about summary refs log tree commit diff
path: root/compiler/rustc_next_trait_solver/src/canonical/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_next_trait_solver/src/canonical/mod.rs')
-rw-r--r--compiler/rustc_next_trait_solver/src/canonical/mod.rs364
1 files changed, 364 insertions, 0 deletions
diff --git a/compiler/rustc_next_trait_solver/src/canonical/mod.rs b/compiler/rustc_next_trait_solver/src/canonical/mod.rs
new file mode 100644
index 00000000000..e3520e238ed
--- /dev/null
+++ b/compiler/rustc_next_trait_solver/src/canonical/mod.rs
@@ -0,0 +1,364 @@
+//! Canonicalization is used to separate some goal from its context,
+//! throwing away unnecessary information in the process.
+//!
+//! This is necessary to cache goals containing inference variables
+//! and placeholders without restricting them to the current `InferCtxt`.
+//!
+//! Canonicalization is fairly involved, for more details see the relevant
+//! section of the [rustc-dev-guide][c].
+//!
+//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
+
+use std::iter;
+
+use canonicalizer::Canonicalizer;
+use rustc_index::IndexVec;
+use rustc_type_ir::inherent::*;
+use rustc_type_ir::relate::solver_relating::RelateExt;
+use rustc_type_ir::{
+    self as ty, Canonical, CanonicalVarKind, CanonicalVarValues, InferCtxtLike, Interner,
+    TypeFoldable,
+};
+use tracing::instrument;
+
+use crate::delegate::SolverDelegate;
+use crate::resolve::eager_resolve_vars;
+use crate::solve::{
+    CanonicalInput, CanonicalResponse, Certainty, ExternalConstraintsData, Goal,
+    NestedNormalizationGoals, PredefinedOpaquesData, QueryInput, Response, inspect,
+};
+
+pub mod canonicalizer;
+
+trait ResponseT<I: Interner> {
+    fn var_values(&self) -> CanonicalVarValues<I>;
+}
+
+impl<I: Interner> ResponseT<I> for Response<I> {
+    fn var_values(&self) -> CanonicalVarValues<I> {
+        self.var_values
+    }
+}
+
+impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
+    fn var_values(&self) -> CanonicalVarValues<I> {
+        self.var_values
+    }
+}
+
+/// Canonicalizes the goal remembering the original values
+/// for each bound variable.
+///
+/// This expects `goal` and `opaque_types` to be eager resolved.
+pub(super) fn canonicalize_goal<D, I>(
+    delegate: &D,
+    goal: Goal<I, I::Predicate>,
+    opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
+) -> (Vec<I::GenericArg>, CanonicalInput<I, I::Predicate>)
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+{
+    let mut orig_values = Default::default();
+    let canonical = Canonicalizer::canonicalize_input(
+        delegate,
+        &mut orig_values,
+        QueryInput {
+            goal,
+            predefined_opaques_in_body: delegate
+                .cx()
+                .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
+        },
+    );
+    let query_input = ty::CanonicalQueryInput { canonical, typing_mode: delegate.typing_mode() };
+    (orig_values, query_input)
+}
+
+pub(super) fn canonicalize_response<D, I, T>(
+    delegate: &D,
+    max_input_universe: ty::UniverseIndex,
+    value: T,
+) -> ty::Canonical<I, T>
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+    T: TypeFoldable<I>,
+{
+    let mut orig_values = Default::default();
+    let canonical =
+        Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut orig_values, value);
+    canonical
+}
+
+/// After calling a canonical query, we apply the constraints returned
+/// by the query using this function.
+///
+/// This happens in three steps:
+/// - we instantiate the bound variables of the query response
+/// - we unify the `var_values` of the response with the `original_values`
+/// - we apply the `external_constraints` returned by the query, returning
+///   the `normalization_nested_goals`
+pub(super) fn instantiate_and_apply_query_response<D, I>(
+    delegate: &D,
+    param_env: I::ParamEnv,
+    original_values: &[I::GenericArg],
+    response: CanonicalResponse<I>,
+    span: I::Span,
+) -> (NestedNormalizationGoals<I>, Certainty)
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+{
+    let instantiation =
+        compute_query_response_instantiation_values(delegate, &original_values, &response, span);
+
+    let Response { var_values, external_constraints, certainty } =
+        delegate.instantiate_canonical(response, instantiation);
+
+    unify_query_var_values(delegate, param_env, &original_values, var_values, span);
+
+    let ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals } =
+        &*external_constraints;
+
+    register_region_constraints(delegate, region_constraints, span);
+    register_new_opaque_types(delegate, opaque_types, span);
+
+    (normalization_nested_goals.clone(), certainty)
+}
+
+/// This returns the canonical variable values to instantiate the bound variables of
+/// the canonical response. This depends on the `original_values` for the
+/// bound variables.
