    // it was called from. This is especially obscure if the erroneous mono item is in a
+    // dependency. See for example issue #85155, where, before minimization, a PME happened two
+    // crates downstream from libcore's stdarch, without a way to know which dependency was the
+    // cause.
+    //
+    // If such an error occurs in the current crate, its span will be enough to locate the
+    // source. If the cause is in another crate, the goal here is to quickly locate which mono
+    // item in the current crate is ultimately responsible for causing the error.
+    //
+    // To give at least _some_ context to the user: while collecting mono items, we check the
+    // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
+    // current step of mono items collection.
+    //
+    let error_count = tcx.sess.diagnostic().err_count();
+
+    match starting_point.node {
+        MonoItem::Static(def_id) => {
+            let instance = Instance::mono(tcx, def_id);
+
+            // Sanity check whether this ended up being collected accidentally
+            debug_assert!(should_codegen_locally(tcx, &instance));
+
+            let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
+            visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
+
+            recursion_depth_reset = None;
+
+            if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
+                for &id in alloc.relocations().values() {
+                    collect_miri(tcx, id, &mut neighbors);
+                }
+            }
+        }
+        MonoItem::Fn(instance) => {
+            // Sanity check whether this ended up being collected accidentally
+            debug_assert!(should_codegen_locally(tcx, &instance));
+
+            // Keep track of the monomorphization recursion depth
+            recursion_depth_reset = Some(check_recursion_limit(
+                tcx,
+                instance,
+                starting_point.span,
+                recursion_depths,
+                recursion_limit,
+            ));
+            check_type_length_limit(tcx, instance);
+
+            rustc_data_structures::stack::ensure_sufficient_stack(|| {
+                collect_neighbours(tcx, instance, &mut neighbors);
+            });
+        }
+        MonoItem::GlobalAsm(item_id) => {
+            recursion_depth_reset = None;
+
+            let item = tcx.hir().item(item_id);
+            if let hir::ItemKind::GlobalAsm(asm) = item.kind {
+                for (op, op_sp) in asm.operands {
+                    match op {
+                        hir::InlineAsmOperand::Const { .. } => {
+                            // Only constants which resolve to a plain integer
+                            // are supported. Therefore the value should not
+                            // depend on any other items.
+                        }
+                        _ => span_bug!(*op_sp, "invalid operand type for global_asm!"),
+                    }
+                }
+            } else {
+                span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
+            }
+        }
+    }
+
+    // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
+    // mono item graph where the PME diagnostics are currently the most problematic (e.g. ones
+    // involving a dependency, and the lack of context is confusing) in this MVP, we focus on
+    // diagnostics on edges crossing a crate boundary: the collected mono items which are not
+    // defined in the local crate.
+    if tcx.sess.diagnostic().err_count() > error_count && starting_point.node.krate() != LOCAL_CRATE
+    {
+        let formatted_item = with_no_trimmed_paths(|| starting_point.node.to_string());
+        tcx.sess.span_note_without_error(
+            starting_point.span,
+            &format!("the above error was encountered while instantiating `{}`", formatted_item),
+        );
+    }
+
+    record_accesses(tcx, starting_point.node, neighbors.iter().map(|i| &i.node), inlining_map);
+
+    for neighbour in neighbors {
+        collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
+    }
+
+    if let Some((def_id, depth)) = recursion_depth_reset {
+        recursion_depths.insert(def_id, depth);
+    }
+
+    debug!("END collect_items_rec({})", starting_point.node);
+}
+
+fn record_accesses<'a, 'tcx: 'a>(
+    tcx: TyCtxt<'tcx>,
+    caller: MonoItem<'tcx>,
+    callees: impl Iterator<Item = &'a MonoItem<'tcx>>,
+    inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
+) {
+    let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
+        mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
+    };
+
+    // We collect this into a `SmallVec` to avoid calling `is_inlining_candidate` in the lock.
+    // FIXME: Call `is_inlining_candidate` when pushing to `neighbors` in `collect_items_rec`
+    // instead to avoid creating this `SmallVec`.
+    let accesses: SmallVec<[_; 128]> =
+        callees.map(|mono_item| (*mono_item, is_inlining_candidate(mono_item))).collect();
+
+    inlining_map.lock_mut().record_accesses(caller, &accesses);
+}
+
+/// Format instance name that is already known to be too long for rustc.
+/// Show only the first and last 32 characters to avoid blasting
+/// the user's terminal with thousands of lines of type-name.
+///
+/// If the type name is longer than before+after, it will be written to a file.
+fn shrunk_instance_name(
+    tcx: TyCtxt<'tcx>,
+    instance: &Instance<'tcx>,
+    before: usize,
+    after: usize,
+) -> (String, Option<PathBuf>) {
+    let s = instance.to_string();
+
+    // Only use the shrunk version if it's really shorter.
+    // This also avoids the case where before and after slices overlap.
+    if s.chars().nth(before + after + 1).is_some() {
+        // An iterator of all byte positions including the end of the string.
+        let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
+
+        let shrunk = format!(
+            "{before}...{after}",
+            before = &s[..positions().nth(before).unwrap_or(s.len())],
+            after = &s[positions().rev().nth(after).unwrap_or(0)..],
+        );
+
+        let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
+        let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
+
+        (shrunk, written_to_path)
+    } else {
+        (s, None)
+    }
+}
+
+fn check_recursion_limit<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    instance: Instance<'tcx>,
+    span: Span,
+    recursion_depths: &mut DefIdMap<usize>,
+    recursion_limit: Limit,
+) -> (DefId, usize) {
+    let def_id = instance.def_id();
+    let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
+    debug!(" => recursion depth={}", recursion_depth);
+
+    let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
+        // HACK: drop_in_place creates tight monomorphization loops. Give
+        // it more margin.
+        recursion_depth / 4
+    } else {
+        recursion_depth
+    };
+
+    // Code that needs to instantiate the same function recursively
+    // more than the recursion limit is assumed to be causing an
+    // infinite expansion.
+    if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
+        let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+        let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
+        let mut err = tcx.sess.struct_span_fatal(span, &error);
+        err.span_note(
+            tcx.def_span(def_id),
+            &format!("`{}` defined here", tcx.def_path_str(def_id)),
+        );
+        if let Some(path) = written_to_path {
+            err.note(&format!("the full type name has been written to '{}'", path.display()));
+        }
+        err.emit();
+        FatalError.raise();
+    }
+
+    recursion_depths.insert(def_id, recursion_depth + 1);
+
+    (def_id, recursion_depth)
+}
+
+fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
+    let type_length = instance
+        .substs
+        .iter()
+        .flat_map(|arg| arg.walk(tcx))
+        .filter(|arg| match arg.unpack() {
+            GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
+            GenericArgKind::Lifetime(_) => false,
+        })
+        .count();
+    debug!(" => type length={}", type_length);
+
+    // Rust code can easily create exponentially-long types using only a
+    // polynomial recursion depth. Even with the default recursion
+    // depth, you can easily get cases that take >2^60 steps to run,
+    // which means that rustc basically hangs.
+    //
+    // Bail out in these cases to avoid that bad user experience.
+    if !tcx.type_length_limit().value_within_limit(type_length) {
+        let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+        let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
+        let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
+        if let Some(path) = written_to_path {
+            diag.note(&format!("the full type name has been written to '{}'", path.display()));
+        }
+        diag.help(&format!(
+            "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
+            type_length
+        ));
+        diag.emit();
+        tcx.sess.abort_if_errors();
+    }
+}
+
+struct MirNeighborCollector<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    body: &'a mir::Body<'tcx>,
+    output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
+    instance: Instance<'tcx>,
+}
+
+impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
+    pub fn monomorphize<T>(&self, value: T) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        debug!("monomorphize: self.instance={:?}", self.instance);
+        self.instance.subst_mir_and_normalize_erasing_regions(
+            self.tcx,
+            ty::ParamEnv::reveal_all(),
+            value,
+        )
+    }
+}
+
+impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
+    fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
+        debug!("visiting rvalue {:?}", *rvalue);
+
+        let span = self.body.source_info(location).span;
+
+        match *rvalue {
+            // When doing an cast from a regular pointer to a fat pointer, we
+            // have to instantiate all methods of the trait being cast to, so we
+            // can build the appropriate vtable.
+            mir::Rvalue::Cast(
+                mir::CastKind::Pointer(PointerCast::Unsize),
+                ref operand,
+                target_ty,
+            ) => {
+                let target_ty = self.monomorphize(target_ty);
+                let source_ty = operand.ty(self.body, self.tcx);
+                let source_ty = self.monomorphize(source_ty);
+                let (source_ty, target_ty) =
+                    find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
+                // This could also be a different Unsize instruction, like
+                // from a fixed sized array to a slice. But we are only
+                // interested in things that produce a vtable.
+                if target_ty.is_trait() && !source_ty.is_trait() {
+                    create_mono_items_for_vtable_methods(
+                        self.tcx,
+                        target_ty,
+                        source_ty,
+                        span,
+                        self.output,
+                    );
+                }
+            }
+            mir::Rvalue::Cast(
+                mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
+                ref operand,
+                _,
+            ) => {
+                let fn_ty = operand.ty(self.body, self.tcx);
+                let fn_ty = self.monomorphize(fn_ty);
+                visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
+            }
+            mir::Rvalue::Cast(
+                mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
+                ref operand,
+                _,
+            ) => {
+                let source_ty = operand.ty(self.body, self.tcx);
+                let source_ty = self.monomorphize(source_ty);
+                match *source_ty.kind() {
+                    ty::Closure(def_id, substs) => {
+                        let instance = Instance::resolve_closure(
+                            self.tcx,
+                            def_id,
+                            substs,
+                            ty::ClosureKind::FnOnce,
+                        );
+                        if should_codegen_locally(self.tcx, &instance) {
+                            self.output.push(create_fn_mono_item(self.tcx, instance, span));
+                        }
+                    }
+                    _ => bug!(),
+                }
+            }
+            mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
+                let tcx = self.tcx;
+                let exchange_malloc_fn_def_id =
+                    tcx.require_lang_item(LangItem::ExchangeMalloc, None);
+                let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
+                if should_codegen_locally(tcx, &instance) {
+                    self.output.push(create_fn_mono_item(self.tcx, instance, span));
+                }
+            }
+            mir::Rvalue::ThreadLocalRef(def_id) => {
+                assert!(self.tcx.is_thread_local_static(def_id));
+                let instance = Instance::mono(self.tcx, def_id);
+                if should_codegen_locally(self.tcx, &instance) {
+                    trace!("collecting thread-local static {:?}", def_id);
+                    self.output.push(respan(span, MonoItem::Static(def_id)));
+                }
+            }
+            _ => { /* not interesting */ }
+        }
+
+        self.super_rvalue(rvalue, location);
+    }
+
+    /// This does not walk the constant, as it has been handled entirely here and trying
+    /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
+    /// work, as some constants cannot be represented in the type system.
+    fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
+        let literal = self.monomorphize(constant.literal);
+        let val = match literal {
+            mir::ConstantKind::Val(val, _) => val,
+            mir::ConstantKind::Ty(ct) => match ct.val {
+                ty::ConstKind::Value(val) => val,
+                ty::ConstKind::Unevaluated(ct) => {
+                    let param_env = ty::ParamEnv::reveal_all();
+                    match self.tcx.const_eval_resolve(param_env, ct, None) {
+                        // The `monomorphize` call should have evaluated that constant already.
