diff options
Diffstat (limited to 'compiler/rustc_next_trait_solver/src/canonical/mod.rs')
| -rw-r--r-- | compiler/rustc_next_trait_solver/src/canonical/mod.rs | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/compiler/rustc_next_trait_solver/src/canonical/mod.rs b/compiler/rustc_next_trait_solver/src/canonical/mod.rs new file mode 100644 index 00000000000..e3520e238ed --- /dev/null +++ b/compiler/rustc_next_trait_solver/src/canonical/mod.rs @@ -0,0 +1,364 @@ +//! Canonicalization is used to separate some goal from its context, +//! throwing away unnecessary information in the process. +//! +//! This is necessary to cache goals containing inference variables +//! and placeholders without restricting them to the current `InferCtxt`. +//! +//! Canonicalization is fairly involved, for more details see the relevant +//! section of the [rustc-dev-guide][c]. +//! +//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html + +use std::iter; + +use canonicalizer::Canonicalizer; +use rustc_index::IndexVec; +use rustc_type_ir::inherent::*; +use rustc_type_ir::relate::solver_relating::RelateExt; +use rustc_type_ir::{ + self as ty, Canonical, CanonicalVarKind, CanonicalVarValues, InferCtxtLike, Interner, + TypeFoldable, +}; +use tracing::instrument; + +use crate::delegate::SolverDelegate; +use crate::resolve::eager_resolve_vars; +use crate::solve::{ + CanonicalInput, CanonicalResponse, Certainty, ExternalConstraintsData, Goal, + NestedNormalizationGoals, PredefinedOpaquesData, QueryInput, Response, inspect, +}; + +pub mod canonicalizer; + +trait ResponseT<I: Interner> { + fn var_values(&self) -> CanonicalVarValues<I>; +} + +impl<I: Interner> ResponseT<I> for Response<I> { + fn var_values(&self) -> CanonicalVarValues<I> { + self.var_values + } +} + +impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> { + fn var_values(&self) -> CanonicalVarValues<I> { + self.var_values + } +} + +/// Canonicalizes the goal remembering the original values +/// for each bound variable. +/// +/// This expects `goal` and `opaque_types` to be eager resolved. +pub(super) fn canonicalize_goal<D, I>( + delegate: &D, + goal: Goal<I, I::Predicate>, + opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>, +) -> (Vec<I::GenericArg>, CanonicalInput<I, I::Predicate>) +where + D: SolverDelegate<Interner = I>, + I: Interner, +{ + let mut orig_values = Default::default(); + let canonical = Canonicalizer::canonicalize_input( + delegate, + &mut orig_values, + QueryInput { + goal, + predefined_opaques_in_body: delegate + .cx() + .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }), + }, + ); + let query_input = ty::CanonicalQueryInput { canonical, typing_mode: delegate.typing_mode() }; + (orig_values, query_input) +} + +pub(super) fn canonicalize_response<D, I, T>( + delegate: &D, + max_input_universe: ty::UniverseIndex, + value: T, +) -> ty::Canonical<I, T> +where + D: SolverDelegate<Interner = I>, + I: Interner, + T: TypeFoldable<I>, +{ + let mut orig_values = Default::default(); + let canonical = + Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut orig_values, value); + canonical +} + +/// After calling a canonical query, we apply the constraints returned +/// by the query using this function. +/// +/// This happens in three steps: +/// - we instantiate the bound variables of the query response +/// - we unify the `var_values` of the response with the `original_values` +/// - we apply the `external_constraints` returned by the query, returning +/// the `normalization_nested_goals` +pub(super) fn instantiate_and_apply_query_response<D, I>( + delegate: &D, + param_env: I::ParamEnv, + original_values: &[I::GenericArg], + response: CanonicalResponse<I>, + span: I::Span, +) -> (NestedNormalizationGoals<I>, Certainty) +where + D: SolverDelegate<Interner = I>, + I: Interner, +{ + let instantiation = + compute_query_response_instantiation_values(delegate, &original_values, &response, span); + + let Response { var_values, external_constraints, certainty } = + delegate.instantiate_canonical(response, instantiation); + + unify_query_var_values(delegate, param_env, &original_values, var_values, span); + + let ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals } = + &*external_constraints; + + register_region_constraints(delegate, region_constraints, span); + register_new_opaque_types(delegate, opaque_types, span); + + (normalization_nested_goals.clone(), certainty) +} + +/// This