+fn compute_query_response_instantiation_values<D, I, T>(
+    delegate: &D,
+    original_values: &[I::GenericArg],
+    response: &Canonical<I, T>,
+    span: I::Span,
+) -> CanonicalVarValues<I>
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+    T: ResponseT<I>,
+{
+    // FIXME: Longterm canonical queries should deal with all placeholders
+    // created inside of the query directly instead of returning them to the
+    // caller.
+    let prev_universe = delegate.universe();
+    let universes_created_in_query = response.max_universe.index();
+    for _ in 0..universes_created_in_query {
+        delegate.create_next_universe();
+    }
+
+    let var_values = response.value.var_values();
+    assert_eq!(original_values.len(), var_values.len());
+
+    // If the query did not make progress with constraining inference variables,
+    // we would normally create a new inference variables for bound existential variables
+    // only then unify this new inference variable with the inference variable from
+    // the input.
+    //
+    // We therefore instantiate the existential variable in the canonical response with the
+    // inference variable of the input right away, which is more performant.
+    let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
+    for (original_value, result_value) in iter::zip(original_values, var_values.var_values.iter()) {
+        match result_value.kind() {
+            ty::GenericArgKind::Type(t) => {
+                // We disable the instantiation guess for inference variables
+                // and only use it for placeholders. We need to handle the
+                // `sub_root` of type inference variables which would make this
+                // more involved. They are also a lot rarer than region variables.
+                if let ty::Bound(debruijn, b) = t.kind()
+                    && !matches!(
+                        response.variables.get(b.var().as_usize()).unwrap(),
+                        CanonicalVarKind::Ty { .. }
+                    )
+                {
+                    assert_eq!(debruijn, ty::INNERMOST);
+                    opt_values[b.var()] = Some(*original_value);
+                }
+            }
+            ty::GenericArgKind::Lifetime(r) => {
+                if let ty::ReBound(debruijn, br) = r.kind() {
+                    assert_eq!(debruijn, ty::INNERMOST);
+                    opt_values[br.var()] = Some(*original_value);
+                }
+            }
+            ty::GenericArgKind::Const(c) => {
+                if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
+                    assert_eq!(debruijn, ty::INNERMOST);
+                    opt_values[bv.var()] = Some(*original_value);
+                }
+            }
+        }
+    }
+    CanonicalVarValues::instantiate(delegate.cx(), response.variables, |var_values, kind| {
+        if kind.universe() != ty::UniverseIndex::ROOT {
+            // A variable from inside a binder of the query. While ideally these shouldn't
+            // exist at all (see the FIXME at the start of this method), we have to deal with
+            // them for now.
+            delegate.instantiate_canonical_var(kind, span, &var_values, |idx| {
+                prev_universe + idx.index()
+            })
+        } else if kind.is_existential() {
+            // As an optimization we sometimes avoid creating a new inference variable here.
+            //
+            // All new inference variables we create start out in the current universe of the caller.
+            // This is conceptually wrong as these inference variables would be able to name
+            // more placeholders then they should be able to. However the inference variables have
+            // to "come from somewhere", so by equating them with the original values of the caller
+            // later on, we pull them down into their correct universe again.
+            if let Some(v) = opt_values[ty::BoundVar::from_usize(var_values.len())] {
+                v
+            } else {
+                delegate.instantiate_canonical_var(kind, span, &var_values, |_| prev_universe)
+            }
+        } else {
+            // For placeholders which were already part of the input, we simply map this
+            // universal bound variable back the placeholder of the input.
+            original_values[kind.expect_placeholder_index()]
+        }
+    })
+}
+
+/// Unify the `original_values` with the `var_values` returned by the canonical query..
+///
+/// This assumes that this unification will always succeed. This is the case when
+/// applying a query response right away. However, calling a canonical query, doing any
+/// other kind of trait solving, and only then instantiating the result of the query
+/// can cause the instantiation to fail. This is not supported and we ICE in this case.