+                        Ok(val) => val,
+                        Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => return,
+                        Err(ErrorHandled::TooGeneric) => span_bug!(
+                            self.body.source_info(location).span,
+                            "collection encountered polymorphic constant: {:?}",
+                            literal
+                        ),
+                    }
+                }
+                _ => return,
+            },
+        };
+        collect_const_value(self.tcx, val, self.output);
+        self.visit_ty(literal.ty(), TyContext::Location(location));
+    }
+
+    fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
+        debug!("visiting const {:?} @ {:?}", *constant, location);
+
+        let substituted_constant = self.monomorphize(*constant);
+        let param_env = ty::ParamEnv::reveal_all();
+
+        match substituted_constant.val {
+            ty::ConstKind::Value(val) => collect_const_value(self.tcx, val, self.output),
+            ty::ConstKind::Unevaluated(unevaluated) => {
+                match self.tcx.const_eval_resolve(param_env, unevaluated, None) {
+                    // The `monomorphize` call should have evaluated that constant already.
+                    Ok(val) => span_bug!(
+                        self.body.source_info(location).span,
+                        "collection encountered the unevaluated constant {} which evaluated to {:?}",
+                        substituted_constant,
+                        val
+                    ),
+                    Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => {}
+                    Err(ErrorHandled::TooGeneric) => span_bug!(
+                        self.body.source_info(location).span,
+                        "collection encountered polymorphic constant: {}",
+                        substituted_constant
+                    ),
+                }
+            }
+            _ => {}
+        }
+
+        self.super_const(constant);
+    }
+
+    fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
+        debug!("visiting terminator {:?} @ {:?}", terminator, location);
+        let source = self.body.source_info(location).span;
+
+        let tcx = self.tcx;
+        match terminator.kind {
+            mir::TerminatorKind::Call { ref func, .. } => {
+                let callee_ty = func.ty(self.body, tcx);
+                let callee_ty = self.monomorphize(callee_ty);
+                visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
+            }
+            mir::TerminatorKind::Drop { ref place, .. }
+            | mir::TerminatorKind::DropAndReplace { ref place, .. } => {
+                let ty = place.ty(self.body, self.tcx).ty;
+                let ty = self.monomorphize(ty);
+                visit_drop_use(self.tcx, ty, true, source, self.output);
+            }
+            mir::TerminatorKind::InlineAsm { ref operands, .. } => {
+                for op in operands {
+                    match *op {
+                        mir::InlineAsmOperand::SymFn { ref value } => {
+                            let fn_ty = self.monomorphize(value.literal.ty());
+                            visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
+                        }
+                        mir::InlineAsmOperand::SymStatic { def_id } => {
+                            let instance = Instance::mono(self.tcx, def_id);
+                            if should_codegen_locally(self.tcx, &instance) {
+                                trace!("collecting asm sym static {:?}", def_id);
+                                self.output.push(respan(source, MonoItem::Static(def_id)));
+                            }
+                        }
+                        _ => {}
+                    }
+                }
+            }
+            mir::TerminatorKind::Goto { .. }
+            | mir::TerminatorKind::SwitchInt { .. }
+            | mir::TerminatorKind::Resume
+            | mir::TerminatorKind::Abort
+            | mir::TerminatorKind::Return
+            | mir::TerminatorKind::Unreachable
+            | mir::TerminatorKind::Assert { .. } => {}
+            mir::TerminatorKind::GeneratorDrop
+            | mir::TerminatorKind::Yield { .. }
+            | mir::TerminatorKind::FalseEdge { .. }
+            | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
+        }
+
+        self.super_terminator(terminator, location);
+    }
+
+    fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
+        self.super_operand(operand, location);
+        let limit = self.tcx.move_size_limit().0;
+        if limit == 0 {
+            return;
+        }
+        let limit = Size::from_bytes(limit);
+        let ty = operand.ty(self.body, self.tcx);
+        let ty = self.monomorphize(ty);
+        let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty));
+        if let Ok(layout) = layout {
+            if layout.size > limit {
+                debug!(?layout);
+                let source_info = self.body.source_info(location);
+                debug!(?source_info);
+                let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
+                debug!(?lint_root);
+                let lint_root = match lint_root {
+                    Some(lint_root) => lint_root,
+                    // This happens when the issue is in a function from a foreign crate that
+                    // we monomorphized in the current crate. We can't get a `HirId` for things
+                    // in other crates.
+                    // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
+                    // but correct span? This would make the lint at least accept crate-level lint attributes.
+                    None => return,
+                };
+                self.tcx.struct_span_lint_hir(
+                    LARGE_ASSIGNMENTS,
+                    lint_root,
+                    source_info.span,
+                    |lint| {
+                        let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes()));
+                        err.span_label(source_info.span, "value moved from here");
+                        err.emit()
+                    },
+                );
+            }
+        }
+    }
+
+    fn visit_local(
+        &mut self,
+        _place_local: &Local,
+        _context: mir::visit::PlaceContext,
+        _location: Location,
+    ) {
+    }
+}
+
+fn visit_drop_use<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    ty: Ty<'tcx>,
+    is_direct_call: bool,
+    source: Span,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    let instance = Instance::resolve_drop_in_place(tcx, ty);
+    visit_instance_use(tcx, instance, is_direct_call, source, output);
+}
+
+fn visit_fn_use<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    ty: Ty<'tcx>,
+    is_direct_call: bool,
+    source: Span,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    if let ty::FnDef(def_id, substs) = *ty.kind() {
+        let instance = if is_direct_call {
+            ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
+        } else {
+            ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
+                .unwrap()
+        };
+        visit_instance_use(tcx, instance, is_direct_call, source, output);
+    }
+}
+
+fn visit_instance_use<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    instance: ty::Instance<'tcx>,
+    is_direct_call: bool,
+    source: Span,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
+    if !should_codegen_locally(tcx, &instance) {
+        return;
+    }
+
+    match instance.def {
+        ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
+            if !is_direct_call {
+                bug!("{:?} being reified", instance);
+            }
+        }
+        ty::InstanceDef::DropGlue(_, None) => {
+            // Don't need to emit noop drop glue if we are calling directly.
+            if !is_direct_call {
+                output.push(create_fn_mono_item(tcx, instance, source));
+            }
+        }
+        ty::InstanceDef::DropGlue(_, Some(_))
+        | ty::InstanceDef::VtableShim(..)
+        | ty::InstanceDef::ReifyShim(..)
+        | ty::InstanceDef::ClosureOnceShim { .. }
+        | ty::InstanceDef::Item(..)
+        | ty::InstanceDef::FnPtrShim(..)
+        | ty::InstanceDef::CloneShim(..) => {
+            output.push(create_fn_mono_item(tcx, instance, source));
+        }
+    }
+}
+
+// Returns `true` if we should codegen an instance in the local crate.
+// Returns `false` if we can just link to the upstream crate and therefore don't
+// need a mono item.
+fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
+    let def_id = match instance.def {
+        ty::InstanceDef::Item(def) => def.did,
+        ty::InstanceDef::DropGlue(def_id, Some(_)) => def_id,
+        ty::InstanceDef::VtableShim(..)
+        | ty::InstanceDef::ReifyShim(..)
+        | ty::InstanceDef::ClosureOnceShim { .. }
+        | ty::InstanceDef::Virtual(..)
+        | ty::InstanceDef::FnPtrShim(..)
+        | ty::InstanceDef::DropGlue(..)
+        | ty::InstanceDef::Intrinsic(_)
+        | ty::InstanceDef::CloneShim(..) => return true,
+    };
+
+    if tcx.is_foreign_item(def_id) {
+        // Foreign items are always linked against, there's no way of instantiating them.
+        return false;
+    }
+
+    if def_id.is_local() {
+        // Local items cannot be referred to locally without monomorphizing them locally.
+        return true;
+    }
+
+    if tcx.is_reachable_non_generic(def_id)
+        || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
+    {
+        // We can link to the item in question, no instance needed in this crate.
+        return false;
+    }
+
+    if !tcx.is_mir_available(def_id) {
+        bug!("no MIR available for {:?}", def_id);
+    }
+
+    true
+}
+
+/// For a given pair of source and target type that occur in an unsizing coercion,
+/// this function finds the pair of types that determines the vtable linking
+/// them.
+///
+/// For example, the source type might be `&SomeStruct` and the target type\
+/// might be `&SomeTrait` in a cast like:
+///
+/// let src: &SomeStruct = ...;
+/// let target = src as &SomeTrait;
+///
+/// Then the output of this function would be (SomeStruct, SomeTrait) since for
+/// constructing the `target` fat-pointer we need the vtable for that pair.
+///
+/// Things can get more complicated though because there's also the case where
+/// the unsized type occurs as a field:
+///
+/// ```rust
+/// struct ComplexStruct<T: ?Sized> {
+///    a: u32,
+///    b: f64,
+///    c: T
+/// }
+/// ```
+///
+/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
+/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
+/// for the pair of `T` (which is a trait) and the concrete type that `T` was
+/// originally coerced from:
+///
+/// let src: &ComplexStruct<SomeStruct> = ...;
+/// let target = src as &ComplexStruct<SomeTrait>;
+///
+/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
+/// `(SomeStruct, SomeTrait)`.
+///
+/// Finally, there is also the case of custom unsizing coercions, e.g., for
+/// smart pointers such as `Rc` and `Arc`.
+fn find_vtable_types_for_unsizing<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    source_ty: Ty<'tcx>,
+    target_ty: Ty<'tcx>,
+) -> (Ty<'tcx>, Ty<'tcx>) {
+    let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
+        let param_env = ty::ParamEnv::reveal_all();
+        let type_has_metadata = |ty: Ty<'tcx>| -> bool {
+            if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
+                return false;
+            }
+            let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
+            match tail.kind() {
+                ty::Foreign(..) => false,
+                ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
+                _ => bug!("unexpected unsized tail: {:?}", tail),
+            }
+        };
+        if type_has_metadata(inner_source) {
+            (inner_source, inner_target)
+        } else {
+            tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
+        }
+    };
+
+    match (&source_ty.kind(), &target_ty.kind()) {
+        (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
+        | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
+            ptr_vtable(a, b)
+        }
+        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
+            ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
+        }
+
+        (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
+            assert_eq!(source_adt_def, target_adt_def);
+
+            let CustomCoerceUnsized::Struct(coerce_index) =
+                crate::custom_coerce_unsize_info(tcx, source_ty, target_ty);
+
+            let source_fields = &source_adt_def.non_enum_variant().fields;
+            let target_fields = &target_adt_def.non_enum_variant().fields;
+
+            assert!(
+                coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
+            );
+
+            find_vtable_types_for_unsizing(
+                tcx,
+                source_fields[coerce_index].ty(tcx, source_substs),
+                target_fields[coerce_index].ty(tcx, target_substs),
+            )
+        }
+        _ => bug!(
+            "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
+            source_ty,
+            target_ty
+        ),
+    }
+}
+
+fn create_fn_mono_item<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    instance: Instance<'tcx>,
+    source: Span,
+) -> Spanned<MonoItem<'tcx>> {
+    debug!("create_fn_mono_item(instance={})", instance);
+
+    let def_id = instance.def_id();
+    if tcx.sess.opts.debugging_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id)
+    {
+        crate::util::dump_closure_profile(tcx, instance);
+    }
+
+    respan(source, MonoItem::Fn(instance.polymorphize(tcx)))
+}
+
+/// Creates a `MonoItem` for each method that is referenced by the vtable for
+/// the given trait/impl pair.