returns the canonical variable values to instantiate the bound variables of +/// the canonical response. This depends on the `original_values` for the +/// bound variables. +fn compute_query_response_instantiation_values<D, I, T>( + delegate: &D, + original_values: &[I::GenericArg], + response: &Canonical<I, T>, + span: I::Span, +) -> CanonicalVarValues<I> +where + D: SolverDelegate<Interner = I>, + I: Interner, + T: ResponseT<I>, +{ + // FIXME: Longterm canonical queries should deal with all placeholders + // created inside of the query directly instead of returning them to the + // caller. + let prev_universe = delegate.universe(); + let universes_created_in_query = response.max_universe.index(); + for _ in 0..universes_created_in_query { + delegate.create_next_universe(); + } + + let var_values = response.value.var_values(); + assert_eq!(original_values.len(), var_values.len()); + + // If the query did not make progress with constraining inference variables, + // we would normally create a new inference variables for bound existential variables + // only then unify this new inference variable with the inference variable from + // the input. + // + // We therefore instantiate the existential variable in the canonical response with the + // inference variable of the input right away, which is more performant. + let mut opt_values = IndexVec::from_elem_n(None, response.variables.len()); + for (original_value, result_value) in iter::zip(original_values, var_values.var_values.iter()) { + match result_value.kind() { + ty::GenericArgKind::Type(t) => { + // We disable the instantiation guess for inference variables + // and only use it for placeholders. We need to handle the + // `sub_root` of type inference variables which would make this + // more involved. They are also a lot rarer than region variables. + if let ty::Bound(debruijn, b) = t.kind() + && !matches!( + response.variables.get(b.var().as_usize()).unwrap(), + CanonicalVarKind::Ty { .. } + ) + { + assert_eq!(debruijn, ty::INNERMOST); + opt_values[b.var()] = Some(*original_value); + } + } + ty::GenericArgKind::Lifetime(r) => { + if let ty::ReBound(debruijn, br) = r.kind() { + assert_eq!(debruijn, ty::INNERMOST); + opt_values[br.var()] = Some(*original_value); + } + } + ty::GenericArgKind::Const(c) => { + if let ty::ConstKind::Bound(debruijn, bv) = c.kind() { + assert_eq!(debruijn, ty::INNERMOST); + opt_values[bv.var()] = Some(*original_value); + } + } + } + } + CanonicalVarValues::instantiate(delegate.cx(), response.variables, |var_values, kind| { + if kind.universe() != ty::UniverseIndex::ROOT { + // A variable from inside a binder of the query. While ideally these shouldn't + // exist at all (see the FIXME at the start of this method), we have to deal with + // them for now. + delegate.instantiate_canonical_var(kind, span, &var_values, |idx| { + prev_universe + idx.index() + }) + } else if kind.is_existential() { + // As an optimization we sometimes avoid creating a new inference variable here. + // + // All new inference variables we create start out in the current universe of the caller. + // This is conceptually wrong as these inference variables would be able to name + // more placeholders then they should be able to. However the inference variables have + // to "come from somewhere", so by equating them with the original values of the caller + // later on, we pull them down into their correct universe again. + if let Some(v) = opt_values[ty::BoundVar::from_usize(var_values.len())] { + v + } else { + delegate.instantiate_canonical_var(kind, span, &var_values, |_| prev_universe) + } + } else { + // For placeholders which were already part of the input, we simply map this + // universal bound variable back the placeholder of the input. + original_values[kind.expect_placeholder_index()] + } + }) +} + +/// Unify the `original_values` with the `var_values` returned by the canonical query.. +/// +/// This assumes that this unification will always succeed. This is the case when +/// applying a query response right away. However, calling a canonical query, doing any +/// other kind of trait solving, and only then instantiating the result of the query +/// can cause the instantiation to fail. This is not supported and we ICE in this case. +/// +/// We always structurally instantiate aliases. Relating aliases needs to be different +/// depending on whether the alias is *rigid* or not. We're only really able to tell +/// whether an alias is rigid by using the trait solver. When instantiating a response +/// from the solver we assume that the solver correctly handled aliases and therefore +/// always relate them structurally here. +#[instrument(level = "trace", skip(delegate))] +fn unify_query_var_values<D, I>( + delegate: &D, + param_env: I::ParamEnv, + original_values: &[I::GenericArg], + var_values: CanonicalVarValues<I>, + span: I::Span, +) where + D: SolverDelegate<Interner = I>, + I: Interner, +{ + assert_eq!