+///
+/// We always structurally instantiate aliases. Relating aliases needs to be different
+/// depending on whether the alias is *rigid* or not. We're only really able to tell
+/// whether an alias is rigid by using the trait solver. When instantiating a response
+/// from the solver we assume that the solver correctly handled aliases and therefore
+/// always relate them structurally here.
+#[instrument(level = "trace", skip(delegate))]
+fn unify_query_var_values<D, I>(
+    delegate: &D,
+    param_env: I::ParamEnv,
+    original_values: &[I::GenericArg],
+    var_values: CanonicalVarValues<I>,
+    span: I::Span,
+) where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+{
+    assert_eq!(original_values.len(), var_values.len());
+
+    for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
+        let goals =
+            delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap();
+        assert!(goals.is_empty());
+    }
+}
+
+fn register_region_constraints<D, I>(
+    delegate: &D,
+    outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
+    span: I::Span,
+) where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+{
+    for &ty::OutlivesPredicate(lhs, rhs) in outlives {
+        match lhs.kind() {
+            ty::GenericArgKind::Lifetime(lhs) => delegate.sub_regions(rhs, lhs, span),
+            ty::GenericArgKind::Type(lhs) => delegate.register_ty_outlives(lhs, rhs, span),
+            ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
+        }
+    }
+}
+
+fn register_new_opaque_types<D, I>(
+    delegate: &D,
+    opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)],
+    span: I::Span,
+) where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+{
+    for &(key, ty) in opaque_types {
+        let prev = delegate.register_hidden_type_in_storage(key, ty, span);
+        // We eagerly resolve inference variables when computing the query response.
+        // This can cause previously distinct opaque type keys to now be structurally equal.
+        //
+        // To handle this, we store any duplicate entries in a separate list to check them
+        // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden
+        // types here. However, doing so is difficult as it may result in nested goals and
+        // any errors may make it harder to track the control flow for diagnostics.
+        if let Some(prev) = prev {
+            delegate.add_duplicate_opaque_type(key, prev, span);
+        }
+    }
+}
+
+/// Used by proof trees to be able to recompute intermediate actions while
+/// evaluating a goal. The `var_values` not only include the bound variables
+/// of the query input, but also contain all unconstrained inference vars
+/// created while evaluating this goal.
+pub fn make_canonical_state<D, I, T>(
+    delegate: &D,
+    var_values: &[I::GenericArg],
+    max_input_universe: ty::UniverseIndex,
+    data: T,
+) -> inspect::CanonicalState<I, T>
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+    T: TypeFoldable<I>,
+{
+    let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
+    let state = inspect::State { var_values, data };
+    let state = eager_resolve_vars(delegate, state);
+    Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state)
+}
+
+// FIXME: needs to be pub to be accessed by downstream
+// `rustc_trait_selection::solve::inspect::analyse`.
+pub fn instantiate_canonical_state<D, I, T>(
+    delegate: &D,
+    span: I::Span,
+    param_env: I::ParamEnv,
+    orig_values: &mut Vec<I::GenericArg>,
+    state: inspect::CanonicalState<I, T>,
+) -> T
+where
+    D: SolverDelegate<Interner = I>,
+    I: Interner,
+    T: TypeFoldable<I>,
+{
+    // In case any fresh inference variables have been created between `state`
+    // and the previous instantiation, extend `orig_values` for it.
+    orig_values.extend(
+        state.value.var_values.var_values.as_slice()[orig_values.len()..]
+            .iter()
+            .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)),
+    );
+
+    let instantiation =
+        compute_query_response_instantiation_values(delegate, orig_values, &state, span);
+
+    let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
+
+    unify_query_var_values(delegate, param_env, orig_values, var_values, span);
+    data
+}
+
+pub fn response_no_constraints_raw<I: Interner>(
+    cx: I,
+    max_universe: ty::UniverseIndex,
+    variables: I::CanonicalVarKinds,
+    certainty: Certainty,
+) -> CanonicalResponse<I> {
+    ty::Canonical {
+        max_universe,
+        variables,
+        value: Response {
+            var_values: ty::CanonicalVarValues::make_identity(cx, variables),
+            // FIXME: maybe we should store the "no response" version in cx, like
+            // we do for cx.types and stuff.
+            external_constraints: cx.mk_external_constraints(ExternalConstraintsData::default()),
+            certainty,
+        },
+    }
+}