+fn create_mono_items_for_vtable_methods<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    trait_ty: Ty<'tcx>,
+    impl_ty: Ty<'tcx>,
+    source: Span,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
+
+    if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
+        if let Some(principal) = trait_ty.principal() {
+            let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
+            assert!(!poly_trait_ref.has_escaping_bound_vars());
+
+            // Walk all methods of the trait, including those of its supertraits
+            let entries = tcx.vtable_entries(poly_trait_ref);
+            let methods = entries
+                .iter()
+                .filter_map(|entry| match entry {
+                    VtblEntry::MetadataDropInPlace
+                    | VtblEntry::MetadataSize
+                    | VtblEntry::MetadataAlign
+                    | VtblEntry::Vacant => None,
+                    VtblEntry::TraitVPtr(_) => {
+                        // all super trait items already covered, so skip them.
+                        None
+                    }
+                    VtblEntry::Method(instance) => {
+                        Some(*instance).filter(|instance| should_codegen_locally(tcx, instance))
+                    }
+                })
+                .map(|item| create_fn_mono_item(tcx, item, source));
+            output.extend(methods);
+        }
+
+        // Also add the destructor.
+        visit_drop_use(tcx, impl_ty, false, source, output);
+    }
+}
+
+//=-----------------------------------------------------------------------------
+// Root Collection
+//=-----------------------------------------------------------------------------
+
+struct RootCollector<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    mode: MonoItemCollectionMode,
+    output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
+    entry_fn: Option<(DefId, EntryFnType)>,
+}
+
+impl ItemLikeVisitor<'v> for RootCollector<'_, 'v> {
+    fn visit_item(&mut self, item: &'v hir::Item<'v>) {
+        match item.kind {
+            hir::ItemKind::ExternCrate(..)
+            | hir::ItemKind::Use(..)
+            | hir::ItemKind::Macro(..)
+            | hir::ItemKind::ForeignMod { .. }
+            | hir::ItemKind::TyAlias(..)
+            | hir::ItemKind::Trait(..)
+            | hir::ItemKind::TraitAlias(..)
+            | hir::ItemKind::OpaqueTy(..)
+            | hir::ItemKind::Mod(..) => {
+                // Nothing to do, just keep recursing.
+            }
+
+            hir::ItemKind::Impl { .. } => {
+                if self.mode == MonoItemCollectionMode::Eager {
+                    create_mono_items_for_default_impls(self.tcx, item, self.output);
+                }
+            }
+
+            hir::ItemKind::Enum(_, ref generics)
+            | hir::ItemKind::Struct(_, ref generics)
+            | hir::ItemKind::Union(_, ref generics) => {
+                if generics.params.is_empty() {
+                    if self.mode == MonoItemCollectionMode::Eager {
+                        debug!(
+                            "RootCollector: ADT drop-glue for {}",
+                            self.tcx.def_path_str(item.def_id.to_def_id())
+                        );
+
+                        let ty = Instance::new(item.def_id.to_def_id(), InternalSubsts::empty())
+                            .ty(self.tcx, ty::ParamEnv::reveal_all());
+                        visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
+                    }
+                }
+            }
+            hir::ItemKind::GlobalAsm(..) => {
+                debug!(
+                    "RootCollector: ItemKind::GlobalAsm({})",
+                    self.tcx.def_path_str(item.def_id.to_def_id())
+                );
+                self.output.push(dummy_spanned(MonoItem::GlobalAsm(item.item_id())));
+            }
+            hir::ItemKind::Static(..) => {
+                debug!(
+                    "RootCollector: ItemKind::Static({})",
+                    self.tcx.def_path_str(item.def_id.to_def_id())
+                );
+                self.output.push(dummy_spanned(MonoItem::Static(item.def_id.to_def_id())));
+            }
+            hir::ItemKind::Const(..) => {
+                // const items only generate mono items if they are
+                // actually used somewhere. Just declaring them is insufficient.
+
+                // but even just declaring them must collect the items they refer to
+                if let Ok(val) = self.tcx.const_eval_poly(item.def_id.to_def_id()) {
+                    collect_const_value(self.tcx, val, &mut self.output);
+                }
+            }
+            hir::ItemKind::Fn(..) => {
+                self.push_if_root(item.def_id);
+            }
+        }
+    }
+
+    fn visit_trait_item(&mut self, _: &'v hir::TraitItem<'v>) {
+        // Even if there's a default body with no explicit generics,
+        // it's still generic over some `Self: Trait`, so not a root.
+    }
+
+    fn visit_impl_item(&mut self, ii: &'v hir::ImplItem<'v>) {
+        if let hir::ImplItemKind::Fn(hir::FnSig { .. }, _) = ii.kind {
+            self.push_if_root(ii.def_id);
+        }
+    }
+
+    fn visit_foreign_item(&mut self, _foreign_item: &'v hir::ForeignItem<'v>) {}
+}
+
+impl RootCollector<'_, 'v> {
+    fn is_root(&self, def_id: LocalDefId) -> bool {
+        !item_requires_monomorphization(self.tcx, def_id)
+            && match self.mode {
+                MonoItemCollectionMode::Eager => true,
+                MonoItemCollectionMode::Lazy => {
+                    self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
+                        || self.tcx.is_reachable_non_generic(def_id)
+                        || self
+                            .tcx
+                            .codegen_fn_attrs(def_id)
+                            .flags
+                            .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
+                }
+            }
+    }
+
+    /// If `def_id` represents a root, pushes it onto the list of
+    /// outputs. (Note that all roots must be monomorphic.)
+    fn push_if_root(&mut self, def_id: LocalDefId) {
+        if self.is_root(def_id) {
+            debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
+
+            let instance = Instance::mono(self.tcx, def_id.to_def_id());
+            self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
+        }
+    }
+
+    /// As a special case, when/if we encounter the
+    /// `main()` function, we also have to generate a
+    /// monomorphized copy of the start lang item based on
+    /// the return type of `main`. This is not needed when
+    /// the user writes their own `start` manually.
+    fn push_extra_entry_roots(&mut self) {
+        let main_def_id = match self.entry_fn {
+            Some((def_id, EntryFnType::Main)) => def_id,
+            _ => return,
+        };
+
+        let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
+            Ok(s) => s,
+            Err(err) => self.tcx.sess.fatal(&err),
+        };
+        let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
+
+        // Given that `main()` has no arguments,
+        // then its return type cannot have
+        // late-bound regions, since late-bound
+        // regions must appear in the argument
+        // listing.
+        let main_ret_ty = self.tcx.erase_regions(main_ret_ty.no_bound_vars().unwrap());
+
+        let start_instance = Instance::resolve(
+            self.tcx,
+            ty::ParamEnv::reveal_all(),
+            start_def_id,
+            self.tcx.intern_substs(&[main_ret_ty.into()]),
+        )
+        .unwrap()
+        .unwrap();
+
+        self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
+    }
+}
+
+fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
+    let generics = tcx.generics_of(def_id);
+    generics.requires_monomorphization(tcx)
+}
+
+fn create_mono_items_for_default_impls<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    item: &'tcx hir::Item<'tcx>,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    match item.kind {
+        hir::ItemKind::Impl(ref impl_) => {
+            for param in impl_.generics.params {
+                match param.kind {
+                    hir::GenericParamKind::Lifetime { .. } => {}
+                    hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
+                        return;
+                    }
+                }
+            }
+
+            debug!(
+                "create_mono_items_for_default_impls(item={})",
+                tcx.def_path_str(item.def_id.to_def_id())
+            );
+
+            if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) {
+                let param_env = ty::ParamEnv::reveal_all();
+                let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
+                let overridden_methods: FxHashSet<_> =
+                    impl_.items.iter().map(|iiref| iiref.ident.normalize_to_macros_2_0()).collect();
+                for method in tcx.provided_trait_methods(trait_ref.def_id) {
+                    if overridden_methods.contains(&method.ident.normalize_to_macros_2_0()) {
+                        continue;
+                    }
+
+                    if tcx.generics_of(method.def_id).own_requires_monomorphization() {
+                        continue;
+                    }
+
+                    let substs =
+                        InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
+                            GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
+                            GenericParamDefKind::Type { .. }
+                            | GenericParamDefKind::Const { .. } => {
+                                trait_ref.substs[param.index as usize]
+                            }
+                        });
+                    let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
+                        .unwrap()
+                        .unwrap();
+
+                    let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
+                    if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
+                    {
+                        output.push(mono_item);
+                    }
+                }
+            }
+        }
+        _ => bug!(),
+    }
+}
+
+/// Scans the miri alloc in order to find function calls, closures, and drop-glue.
+fn collect_miri<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    alloc_id: AllocId,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    match tcx.global_alloc(alloc_id) {
+        GlobalAlloc::Static(def_id) => {
+            assert!(!tcx.is_thread_local_static(def_id));
+            let instance = Instance::mono(tcx, def_id);
+            if should_codegen_locally(tcx, &instance) {
+                trace!("collecting static {:?}", def_id);
+                output.push(dummy_spanned(MonoItem::Static(def_id)));
+            }
+        }
+        GlobalAlloc::Memory(alloc) => {
+            trace!("collecting {:?} with {:#?}", alloc_id, alloc);
+            for &inner in alloc.relocations().values() {
+                rustc_data_structures::stack::ensure_sufficient_stack(|| {
+                    collect_miri(tcx, inner, output);
+                });
+            }
+        }
+        GlobalAlloc::Function(fn_instance) => {
+            if should_codegen_locally(tcx, &fn_instance) {
+                trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
+                output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
+            }
+        }
+    }
+}
+
+/// Scans the MIR in order to find function calls, closures, and drop-glue.
+fn collect_neighbours<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    instance: Instance<'tcx>,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    debug!("collect_neighbours: {:?}", instance.def_id());
+    let body = tcx.instance_mir(instance.def);
+
+    MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
+}
+
+fn collect_const_value<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    value: ConstValue<'tcx>,
+    output: &mut Vec<Spanned<MonoItem<'tcx>>>,
+) {
+    match value {
+        ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output),
+        ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
+            for &id in alloc.relocations().values() {
+                collect_miri(tcx, id, output);
+            }
+        }
+        _ => {}
+    }
+}
diff --git a/compiler/rustc_monomorphize/src/lib.rs b/compiler/rustc_monomorphize/src/lib.rs
new file mode 100644
index 00000000000..2a40eeac5bd
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/lib.rs
@@ -0,0 +1,49 @@
+#![feature(array_windows)]
+#![feature(bool_to_option)]
+#![feature(crate_visibility_modifier)]
+#![feature(control_flow_enum)]
+#![feature(in_band_lifetimes)]
+
+#[macro_use]
+extern crate tracing;
+#[macro_use]
+extern crate rustc_middle;
+
+use rustc_hir::lang_items::LangItem;
+use rustc_middle::traits;
+use rustc_middle::ty::adjustment::CustomCoerceUnsized;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+
+mod collector;
+mod partitioning;
+mod polymorphize;
+mod util;
+
+fn custom_coerce_unsize_info<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    source_ty: Ty<'tcx>,
+    target_ty: Ty<'tcx>,
+) -> CustomCoerceUnsized {
+    let def_id = tcx.require_lang_item(LangItem::CoerceUnsized, None);
+
+    let trait_ref = ty::Binder::dummy(ty::TraitRef {
+        def_id,
+        substs: tcx.mk_substs_trait(source_ty, &[target_ty.into()]),
+    });
+
+    match tcx.codegen_fulfill_obligation((ty::ParamEnv::reveal_all(), trait_ref)) {
+        Ok(traits::ImplSource::UserDefined(traits::ImplSourceUserDefinedData {
+            impl_def_id,
+            ..