(original_values.len(), var_values.len()); + + for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) { + let goals = + delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap(); + assert!(goals.is_empty()); + } +} + +fn register_region_constraints<D, I>( + delegate: &D, + outlives: &[ty::OutlivesPredicate<I, I::GenericArg>], + span: I::Span, +) where + D: SolverDelegate<Interner = I>, + I: Interner, +{ + for &ty::OutlivesPredicate(lhs, rhs) in outlives { + match lhs.kind() { + ty::GenericArgKind::Lifetime(lhs) => delegate.sub_regions(rhs, lhs, span), + ty::GenericArgKind::Type(lhs) => delegate.register_ty_outlives(lhs, rhs, span), + ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"), + } + } +} + +fn register_new_opaque_types<D, I>( + delegate: &D, + opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)], + span: I::Span, +) where + D: SolverDelegate<Interner = I>, + I: Interner, +{ + for &(key, ty) in opaque_types { + let prev = delegate.register_hidden_type_in_storage(key, ty, span); + // We eagerly resolve inference variables when computing the query response. + // This can cause previously distinct opaque type keys to now be structurally equal. + // + // To handle this, we store any duplicate entries in a separate list to check them + // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden + // types here. However, doing so is difficult as it may result in nested goals and + // any errors may make it harder to track the control flow for diagnostics. + if let Some(prev) = prev { + delegate.add_duplicate_opaque_type(key, prev, span); + } + } +} + +/// Used by proof trees to be able to recompute intermediate actions while +/// evaluating a goal. The `var_values` not only include the bound variables +/// of the query input, but also contain all unconstrained inference vars +/// created while evaluating this goal. +pub fn make_canonical_state<D, I, T>( + delegate: &D, + var_values: &[I::GenericArg], + max_input_universe: ty::UniverseIndex, + data: T, +) -> inspect::CanonicalState<I, T> +where + D: SolverDelegate<Interner = I>, + I: Interner, + T: TypeFoldable<I>, +{ + let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) }; + let state = inspect::State { var_values, data }; + let state = eager_resolve_vars(delegate, state); + Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state) +} + +// FIXME: needs to be pub to be accessed by downstream +// `rustc_trait_selection::solve::inspect::analyse`. +pub fn instantiate_canonical_state<D, I, T>( + delegate: &D, + span: I::Span, + param_env: I::ParamEnv, + orig_values: &mut Vec<I::GenericArg>, + state: inspect::CanonicalState<I, T>, +) -> T +where + D: SolverDelegate<Interner = I>, + I: Interner, + T: TypeFoldable<I>, +{ + // In case any fresh inference variables have been created between `state` + // and the previous instantiation, extend `orig_values` for it. + orig_values.extend( + state.value.var_values.var_values.as_slice()[orig_values.len()..] + .iter() + .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)), + ); + + let instantiation = + compute_query_response_instantiation_values(delegate, orig_values, &state, span); + + let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation); + + unify_query_var_values(delegate, param_env, orig_values, var_values, span); + data +} + +pub fn response_no_constraints_raw<I: Interner>( + cx: I, + max_universe: ty::UniverseIndex, + variables: I::CanonicalVarKinds, + certainty: Certainty, +) -> CanonicalResponse<I> { + ty::Canonical { + max_universe, + variables, + value: Response { + var_values: ty::CanonicalVarValues::make_identity(cx, variables), + // FIXME: maybe we should store the "no response" version in cx, like + // we do for cx.types and stuff. + external_constraints: cx.mk_external_constraints(ExternalConstraintsData::default()), + certainty, + }, + } +} |