+        })) => tcx.coerce_unsized_info(impl_def_id).custom_kind.unwrap(),
+        impl_source => {
+            bug!("invalid `CoerceUnsized` impl_source: {:?}", impl_source);
+        }
+    }
+}
+
+pub fn provide(providers: &mut Providers) {
+    partitioning::provide(providers);
+    polymorphize::provide(providers);
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/default.rs b/compiler/rustc_monomorphize/src/partitioning/default.rs
new file mode 100644
index 00000000000..429ed53d379
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/default.rs
@@ -0,0 +1,557 @@
+use std::collections::hash_map::Entry;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
+use rustc_hir::definitions::DefPathDataName;
+use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
+use rustc_middle::middle::exported_symbols::SymbolExportLevel;
+use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, Linkage, Visibility};
+use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
+use rustc_middle::ty::print::characteristic_def_id_of_type;
+use rustc_middle::ty::{self, DefIdTree, InstanceDef, TyCtxt};
+use rustc_span::symbol::Symbol;
+
+use super::PartitioningCx;
+use crate::collector::InliningMap;
+use crate::partitioning::merging;
+use crate::partitioning::{
+    MonoItemPlacement, Partitioner, PostInliningPartitioning, PreInliningPartitioning,
+};
+
+pub struct DefaultPartitioning;
+
+impl<'tcx> Partitioner<'tcx> for DefaultPartitioning {
+    fn place_root_mono_items(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+    ) -> PreInliningPartitioning<'tcx> {
+        let mut roots = FxHashSet::default();
+        let mut codegen_units = FxHashMap::default();
+        let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
+        let mut internalization_candidates = FxHashSet::default();
+
+        // Determine if monomorphizations instantiated in this crate will be made
+        // available to downstream crates. This depends on whether we are in
+        // share-generics mode and whether the current crate can even have
+        // downstream crates.
+        let export_generics =
+            cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
+
+        let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
+        let cgu_name_cache = &mut FxHashMap::default();
+
+        for mono_item in mono_items {
+            match mono_item.instantiation_mode(cx.tcx) {
+                InstantiationMode::GloballyShared { .. } => {}
+                InstantiationMode::LocalCopy => continue,
+            }
+
+            let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
+            let is_volatile = is_incremental_build && mono_item.is_generic_fn();
+
+            let codegen_unit_name = match characteristic_def_id {
+                Some(def_id) => compute_codegen_unit_name(
+                    cx.tcx,
+                    cgu_name_builder,
+                    def_id,
+                    is_volatile,
+                    cgu_name_cache,
+                ),
+                None => fallback_cgu_name(cgu_name_builder),
+            };
+
+            let codegen_unit = codegen_units
+                .entry(codegen_unit_name)
+                .or_insert_with(|| CodegenUnit::new(codegen_unit_name));
+
+            let mut can_be_internalized = true;
+            let (linkage, visibility) = mono_item_linkage_and_visibility(
+                cx.tcx,
+                &mono_item,
+                &mut can_be_internalized,
+                export_generics,
+            );
+            if visibility == Visibility::Hidden && can_be_internalized {
+                internalization_candidates.insert(mono_item);
+            }
+
+            codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
+            roots.insert(mono_item);
+        }
+
+        // Always ensure we have at least one CGU; otherwise, if we have a
+        // crate with just types (for example), we could wind up with no CGU.
+        if codegen_units.is_empty() {
+            let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
+            codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
+        }
+
+        PreInliningPartitioning {
+            codegen_units: codegen_units
+                .into_iter()
+                .map(|(_, codegen_unit)| codegen_unit)
+                .collect(),
+            roots,
+            internalization_candidates,
+        }
+    }
+
+    fn merge_codegen_units(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+    ) {
+        merging::merge_codegen_units(cx, initial_partitioning);
+    }
+
+    fn place_inlined_mono_items(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        initial_partitioning: PreInliningPartitioning<'tcx>,
+    ) -> PostInliningPartitioning<'tcx> {
+        let mut new_partitioning = Vec::new();
+        let mut mono_item_placements = FxHashMap::default();
+
+        let PreInliningPartitioning {
+            codegen_units: initial_cgus,
+            roots,
+            internalization_candidates,
+        } = initial_partitioning;
+
+        let single_codegen_unit = initial_cgus.len() == 1;
+
+        for old_codegen_unit in initial_cgus {
+            // Collect all items that need to be available in this codegen unit.
+            let mut reachable = FxHashSet::default();
+            for root in old_codegen_unit.items().keys() {
+                follow_inlining(*root, cx.inlining_map, &mut reachable);
+            }
+
+            let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
+
+            // Add all monomorphizations that are not already there.
+            for mono_item in reachable {
+                if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
+                    // This is a root, just copy it over.
+                    new_codegen_unit.items_mut().insert(mono_item, *linkage);
+                } else {
+                    if roots.contains(&mono_item) {
+                        bug!(
+                            "GloballyShared mono-item inlined into other CGU: \
+                              {:?}",
+                            mono_item
+                        );
+                    }
+
+                    // This is a CGU-private copy.
+                    new_codegen_unit
+                        .items_mut()
+                        .insert(mono_item, (Linkage::Internal, Visibility::Default));
+                }
+
+                if !single_codegen_unit {
+                    // If there is more than one codegen unit, we need to keep track
+                    // in which codegen units each monomorphization is placed.
+                    match mono_item_placements.entry(mono_item) {
+                        Entry::Occupied(e) => {
+                            let placement = e.into_mut();
+                            debug_assert!(match *placement {
+                                MonoItemPlacement::SingleCgu { cgu_name } => {
+                                    cgu_name != new_codegen_unit.name()
+                                }
+                                MonoItemPlacement::MultipleCgus => true,
+                            });
+                            *placement = MonoItemPlacement::MultipleCgus;
+                        }
+                        Entry::Vacant(e) => {
+                            e.insert(MonoItemPlacement::SingleCgu {
+                                cgu_name: new_codegen_unit.name(),
+                            });
+                        }
+                    }
+                }
+            }
+
+            new_partitioning.push(new_codegen_unit);
+        }
+
+        return PostInliningPartitioning {
+            codegen_units: new_partitioning,
+            mono_item_placements,
+            internalization_candidates,
+        };
+
+        fn follow_inlining<'tcx>(
+            mono_item: MonoItem<'tcx>,
+            inlining_map: &InliningMap<'tcx>,
+            visited: &mut FxHashSet<MonoItem<'tcx>>,
+        ) {
+            if !visited.insert(mono_item) {
+                return;
+            }
+
+            inlining_map.with_inlining_candidates(mono_item, |target| {
+                follow_inlining(target, inlining_map, visited);
+            });
+        }
+    }
+
+    fn internalize_symbols(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        partitioning: &mut PostInliningPartitioning<'tcx>,
+    ) {
+        if partitioning.codegen_units.len() == 1 {
+            // Fast path for when there is only one codegen unit. In this case we
+            // can internalize all candidates, since there is nowhere else they
+            // could be accessed from.
+            for cgu in &mut partitioning.codegen_units {
+                for candidate in &partitioning.internalization_candidates {
+                    cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
+                }
+            }
+
+            return;
+        }
+
+        // Build a map from every monomorphization to all the monomorphizations that
+        // reference it.
+        let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
+        cx.inlining_map.iter_accesses(|accessor, accessees| {
+            for accessee in accessees {
+                accessor_map.entry(*accessee).or_default().push(accessor);
+            }
+        });
+
+        let mono_item_placements = &partitioning.mono_item_placements;
+
+        // For each internalization candidates in each codegen unit, check if it is
+        // accessed from outside its defining codegen unit.
+        for cgu in &mut partitioning.codegen_units {
+            let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
+
+            for (accessee, linkage_and_visibility) in cgu.items_mut() {
+                if !partitioning.internalization_candidates.contains(accessee) {
+                    // This item is no candidate for internalizing, so skip it.
+                    continue;
+                }
+                debug_assert_eq!(mono_item_placements[accessee], home_cgu);
+
+                if let Some(accessors) = accessor_map.get(accessee) {
+                    if accessors
+                        .iter()
+                        .filter_map(|accessor| {
+                            // Some accessors might not have been
+                            // instantiated. We can safely ignore those.
+                            mono_item_placements.get(accessor)
+                        })
+                        .any(|placement| *placement != home_cgu)
+                    {
+                        // Found an accessor from another CGU, so skip to the next
+                        // item without marking this one as internal.
+                        continue;
+                    }
+                }
+
+                // If we got here, we did not find any accesses from other CGUs,
+                // so it's fine to make this monomorphization internal.
+                *linkage_and_visibility = (Linkage::Internal, Visibility::Default);
+            }
+        }
+    }
+}
+
+fn characteristic_def_id_of_mono_item<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    mono_item: MonoItem<'tcx>,
+) -> Option<DefId> {
+    match mono_item {
+        MonoItem::Fn(instance) => {
+            let def_id = match instance.def {
+                ty::InstanceDef::Item(def) => def.did,
+                ty::InstanceDef::VtableShim(..)
+                | ty::InstanceDef::ReifyShim(..)
+                | ty::InstanceDef::FnPtrShim(..)
+                | ty::InstanceDef::ClosureOnceShim { .. }
+                | ty::InstanceDef::Intrinsic(..)
+                | ty::InstanceDef::DropGlue(..)
+                | ty::InstanceDef::Virtual(..)
+                | ty::InstanceDef::CloneShim(..) => return None,
+            };
+
+            // If this is a method, we want to put it into the same module as
+            // its self-type. If the self-type does not provide a characteristic
+            // DefId, we use the location of the impl after all.
+
+            if tcx.trait_of_item(def_id).is_some() {
+                let self_ty = instance.substs.type_at(0);
+                // This is a default implementation of a trait method.
+                return characteristic_def_id_of_type(self_ty).or(Some(def_id));
+            }
+
+            if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
+                if tcx.sess.opts.incremental.is_some()
+                    && tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
+                {
+                    // Put `Drop::drop` into the same cgu as `drop_in_place`
+                    // since `drop_in_place` is the only thing that can
+                    // call it.
+                    return None;
+                }
+                // This is a method within an impl, find out what the self-type is:
+                let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
+                    instance.substs,
+                    ty::ParamEnv::reveal_all(),
+                    tcx.type_of(impl_def_id),
+                );
+                if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
+                    return Some(def_id);
+                }
+            }
+
+            Some(def_id)
+        }
+        MonoItem::Static(def_id) => Some(def_id),
+        MonoItem::GlobalAsm(item_id) => Some(item_id.def_id.to_def_id()),
+    }
+}
+
+fn compute_codegen_unit_name(
+    tcx: TyCtxt<'_>,
+    name_builder: &mut CodegenUnitNameBuilder<'_>,
+    def_id: DefId,
+    volatile: bool,
+    cache: &mut CguNameCache,
+) -> Symbol {
+    // Find the innermost module that is not nested within a function.
+    let mut current_def_id = def_id;
+    let mut cgu_def_id = None;
+    // Walk backwards from the item we want to find the module for.
+    loop {
+        if current_def_id.index == CRATE_DEF_INDEX {
+            if cgu_def_id.is_none() {
+                // If we have not found a module yet, take the crate root.
+                cgu_def_id = Some(DefId { krate: def_id.krate, index: CRATE_DEF_INDEX });
+            }
+            break;
+        } else if tcx.def_kind(current_def_id) == DefKind::Mod {
+            if cgu_def_id.is_none() {
+                cgu_def_id = Some(current_def_id);
+            }
+        } else {
+            // If we encounter something that is not a module, throw away
+            // any module that we've found so far because we now know that
+            // it is nested within something else.
+            cgu_def_id = None;
+        }
+
+        current_def_id = tcx.parent(current_def_id).unwrap();
+    }
+
+    let cgu_def_id = cgu_def_id.unwrap();
+
+    *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
+        let def_path = tcx.def_path(cgu_def_id);
+
+        let components = def_path.data.iter().map(|part| match part.data.name() {
+            DefPathDataName::Named(name) => name,
+            DefPathDataName::Anon { .. } => unreachable!(),
+        });
+
+        let volatile_suffix = volatile.then_some("volatile");
+
+        name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
+    })
+}
+
+// Anything we can't find a proper codegen unit for goes into this.
+fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
+    name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
+}
+
+fn mono_item_linkage_and_visibility(
+    tcx: TyCtxt<'tcx>,
+    mono_item: &MonoItem<'tcx>,
+    can_be_internalized: &mut bool,
+    export_generics: bool,
+) -> (Linkage, Visibility) {
+    if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
+        return (explicit_linkage, Visibility::Default);
+    }
+    let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
+    (Linkage::External, vis)
+}
+
+type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
+
+fn mono_item_visibility(
+    tcx: TyCtxt<'tcx>,
+    mono_item: &MonoItem<'tcx>,
+    can_be_internalized: &mut bool,
+    export_generics: bool,
+) -> Visibility {
+    let instance = match mono_item {
+        // This is pretty complicated; see below.
+        MonoItem::Fn(instance) => instance,
+
+        // Misc handling for generics and such, but otherwise:
+        MonoItem::Static(def_id) => {
+            return if tcx.is_reachable_non_generic(*def_id) {
+                *can_be_internalized = false;
+                default_visibility(tcx, *def_id, false)
+            } else {
+                Visibility::Hidden
+            };
+        }
+        MonoItem::GlobalAsm(item_id) => {
+            return if tcx.is_reachable_non_generic(item_id.def_id) {
+                *can_be_internalized = false;
+                default_visibility(tcx, item_id.def_id.to_def_id(), false)
+            } else {
+                Visibility::Hidden
+            };
+        }
+    };
+
+    let def_id = match instance.def {
+        InstanceDef::Item(def) => def.did,
+        InstanceDef::DropGlue(def_id, Some(_)) => def_id,
+
+        // These are all compiler glue and such, never exported, always hidden.
+        InstanceDef::VtableShim(..)
+        | InstanceDef::ReifyShim(..)
+        | InstanceDef::FnPtrShim(..)
+        | InstanceDef::Virtual(..)
+        | InstanceDef::Intrinsic(..)
+        | InstanceDef::ClosureOnceShim { .. }
+        | InstanceDef::DropGlue(..)
+        | InstanceDef::CloneShim(..) => return Visibility::Hidden,
+    };
+
+    // The `start_fn` lang item is actually a monomorphized instance of a
+    // function in the standard library, used for the `main` function. We don't
+    // want to export it so we tag it with `Hidden` visibility but this symbol
+    // is only referenced from the actual `main` symbol which we unfortunately
+    // don't know anything about during partitioning/collection. As a result we
+    // forcibly keep this symbol out of the `internalization_candidates` set.
+    //
+    // FIXME: eventually we don't want to always force this symbol to have
+    //        hidden visibility, it should indeed be a candidate for
+    //        internalization, but we have to understand that it's referenced
+    //        from the `main` symbol we'll generate later.
+    //
+    //        This may be fixable with a new `InstanceDef` perhaps? Unsure!
+    if tcx.lang_items().start_fn() == Some(def_id) {
+        *can_be_internalized = false;
+        return Visibility::Hidden;
+    }
+
+    let is_generic = instance.substs.non_erasable_generics().next().is_some();
+
+    // Upstream `DefId` instances get different handling than local ones.
+    let def_id = if let Some(def_id) = def_id.as_local() {
+        def_id
+    } else {
+        return if export_generics && is_generic {
+            // If it is an upstream monomorphization and we export generics, we must make
+            // it available to downstream crates.
+            *can_be_internalized = false;
+            default_visibility(tcx, def_id, true)
+        } else {
+            Visibility::Hidden
+        };
+    };
+
+    if is_generic {
+        if export_generics {
+            if tcx.is_unreachable_local_definition(def_id) {
+                // This instance cannot be used from another crate.
+                Visibility::Hidden
+            } else {
+                // This instance might be useful in a downstream crate.
+                *can_be_internalized = false;
+                default_visibility(tcx, def_id.to_def_id(), true)
+            }
+        } else {
+            // We are not exporting generics or the definition is not reachable
+            // for downstream crates, we can internalize its instantiations.
+            Visibility::Hidden
+        }
+    } else {
+        // If this isn't a generic function then we mark this a `Default` if
+        // this is a reachable item, meaning that it's a symbol other crates may
+        // access when they link to us.
+        if tcx.is_reachable_non_generic(def_id.to_def_id()) {
+            *can_be_internalized = false;
+            debug_assert!(!is_generic);
+            return default_visibility(tcx, def_id.to_def_id(), false);
+        }
+
+        // If this isn't reachable then we're gonna tag this with `Hidden`
+        // visibility. In some situations though we'll want to prevent this
+        // symbol from being internalized.
+        //
+        // There's two categories of items here:
+        //
+        // * First is weak lang items. These are basically mechanisms for
+        //   libcore to forward-reference symbols defined later in crates like
+        //   the standard library or `#[panic_handler]` definitions. The
+        //   definition of these weak lang items needs to be referenceable by
+        //   libcore, so we're no longer a candidate for internalization.
+        //   Removal of these functions can't be done by LLVM but rather must be
+        //   done by the linker as it's a non-local decision.
+        //
+        // * Second is "std internal symbols". Currently this is primarily used
+        //   for allocator symbols. Allocators are a little weird in their
+        //   implementation, but the idea is that the compiler, at the last
+        //   minute, defines an allocator with an injected object file. The
+        //   `alloc` crate references these symbols (`__rust_alloc`) and the
+        //   definition doesn't get hooked up until a linked crate artifact is
+        //   generated.
+        //
+        //   The symbols synthesized by the compiler (`__rust_alloc`) are thin
+        //   veneers around the actual implementation, some other symbol which
+        //   implements the same ABI. These symbols (things like `__rg_alloc`,
+        //   `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
+        //   internal symbols".
+        //
+        //   The std-internal symbols here **should not show up in a dll as an
+        //   exported interface**, so they return `false` from
+        //   `is_reachable_non_generic` above and we'll give them `Hidden`
+        //   visibility below. Like the weak lang items, though, we can't let
+        //   LLVM internalize them as this decision is left up to the linker to
+        //   omit them, so prevent them from being internalized.
+        let attrs = tcx.codegen_fn_attrs(def_id);
+        if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
+            *can_be_internalized = false;
+        }
+
+        Visibility::Hidden
+    }
+}
+
+fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
+    if !tcx.sess.target.default_hidden_visibility {
+        return Visibility::Default;
+    }
+
+    // Generic functions never have export-level C.
+    if is_generic {
+        return Visibility::Hidden;
+    }
+
+    // Things with export level C don't get instantiated in
+    // downstream crates.
+    if !id.is_local() {
+        return Visibility::Hidden;
+    }
+
+    // C-export level items remain at `Default`, all other internal
+    // items become `Hidden`.
+    match tcx.reachable_non_generics(id.krate).get(&id) {
+        Some(SymbolExportLevel::C) => Visibility::Default,
+        _ => Visibility::Hidden,
+    }
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/merging.rs b/compiler/rustc_monomorphize/src/partitioning/merging.rs
new file mode 100644
index 00000000000..229468b47ff
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/merging.rs
@@ -0,0 +1,111 @@
+use std::cmp;
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_hir::def_id::LOCAL_CRATE;
+use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder};
+use rustc_span::symbol::{Symbol, SymbolStr};
+
+use super::PartitioningCx;
+use crate::partitioning::PreInliningPartitioning;
+
+pub fn merge_codegen_units<'tcx>(
+    cx: &PartitioningCx<'_, 'tcx>,
+    initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+) {
+    assert!(cx.target_cgu_count >= 1);
+    let codegen_units = &mut initial_partitioning.codegen_units;
+
+    // Note that at this point in time the `codegen_units` here may not be in a
+    // deterministic order (but we know they're deterministically the same set).
+    // We want this merging to produce a deterministic ordering of codegen units
+    // from the input.
+    //
+    // Due to basically how we've implemented the merging below (merge the two
+    // smallest into each other) we're sure to start off with a deterministic
+    // order (sorted by name). This'll mean that if two cgus have the same size
+    // the stable sort below will keep everything nice and deterministic.
+    codegen_units.sort_by_cached_key(|cgu| cgu.name().as_str());
+
+    // This map keeps track of what got merged into what.
+    let mut cgu_contents: FxHashMap<Symbol, Vec<SymbolStr>> =
+        codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name().as_str()])).collect();
+
+    // Merge the two smallest codegen units until the target size is reached.
+    while codegen_units.len() > cx.target_cgu_count {
+        // Sort small cgus to the back
+        codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
+        let mut smallest = codegen_units.pop().unwrap();
+        let second_smallest = codegen_units.last_mut().unwrap();
+
+        // Move the mono-items from `smallest` to `second_smallest`
+        second_smallest.modify_size_estimate(smallest.size_estimate());
+        for (k, v) in smallest.items_mut().drain() {
+            second_smallest.items_mut().insert(k, v);
+        }
+
+        // Record that `second_smallest` now contains all the stuff that was in
+        // `smallest` before.
+        let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
+        cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
+
+        debug!(
+            "CodegenUnit {} merged into CodegenUnit {}",
+            smallest.name(),
+            second_smallest.name()
+        );
+    }
+
+    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
+
+    if cx.tcx.sess.opts.incremental.is_some() {
+        // If we are doing incremental compilation, we want CGU names to
+        // reflect the path of the source level module they correspond to.
+        // For CGUs that contain the code of multiple modules because of the
+        // merging done above, we use a concatenation of the names of
+        // all contained CGUs.
+        let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
+            .into_iter()
+            // This `filter` makes sure we only update the name of CGUs that
+            // were actually modified by merging.
+            .filter(|(_, cgu_contents)| cgu_contents.len() > 1)
+            .map(|(current_cgu_name, cgu_contents)| {
+                let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| &s[..]).collect();
+
+                // Sort the names, so things are deterministic and easy to
+                // predict.
+
+                // We are sorting primitive &strs here so we can use unstable sort
+                cgu_contents.sort_unstable();
+
+                (current_cgu_name, cgu_contents.join("--"))
+            })
+            .collect();
+
+        for cgu in codegen_units.iter_mut() {
+            if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
+                if cx.tcx.sess.opts.debugging_opts.human_readable_cgu_names {
+                    cgu.set_name(Symbol::intern(&new_cgu_name));
+                } else {
+                    // If we don't require CGU names to be human-readable, we
+                    // use a fixed length hash of the composite CGU name
+                    // instead.
+                    let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
+                    cgu.set_name(Symbol::intern(&new_cgu_name));
+                }
+            }
+        }
+    } else {
+        // If we are compiling non-incrementally we just generate simple CGU
+        // names containing an index.
+        for (index, cgu) in codegen_units.iter_mut().enumerate() {
+            cgu.set_name(numbered_codegen_unit_name(cgu_name_builder, index));
+        }
+    }
+}
+
+fn numbered_codegen_unit_name(
+    name_builder: &mut CodegenUnitNameBuilder<'_>,
+    index: usize,
+) -> Symbol {
+    name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index))
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/mod.rs b/compiler/rustc_monomorphize/src/partitioning/mod.rs
new file mode 100644
index 00000000000..7a7a56a034e
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/mod.rs
@@ -0,0 +1,466 @@
+//! Partitioning Codegen Units for Incremental Compilation
+//! ======================================================
+//!
+//! The task of this module is to take the complete set of monomorphizations of
+//! a crate and produce a set of codegen units from it, where a codegen unit
+//! is a named set of (mono-item, linkage) pairs. That is, this module
+//! decides which monomorphization appears in which codegen units with which
+//! linkage. The following paragraphs describe some of the background on the
+//! partitioning scheme.
+//!
+//! The most important opportunity for saving on compilation time with
+//! incremental compilation is to avoid re-codegenning and re-optimizing code.
+//! Since the unit of codegen and optimization for LLVM is "modules" or, how
+//! we call them "codegen units", the particulars of how much time can be saved
+//! by incremental compilation are tightly linked to how the output program is
+//! partitioned into these codegen units prior to passing it to LLVM --
+//! especially because we have to treat codegen units as opaque entities once
+//! they are created: There is no way for us to incrementally update an existing
+//! LLVM module and so we have to build any such module from scratch if it was
+//! affected by some change in the source code.
+//!
+//! From that point of view it would make sense to maximize the number of
+//! codegen units by, for example, putting each function into its own module.
+//! That way only those modules would have to be re-compiled that were actually
+//! affected by some change, minimizing the number of functions that could have
+//! been re-used but just happened to be located in a module that is
+//! re-compiled.
+//!
+//! However, since LLVM optimization does not work across module boundaries,
+//! using such a highly granular partitioning would lead to very slow runtime
+//! code since it would effectively prohibit inlining and other inter-procedure
+//! optimizations. We want to avoid that as much as possible.
+//!
+//! Thus we end up with a trade-off: The bigger the codegen units, the better
+//! LLVM's optimizer can do its work, but also the smaller the compilation time
+//! reduction we get from incremental compilation.
+//!
+//! Ideally, we would create a partitioning such that there are few big codegen
+//! units with few interdependencies between them. For now though, we use the
+//! following heuristic to determine the partitioning:
+//!
+//! - There are two codegen units for every source-level module:
+//! - One for "stable", that is non-generic, code
+//! - One for more "volatile" code, i.e., monomorphized instances of functions
+//!   defined in that module
+//!
+//! In order to see why this heuristic makes sense, let's take a look at when a
+//! codegen unit can get invalidated:
+//!
+//! 1. The most straightforward case is when the BODY of a function or global
+//! changes. Then any codegen unit containing the code for that item has to be
+//! re-compiled. Note that this includes all codegen units where the function
+//! has been inlined.
+//!
+//! 2. The next case is when the SIGNATURE of a function or global changes. In
+//! this case, all codegen units containing a REFERENCE to that item have to be
+//! re-compiled. This is a superset of case 1.
+//!
+//! 3. The final and most subtle case is when a REFERENCE to a generic function
+//! is added or removed somewhere. Even though the definition of the function
+//! might be unchanged, a new REFERENCE might introduce a new monomorphized
+//! instance of this function which has to be placed and compiled somewhere.
+//! Conversely, when removing a REFERENCE, it might have been the last one with
+//! that particular set of generic arguments and thus we have to remove it.
+//!
+//! From the above we see that just using one codegen unit per source-level
+//! module is not such a good idea, since just adding a REFERENCE to some
+//! generic item somewhere else would invalidate everything within the module
+//! containing the generic item. The heuristic above reduces this detrimental
+//! side-effect of references a little by at least not touching the non-generic
+//! code of the module.
+//!
+//! A Note on Inlining
+//! ------------------
+//! As briefly mentioned above, in order for LLVM to be able to inline a
+//! function call, the body of the function has to be available in the LLVM
+//! module where the call is made. This has a few consequences for partitioning:
+//!
+//! - The partitioning algorithm has to take care of placing functions into all
+//!   codegen units where they should be available for inlining. It also has to
+//!   decide on the correct linkage for these functions.
+//!
+//! - The partitioning algorithm has to know which functions are likely to get
+//!   inlined, so it can distribute function instantiations accordingly. Since
+//!   there is no way of knowing for sure which functions LLVM will decide to
+//!   inline in the end, we apply a heuristic here: Only functions marked with
+//!   `#[inline]` are considered for inlining by the partitioner. The current
+//!   implementation will not try to determine if a function is likely to be
+//!   inlined by looking at the functions definition.
+//!
+//! Note though that as a side-effect of creating a codegen units per
+//! source-level module, functions from the same module will be available for
+//! inlining, even when they are not marked `#[inline]`.
+
+mod default;
+mod merging;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync;
+use rustc_hir::def_id::DefIdSet;
+use rustc_middle::mir::mono::MonoItem;
+use rustc_middle::mir::mono::{CodegenUnit, Linkage};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::TyCtxt;
+use rustc_span::symbol::Symbol;
+
+use crate::collector::InliningMap;
+use crate::collector::{self, MonoItemCollectionMode};
+
+pub struct PartitioningCx<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    target_cgu_count: usize,
+    inlining_map: &'a InliningMap<'tcx>,
+}
+
+trait Partitioner<'tcx> {
+    fn place_root_mono_items(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+    ) -> PreInliningPartitioning<'tcx>;
+
+    fn merge_codegen_units(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+    );
+
+    fn place_inlined_mono_items(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        initial_partitioning: PreInliningPartitioning<'tcx>,
+    ) -> PostInliningPartitioning<'tcx>;
+
+    fn internalize_symbols(
+        &mut self,
+        cx: &PartitioningCx<'_, 'tcx>,
+        partitioning: &mut PostInliningPartitioning<'tcx>,
+    );
+}
+
+fn get_partitioner<'tcx>(tcx: TyCtxt<'tcx>) -> Box<dyn Partitioner<'tcx>> {
+    let strategy = match &tcx.sess.opts.debugging_opts.cgu_partitioning_strategy {
+        None => "default",
+        Some(s) => &s[..],
+    };
+
+    match strategy {
+        "default" => Box::new(default::DefaultPartitioning),
+        _ => tcx.sess.fatal("unknown partitioning strategy"),
+    }
+}
+
+pub fn partition<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+    max_cgu_count: usize,
+    inlining_map: &InliningMap<'tcx>,
+) -> Vec<CodegenUnit<'tcx>> {
+    let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
+
+    let mut partitioner = get_partitioner(tcx);
+    let cx = &PartitioningCx { tcx, target_cgu_count: max_cgu_count, inlining_map };
+    // In the first step, we place all regular monomorphizations into their
+    // respective 'home' codegen unit. Regular monomorphizations are all
+    // functions and statics defined in the local crate.
+    let mut initial_partitioning = {
+        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_roots");
+        partitioner.place_root_mono_items(cx, mono_items)
+    };
+
+    initial_partitioning.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(tcx));
+
+    debug_dump(tcx, "INITIAL PARTITIONING:", initial_partitioning.codegen_units.iter());
+
+    // Merge until we have at most `max_cgu_count` codegen units.
+    {
+        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
+        partitioner.merge_codegen_units(cx, &mut initial_partitioning);
+        debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter());
+    }
+
+    // In the next step, we use the inlining map to determine which additional
+    // monomorphizations have to go into each codegen unit. These additional
+    // monomorphizations can be drop-glue, functions from external crates, and
+    // local functions the definition of which is marked with `#[inline]`.
+    let mut post_inlining = {
+        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_inline_items");
+        partitioner.place_inlined_mono_items(cx, initial_partitioning)
+    };
+
+    post_inlining.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(tcx));
+
+    debug_dump(tcx, "POST INLINING:", post_inlining.codegen_units.iter());
+
+    // Next we try to make as many symbols "internal" as possible, so LLVM has
+    // more freedom to optimize.
+    if !tcx.sess.link_dead_code() {
+        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
+        partitioner.internalize_symbols(cx, &mut post_inlining);
+    }
+
+    // Finally, sort by codegen unit name, so that we get deterministic results.
+    let PostInliningPartitioning {
+        codegen_units: mut result,
+        mono_item_placements: _,
+        internalization_candidates: _,
+    } = post_inlining;
+
+    result.sort_by_cached_key(|cgu| cgu.name().as_str());
+
+    result
+}
+
+pub struct PreInliningPartitioning<'tcx> {
+    codegen_units: Vec<CodegenUnit<'tcx>>,
+    roots: FxHashSet<MonoItem<'tcx>>,
+    internalization_candidates: FxHashSet<MonoItem<'tcx>>,
+}
+
+/// For symbol internalization, we need to know whether a symbol/mono-item is
+/// accessed from outside the codegen unit it is defined in. This type is used
+/// to keep track of that.
+#[derive(Clone, PartialEq, Eq, Debug)]
+enum MonoItemPlacement {
+    SingleCgu { cgu_name: Symbol },
+    MultipleCgus,
+}
+
+struct PostInliningPartitioning<'tcx> {
+    codegen_units: Vec<CodegenUnit<'tcx>>,
+    mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
+    internalization_candidates: FxHashSet<MonoItem<'tcx>>,
+}
+
+fn debug_dump<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, label: &str, cgus: I)
+where
+    I: Iterator<Item = &'a CodegenUnit<'tcx>>,
+    'tcx: 'a,
+{
+    let dump = move || {
+        use std::fmt::Write;
+
+        let s = &mut String::new();
+        let _ = writeln!(s, "{}", label);
+        for cgu in cgus {
+            let _ =
+                writeln!(s, "CodegenUnit {} estimated size {} :", cgu.name(), cgu.size_estimate());
+
+            for (mono_item, linkage) in cgu.items() {
+                let symbol_name = mono_item.symbol_name(tcx).name;
+                let symbol_hash_start = symbol_name.rfind('h');
+                let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
+
+                let _ = writeln!(
+                    s,
+                    " - {} [{:?}] [{}] estimated size {}",
+                    mono_item,
+                    linkage,
+                    symbol_hash,
+                    mono_item.size_estimate(tcx)
+                );
+            }
+
+            let _ = writeln!(s, "");
+        }
+
+        std::mem::take(s)
+    };
+
+    debug!("{}", dump());
+}
+
+#[inline(never)] // give this a place in the profiler
+fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
+where
+    I: Iterator<Item = &'a MonoItem<'tcx>>,
+    'tcx: 'a,
+{
+    let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
+
+    let mut symbols: Vec<_> =
+        mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
+
+    symbols.sort_by_key(|sym| sym.1);
+
+    for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
+        if sym1 == sym2 {
+            let span1 = mono_item1.local_span(tcx);
+            let span2 = mono_item2.local_span(tcx);
+
+            // Deterministically select one of the spans for error reporting
+            let span = match (span1, span2) {
+                (Some(span1), Some(span2)) => {
+                    Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
+                }
+                (span1, span2) => span1.or(span2),
+            };
+
+            let error_message = format!("symbol `{}` is already defined", sym1);
+
+            if let Some(span) = span {
+                tcx.sess.span_fatal(span, &error_message)
+            } else {
+                tcx.sess.fatal(&error_message)
+            }
+        }
+    }
+}
+
+fn collect_and_partition_mono_items<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    (): (),
+) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
+    let collection_mode = match tcx.sess.opts.debugging_opts.print_mono_items {
+        Some(ref s) => {
+            let mode_string = s.to_lowercase();
+            let mode_string = mode_string.trim();
+            if mode_string == "eager" {
+                MonoItemCollectionMode::Eager
+            } else {
+                if mode_string != "lazy" {
+                    let message = format!(
+                        "Unknown codegen-item collection mode '{}'. \
+                                           Falling back to 'lazy' mode.",
+                        mode_string
+                    );
+                    tcx.sess.warn(&message);
+                }
+
+                MonoItemCollectionMode::Lazy
+            }
+        }
+        None => {
+            if tcx.sess.link_dead_code() {
+                MonoItemCollectionMode::Eager
+            } else {
+                MonoItemCollectionMode::Lazy
+            }
+        }
+    };
+
+    let (items, inlining_map) = collector::collect_crate_mono_items(tcx, collection_mode);
+
+    tcx.sess.abort_if_errors();
+
+    let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
+        sync::join(
+            || {
+                let mut codegen_units = partition(
+                    tcx,
+                    &mut items.iter().cloned(),
+                    tcx.sess.codegen_units(),
+                    &inlining_map,
+                );
+                codegen_units[0].make_primary();
+                &*tcx.arena.alloc_from_iter(codegen_units)
+            },
+            || assert_symbols_are_distinct(tcx, items.iter()),
+        )
+    });
+
+    let mono_items: DefIdSet = items
+        .iter()
+        .filter_map(|mono_item| match *mono_item {
+            MonoItem::Fn(ref instance) => Some(instance.def_id()),
+            MonoItem::Static(def_id) => Some(def_id),
+            _ => None,
+        })
+        .collect();
+
+    if tcx.sess.opts.debugging_opts.print_mono_items.is_some() {
+        let mut item_to_cgus: FxHashMap<_, Vec<_>> = Default::default();
+
+        for cgu in codegen_units {
+            for (&mono_item, &linkage) in cgu.items() {
+                item_to_cgus.entry(mono_item).or_default().push((cgu.name(), linkage));
+            }
+        }
+
+        let mut item_keys: Vec<_> = items
+            .iter()
+            .map(|i| {
+                let mut output = with_no_trimmed_paths(|| i.to_string());
+                output.push_str(" @@");
+                let mut empty = Vec::new();
+                let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
+                cgus.sort_by_key(|(name, _)| *name);
+                cgus.dedup();
+                for &(ref cgu_name, (linkage, _)) in cgus.iter() {
+                    output.push(' ');
+                    output.push_str(&cgu_name.as_str());
+
+                    let linkage_abbrev = match linkage {
+                        Linkage::External => "External",
+                        Linkage::AvailableExternally => "Available",
+                        Linkage::LinkOnceAny => "OnceAny",
+                        Linkage::LinkOnceODR => "OnceODR",
+                        Linkage::WeakAny => "WeakAny",
+                        Linkage::WeakODR => "WeakODR",
+                        Linkage::Appending => "Appending",
+                        Linkage::Internal => "Internal",
+                        Linkage::Private => "Private",
+                        Linkage::ExternalWeak => "ExternalWeak",
+                        Linkage::Common => "Common",
+                    };
+
+                    output.push('[');
+                    output.push_str(linkage_abbrev);
+                    output.push(']');
+                }
+                output
+            })
+            .collect();
+
+        item_keys.sort();
+
+        for item in item_keys {
+            println!("MONO_ITEM {}", item);
+        }
+    }
+
+    (tcx.arena.alloc(mono_items), codegen_units)
+}
+
+fn codegened_and_inlined_items<'tcx>(tcx: TyCtxt<'tcx>, (): ()) -> &'tcx DefIdSet {
+    let (items, cgus) = tcx.collect_and_partition_mono_items(());
+    let mut visited = DefIdSet::default();
+    let mut result = items.clone();
+
+    for cgu in cgus {
+        for (item, _) in cgu.items() {
+            if let MonoItem::Fn(ref instance) = item {
+                let did = instance.def_id();
+                if !visited.insert(did) {
+                    continue;
+                }
+                for scope in &tcx.instance_mir(instance.def).source_scopes {
+                    if let Some((ref inlined, _)) = scope.inlined {
+                        result.insert(inlined.def_id());
+                    }
+                }
+            }
+        }
+    }
+
+    tcx.arena.alloc(result)
+}
+
+pub fn provide(providers: &mut Providers) {
+    providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
+    providers.codegened_and_inlined_items = codegened_and_inlined_items;
+
+    providers.is_codegened_item = |tcx, def_id| {
+        let (all_mono_items, _) = tcx.collect_and_partition_mono_items(());
+        all_mono_items.contains(&def_id)
+    };
+
+    providers.codegen_unit = |tcx, name| {
+        let (_, all) = tcx.collect_and_partition_mono_items(());
+        all.iter()
+            .find(|cgu| cgu.name() == name)
+            .unwrap_or_else(|| panic!("failed to find cgu with name {:?}", name))
+    };
+}
diff --git a/compiler/rustc_monomorphize/src/polymorphize.rs b/compiler/rustc_monomorphize/src/polymorphize.rs
new file mode 100644
index 00000000000..3c55a4b0a8f
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/polymorphize.rs
@@ -0,0 +1,399 @@
+//! Polymorphization Analysis
+//! =========================
+//!
+//! This module implements an analysis of functions, methods and closures to determine which
+//! generic parameters are unused (and eventually, in what ways generic parameters are used - only
+//! for their size, offset of a field, etc.).
+
+use rustc_hir::{def::DefKind, def_id::DefId, ConstContext};
+use rustc_index::bit_set::FiniteBitSet;
+use rustc_middle::mir::{
+    visit::{TyContext, Visitor},
+    Local, LocalDecl, Location,
+};
+use rustc_middle::ty::{
+    self,
+    fold::{TypeFoldable, TypeVisitor},
+    query::Providers,
+    subst::SubstsRef,
+    Const, Ty, TyCtxt,
+};
+use rustc_span::symbol::sym;
+use std::convert::TryInto;
+use std::ops::ControlFlow;
+
+/// Provide implementations of queries relating to polymorphization analysis.
+pub fn provide(providers: &mut Providers) {
+    providers.unused_generic_params = unused_generic_params;
+}
+
+/// Determine which generic parameters are used by the function/method/closure represented by
+/// `def_id`. Returns a bitset where bits representing unused parameters are set (`is_empty`
+/// indicates all parameters are used).
+#[instrument(skip(tcx))]
+fn unused_generic_params(tcx: TyCtxt<'_>, def_id: DefId) -> FiniteBitSet<u32> {
+    if !tcx.sess.opts.debugging_opts.polymorphize {
+        // If polymorphization disabled, then all parameters are used.
+        return FiniteBitSet::new_empty();
+    }
+
+    // Polymorphization results are stored in cross-crate metadata only when there are unused
+    // parameters, so assume that non-local items must have only used parameters (else this query
+    // would not be invoked, and the cross-crate metadata used instead).
+    if !def_id.is_local() {
+        return FiniteBitSet::new_empty();
+    }
+
+    let generics = tcx.generics_of(def_id);
+    debug!(?generics);
+
+    // Exit early when there are no parameters to be unused.
+    if generics.count() == 0 {
+        return FiniteBitSet::new_empty();
+    }
+
+    // Exit early when there is no MIR available.
+    let context = tcx.hir().body_const_context(def_id.expect_local());
+    match context {
+        Some(ConstContext::ConstFn) | None if !tcx.is_mir_available(def_id) => {
+            debug!("no mir available");
+            return FiniteBitSet::new_empty();
+        }
+        Some(_) if !tcx.is_ctfe_mir_available(def_id) => {
+            debug!("no ctfe mir available");
+            return FiniteBitSet::new_empty();
+        }
+        _ => {}
+    }
+
+    // Create a bitset with N rightmost ones for each parameter.
+    let generics_count: u32 =
+        generics.count().try_into().expect("more generic parameters than can fit into a `u32`");
+    let mut unused_parameters = FiniteBitSet::<u32>::new_empty();
+    unused_parameters.set_range(0..generics_count);
+    debug!(?unused_parameters, "(start)");
+    mark_used_by_default_parameters(tcx, def_id, generics, &mut unused_parameters);
+    debug!(?unused_parameters, "(after default)");
+
+    // Visit MIR and accumululate used generic parameters.
+    let body = match context {
+        // Const functions are actually called and should thus be considered for polymorphization
+        // via their runtime MIR
+        Some(ConstContext::ConstFn) | None => tcx.optimized_mir(def_id),
+        Some(_) => tcx.mir_for_ctfe(def_id),
+    };
+    let mut vis = MarkUsedGenericParams { tcx, def_id, unused_parameters: &mut unused_parameters };
+    vis.visit_body(body);
+    debug!(?unused_parameters, "(after visitor)");
+
+    mark_used_by_predicates(tcx, def_id, &mut unused_parameters);
+    debug!(?unused_parameters, "(end)");
+
+    // Emit errors for debugging and testing if enabled.
+    if !unused_parameters.is_empty() {
+        emit_unused_generic_params_error(tcx, def_id, generics, &unused_parameters);
+    }
+
+    unused_parameters
+}
+
+/// Some parameters are considered used-by-default, such as non-generic parameters and the dummy
+/// generic parameters from closures, this function marks them as used. `leaf_is_closure` should
+/// be `true` if the item that `unused_generic_params` was invoked on is a closure.
+#[instrument(skip(tcx, def_id, generics, unused_parameters))]
+fn mark_used_by_default_parameters<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: DefId,
+    generics: &'tcx ty::Generics,
+    unused_parameters: &mut FiniteBitSet<u32>,
+) {
+    match tcx.def_kind(def_id) {
+        DefKind::Closure | DefKind::Generator => {
+            for param in &generics.params {
+                debug!(?param, "(closure/gen)");
+                unused_parameters.clear(param.index);
+            }
+        }
+        DefKind::Mod
+        | DefKind::Struct
+        | DefKind::Union
+        | DefKind::Enum
+        | DefKind::Variant
+        | DefKind::Trait
+        | DefKind::TyAlias
+        | DefKind::ForeignTy
+        | DefKind::TraitAlias
+        | DefKind::AssocTy
+        | DefKind::TyParam
+        | DefKind::Fn
+        | DefKind::Const
+        | DefKind::ConstParam
+        | DefKind::Static
+        | DefKind::Ctor(_, _)
+        | DefKind::AssocFn
+        | DefKind::AssocConst
+        | DefKind::Macro(_)
+        | DefKind::ExternCrate
+        | DefKind::Use
+        | DefKind::ForeignMod
+        | DefKind::AnonConst
+        | DefKind::OpaqueTy
+        | DefKind::Field
+        | DefKind::LifetimeParam
+        | DefKind::GlobalAsm
+        | DefKind::Impl => {
+            for param in &generics.params {
+                debug!(?param, "(other)");
+                if let ty::GenericParamDefKind::Lifetime = param.kind {
+                    unused_parameters.clear(param.index);
+                }
+            }
+        }
+    }
+
+    if let Some(parent) = generics.parent {
+        mark_used_by_default_parameters(tcx, parent, tcx.generics_of(parent), unused_parameters);
+    }
+}
+
+/// Search the predicates on used generic parameters for any unused generic parameters, and mark
+/// those as used.
+#[instrument(skip(tcx, def_id))]
+fn mark_used_by_predicates<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: DefId,
+    unused_parameters: &mut FiniteBitSet<u32>,
+) {
+    let def_id = tcx.closure_base_def_id(def_id);
+    let predicates = tcx.explicit_predicates_of(def_id);
+
+    let mut current_unused_parameters = FiniteBitSet::new_empty();
+    // Run to a fixed point to support `where T: Trait<U>, U: Trait<V>`, starting with an empty
+    // bit set so that this is skipped if all parameters are already used.
+    while current_unused_parameters != *unused_parameters {
+        debug!(?current_unused_parameters, ?unused_parameters);
+        current_unused_parameters = *unused_parameters;
+
+        for (predicate, _) in predicates.predicates {
+            // Consider all generic params in a predicate as used if any other parameter in the
+            // predicate is used.
+            let any_param_used = {
+                let mut vis = HasUsedGenericParams { tcx, unused_parameters };
+                predicate.visit_with(&mut vis).is_break()
+            };
+
+            if any_param_used {
+                let mut vis = MarkUsedGenericParams { tcx, def_id, unused_parameters };
+                predicate.visit_with(&mut vis);
+            }
+        }
+    }
+
+    if let Some(parent) = predicates.parent {
+        mark_used_by_predicates(tcx, parent, unused_parameters);
+    }
+}
+
+/// Emit errors for the function annotated by `#[rustc_polymorphize_error]`, labelling each generic
+/// parameter which was unused.
+#[instrument(skip(tcx, generics))]
+fn emit_unused_generic_params_error<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    def_id: DefId,
+    generics: &'tcx ty::Generics,
+    unused_parameters: &FiniteBitSet<u32>,
+) {
+    let base_def_id = tcx.closure_base_def_id(def_id);
+    if !tcx.get_attrs(base_def_id).iter().any(|a| a.has_name(sym::rustc_polymorphize_error)) {
+        return;
+    }
+
+    let fn_span = match tcx.opt_item_name(def_id) {
+        Some(ident) => ident.span,
+        _ => tcx.def_span(def_id),
+    };
+
+    let mut err = tcx.sess.struct_span_err(fn_span, "item has unused generic parameters");
+
+    let mut next_generics = Some(generics);
+    while let Some(generics) = next_generics {
+        for param in &generics.params {
+            if unused_parameters.contains(param.index).unwrap_or(false) {
+                debug!(?param);
+                let def_span = tcx.def_span(param.def_id);
+                err.span_label(def_span, &format!("generic parameter `{}` is unused", param.name));
+            }
+        }
+
+        next_generics = generics.parent.map(|did| tcx.generics_of(did));
+    }
+
+    err.emit();
+}
+
+/// Visitor used to aggregate generic parameter uses.
+struct MarkUsedGenericParams<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    def_id: DefId,
+    unused_parameters: &'a mut FiniteBitSet<u32>,
+}
+
+impl<'a, 'tcx> MarkUsedGenericParams<'a, 'tcx> {
+    /// Invoke `unused_generic_params` on a body contained within the current item (e.g.
+    /// a closure, generator or constant).
+    #[instrument(skip(self, def_id, substs))]
+    fn visit_child_body(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) {
+        let unused = self.tcx.unused_generic_params(def_id);
+        debug!(?self.unused_parameters, ?unused);
+        for (i, arg) in substs.iter().enumerate() {
+            let i = i.try_into().unwrap();
+            if !unused.contains(i).unwrap_or(false) {
+                arg.visit_with(self);
+            }
+        }
+        debug!(?self.unused_parameters);
+    }
+}
+
+impl<'a, 'tcx> Visitor<'tcx> for MarkUsedGenericParams<'a, 'tcx> {
+    #[instrument(skip(self, local))]
+    fn visit_local_decl(&mut self, local: Local, local_decl: &LocalDecl<'tcx>) {
+        if local == Local::from_usize(1) {
+            let def_kind = self.tcx.def_kind(self.def_id);
+            if matches!(def_kind, DefKind::Closure | DefKind::Generator) {
+                // Skip visiting the closure/generator that is currently being processed. This only
+                // happens because the first argument to the closure is a reference to itself and
+                // that will call `visit_substs`, resulting in each generic parameter captured being
+                // considered used by default.
+                debug!("skipping closure substs");
+                return;
+            }
+        }
+
+        self.super_local_decl(local, local_decl);
+    }
+
+    fn visit_const(&mut self, c: &&'tcx Const<'tcx>, _: Location) {
+        c.visit_with(self);
+    }
+
+    fn visit_ty(&mut self, ty: Ty<'tcx>, _: TyContext) {
+        ty.visit_with(self);
+    }
+}
+
+impl<'a, 'tcx> TypeVisitor<'tcx> for MarkUsedGenericParams<'a, 'tcx> {
+    fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
+        Some(self.tcx)
+    }
+    #[instrument(skip(self))]
+    fn visit_const(&mut self, c: &'tcx Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+        if !c.potentially_has_param_types_or_consts() {
+            return ControlFlow::CONTINUE;
+        }
+
+        match c.val {
+            ty::ConstKind::Param(param) => {
+                debug!(?param);
+                self.unused_parameters.clear(param.index);
+                ControlFlow::CONTINUE
+            }
+            ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs_: _, promoted: Some(p)})
+                // Avoid considering `T` unused when constants are of the form:
+                //   `<Self as Foo<T>>::foo::promoted[p]`
+                if self.def_id == def.did && !self.tcx.generics_of(def.did).has_self =>
+            {
+                // If there is a promoted, don't look at the substs - since it will always contain
+                // the generic parameters, instead, traverse the promoted MIR.
+                let promoted = self.tcx.promoted_mir(def.did);
+                self.visit_body(&promoted[p]);
+                ControlFlow::CONTINUE
+            }
+            ty::ConstKind::Unevaluated(uv)
+                if self.tcx.def_kind(uv.def.did) == DefKind::AnonConst =>
+            {
+                self.visit_child_body(uv.def.did, uv.substs(self.tcx));
+                ControlFlow::CONTINUE
+            }
+            _ => c.super_visit_with(self),
+        }
+    }
+
+    #[instrument(skip(self))]
+    fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+        if !ty.potentially_has_param_types_or_consts() {
+            return ControlFlow::CONTINUE;
+        }
+
+        match *ty.kind() {
+            ty::Closure(def_id, substs) | ty::Generator(def_id, substs, ..) => {
+                debug!(?def_id);
+                // Avoid cycle errors with generators.
+                if def_id == self.def_id {
+                    return ControlFlow::CONTINUE;
+                }
+
+                // Consider any generic parameters used by any closures/generators as used in the
+                // parent.
+                self.visit_child_body(def_id, substs);
+                ControlFlow::CONTINUE
+            }
+            ty::Param(param) => {
+                debug!(?param);
+                self.unused_parameters.clear(param.index);
+                ControlFlow::CONTINUE
+            }
+            _ => ty.super_visit_with(self),
+        }
+    }
+}
+
+/// Visitor used to check if a generic parameter is used.
+struct HasUsedGenericParams<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    unused_parameters: &'a FiniteBitSet<u32>,
+}
+
+impl<'a, 'tcx> TypeVisitor<'tcx> for HasUsedGenericParams<'a, 'tcx> {
+    type BreakTy = ();
+
+    fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
+        Some(self.tcx)
+    }
+
+    #[instrument(skip(self))]
+    fn visit_const(&mut self, c: &'tcx Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+        if !c.potentially_has_param_types_or_consts() {
+            return ControlFlow::CONTINUE;
+        }
+
+        match c.val {
+            ty::ConstKind::Param(param) => {
+                if self.unused_parameters.contains(param.index).unwrap_or(false) {
+                    ControlFlow::CONTINUE
+                } else {
+                    ControlFlow::BREAK
+                }
+            }
+            _ => c.super_visit_with(self),
+        }
+    }
+
+    #[instrument(skip(self))]
+    fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+        if !ty.potentially_has_param_types_or_consts() {
+            return ControlFlow::CONTINUE;
+        }
+
+        match ty.kind() {
+            ty::Param(param) => {
+                if self.unused_parameters.contains(param.index).unwrap_or(false) {
+                    ControlFlow::CONTINUE
+                } else {
+                    ControlFlow::BREAK
+                }
+            }
+            _ => ty.super_visit_with(self),
+        }
+    }
+}
diff --git a/compiler/rustc_monomorphize/src/util.rs b/compiler/rustc_monomorphize/src/util.rs
new file mode 100644
index 00000000000..799b4e18c24
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/util.rs
@@ -0,0 +1,73 @@
+use rustc_middle::ty::{self, ClosureSizeProfileData, Instance, TyCtxt};
+use std::fs::OpenOptions;
+use std::io::prelude::*;
+
+/// For a given closure, writes out the data for the profiling the impact of RFC 2229 on
+/// closure size into a CSV.
+///
+/// During the same compile all closures dump the information in the same file
+/// "closure_profile_XXXXX.csv", which is created in the directory where the compiler is invoked.
+crate fn dump_closure_profile(tcx: TyCtxt<'tcx>, closure_instance: Instance<'tcx>) {
+    let mut file = if let Ok(file) = OpenOptions::new()
+        .create(true)
+        .append(true)
+        .open(&format!("closure_profile_{}.csv", std::process::id()))
+    {
+        file
+    } else {
+        eprintln!("Cound't open file for writing closure profile");
+        return;
+    };
+
+    let closure_def_id = closure_instance.def_id();
+    let typeck_results = tcx.typeck(closure_def_id.expect_local());
+
+    if typeck_results.closure_size_eval.contains_key(&closure_def_id) {
+        let param_env = ty::ParamEnv::reveal_all();
+
+        let ClosureSizeProfileData { before_feature_tys, after_feature_tys } =
+            typeck_results.closure_size_eval[&closure_def_id];
+
+        let before_feature_tys = tcx.subst_and_normalize_erasing_regions(
+            closure_instance.substs,
+            param_env,
+            before_feature_tys,
+        );
+        let after_feature_tys = tcx.subst_and_normalize_erasing_regions(
+            closure_instance.substs,
+            param_env,
+            after_feature_tys,
+        );
+
+        let new_size = tcx
+            .layout_of(param_env.and(after_feature_tys))
+            .map(|l| format!("{:?}", l.size.bytes()))
+            .unwrap_or_else(|e| format!("Failed {:?}", e));
+
+        let old_size = tcx
+            .layout_of(param_env.and(before_feature_tys))
+            .map(|l| format!("{:?}", l.size.bytes()))
+            .unwrap_or_else(|e| format!("Failed {:?}", e));
+
+        let closure_hir_id = tcx.hir().local_def_id_to_hir_id(closure_def_id.expect_local());
+        let closure_span = tcx.hir().span(closure_hir_id);
+        let src_file = tcx.sess.source_map().span_to_filename(closure_span);
+        let line_nos = tcx
+            .sess
+            .source_map()
+            .span_to_lines(closure_span)
+            .map(|l| format!("{:?} {:?}", l.lines.first(), l.lines.last()))
+            .unwrap_or_else(|e| format!("{:?}", e));
+
+        if let Err(e) = writeln!(
+            file,
+            "{}, {}, {}, {:?}",
+            old_size,
+            new_size,
+            src_file.prefer_local(),
+            line_nos
+        ) {
+            eprintln!("Error writting to file {}", e.to_string())
+        }
+    }
+}